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We study the statistical properties of volatility, measured by locally averaging over a time window T, the
absolute value of price changes over a short time interval Dt . We analyze the S&P 500 stock index for the
13-year period Jan. 1984 to Dec. 1996. We find that the cumulative distribution of the volatility is consistent
with a power-law asymptotic behavior, characterized by an exponent m'3, similar to what is found for the
distribution of price changes. The volatility distribution retains the same functional form for a range of values
of T. Further, we study the volatility correlations by using the power spectrum analysis. Both methods support
a power law decay of the correlation function and give consistent estimates of the relevant scaling exponents.
Also, both methods show the presence of a crossover at approximately 1.5 days. In addition, we extend these
results to the volatility of individual companies by analyzing a data base comprising all trades for the largest
500 U.S. companies over the two-year period Jan. 1994 to Dec. 1995. @S1063-651X~99!04808-4#

PACS number~s!: 89.90.1n

I. INTRODUCTION

1Physicists are increasingly interested in economic time
series analysis for several reasons, among which are the fol-
lowing. ~i! Economic time series, such as stock market indi-
ces or currency exchange rates, depend on the evolution of a
large number of interacting systems, and so is an example of
complex evolving systems widely studied in physics. ~ii! The
recent availability of large amounts of data allows the study
of economic time series with a high accuracy on a wide
range of time scales varying from '1 min up to '1 yr.
Consequently, a large number of methods developed in sta-
tistical physics have been applied to characterize the time
evolution of stock prices and foreign exchange rates @1–19#.

Previous studies @1–33# show that the stochastic process
underlying price changes is characterized by several features.
The distribution of price changes has pronounced tails
@1–7,14–20# in contrast to a Gaussian distribution. The au-
tocorrelation function of price changes decays exponentially
with a characteristic time of approximately 4 min. However,
recent studies @20–31# show that the amplitude of price
changes, measured by the absolute value or the square,
shows power law correlations with long-range persistence up
to several months. These long-range dependencies are better
modeled by defining a ‘‘subsidiary process’’ @20–22#, often
referred to as the volatility in economic literature. The vola-
tility of stock price changes is a measure of how much the
market is liable to fluctuate. The first step is to construct an
estimator for the volatility. Here, we estimate the volatility as

the local average of the absolute price changes.
Understanding the statistical properties of the volatility

also has important practical implications. Volatility is of in-
terest to traders because it quantifies the risk @4# and is the
key input of virtually all option pricing models, including the
classic Black and Scholes model and the Cox, Ross, and
Rubinstein binomial models that are based on estimates of
the asset’s volatility over the remaining life of the option
@34,35#. Without an efficient volatility estimate, it would be
difficult for traders to identify situations in which options
appear to be underpriced or overpriced.

We focus on two basic statistical properties of the
volatility—the probability distribution function and the two-
point autocorrelation function. The paper is organized as fol-
lows. In Sec. II, we briefly describe the databases used in this
study, the S&P 500 stock index, and individual company
stock prices. In Sec. III, we discuss the quantification of
volatility. In Sec. IV, the probability distribution function is
studied, and in Sec. V, the volatility correlations are studied.
The appendix briefly describes a recently-developed method,
called detrended fluctuation analysis ~DFA! that we use to
quantify power-law correlations.

II. DATA ANALYZED

A. S&P 500 stock index

The S&P 500 index from the New York Stock Exchange
~NYSE! consists of 500 companies chosen for their market
size, liquidity, and industry group representation in the U.S.
It is a market-value weighted index, i.e., each stock is
weighted proportional to its stock price times number of
shares outstanding. The S&P 500 index, is one of the most
widely used benchmarks of U.S. equity performance. We
analyze the S&P 500 historical data, for the 13-year period
Jan. 1984 to Dec. 1996 @Fig. 1~a!# with a recording fre-
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quency of 15 s intervals. The total number of data points in
this 13-year period exceed 4.5 million, and allows for a de-
tailed statistical analysis.

B. Individual company stocks

We also analyze the trades and quotes ~TAQ! database
which documents every trade for all the securities listed in
the three major U.S. stock markets—the New York Stock
Exchange ~NYSE!, the American Stock Exchange ~AMEX!,
and the National Association of Securities Dealers Auto-
mated Quotation ~NASDAQ!—for the two-year period from
Jan. 1994 to Dec. 1995 @36#. We study the market capitali-
zations @37# for the 500 largest companies, ranked according
to the market capitalization on Jan. 1, 1994. The S&P 500
index at anytime is approximately the sum of market capi-
talizations of these 500 companies @38#. The total number of
data points analyzed exceed 20 million.

III. QUANTIFYING VOLATILITY

The term volatility represents a generic measure of the
magnitude of market fluctuations. Thus, many different
quantitative definitions of volatility are use in the literature.
In this study, we focus on one of these measures by estimat-
ing the volatility as the local average of absolute price
changes over a suitable time interval T, which is an adjust-
able parameter of our estimate.

Figure 1~a! shows the S&P 500 index Z(t) from 1984 to
1996 in semi-log scale. We define the price change G(t) as
the change in the logarithm of the index

G~ t ![ ln Z~ t1Dt !2ln Z~ t !>
Z~ t1Dt !2Z~ t !

Z~ t !
, ~1!

where Dt is the sampling time interval. In the limit of small
changes in Z(t) is approximately the relative change, defined
by the second equality. We only count time during opening
hours of the stock market, and remove the nights, weekends,
and holidays from the data set, i.e., the closing and the next
opening of the market is considered to be continuous.

The absolute value of G(t) describes the amplitude of the
fluctuation, as shown in Fig. 1~b!. In comparison to Fig. 1~a!,
Fig. 1~b! does not show visible global trends due to the loga-
rithmic difference. The large values of uG(t)u correspond to
the crashes and big rallies.

We define the volatility as the average of uG(t)u over a
time window T5nDt , i.e.,

VT~ t ![
1

n (
t85t

t1n21

uG~ t8!u, ~2!

where n is an integer. The above definition can be general-
ized @31# by replacing uG(t)u with uG(t)ug, where g.1
gives more weight to the large values of uG(t)u and 0,g
,1 weights the small values of uG(t)u.

There are two parameters in this definition of volatility,
Dt and n. The parameter Dt is the sampling time interval for
the data and the parameter n is the moving average window
size. Note that our definition of the volatility has an intrinsic
error associated with it. In principle, the larger the choice of
time interval T, the more accurate the volatility estimation.
However, a large value of T also implies poor resolution in
time.

Figure 2 shows the calculated volatility VT(t) for a large
averaging window T58190 min ~about 1 month! with Dt
530 min. The volatility fluctuates strongly during the crash
of 1987. We also note that periods of high volatility are not
sparse but tend to ‘‘cluster.’’ This clustering is especially
marked around the 1987 crash. The oscillatory patterns be-
fore the crash could be possible precursors ~possibly related
to the oscillatory patterns postulated in @11,12#!. Clustering
also occurs in other periods, e.g., in the second half of 1990.
There are also extended periods where the volatility remains
at a rather low level, e.g., the years of 1985 and 1993.

IV. VOLATILITY DISTRIBUTION

A. Volatility distribution of the S&P 500 index

1. Center part of the distribution

Figure 3~a! shows the probability density function P(VT)
of the volatility for several values of T with Dt530 min.

FIG. 1. ~a! Data analyzed: The S&P 500 index Z(t) for the
13-year period 3 Jan. 1984–31 Dec. 1996 at sampling intervals
Dt51 min. These data include the data set analyzed by Mantegna
and Stanley @18# and the extension of seven extra years. Note the
large fluctuations, such as that on 19 Oct. 1987 ~‘‘black Monday’’!.
The index Z(t) has an increasing trend except for some crashes,
such as the crashes in Oct. 1987 and May 1990. For the period
studied the index can apparently be fit by a straight line on a semi-
log graph, i.e., exponential growth with annual increase rate of
'15%. ~b! Amplitude of fluctuations uG(t)u ~see text for definition!

with Dt51 min.

FIG. 2. Volatility VT(t) with T51 month ~8190 min! and sam-
pling time interval Dt530 min of the S&P 500 index for the entire
13-year period 1984–1996. The highlighted block shows possible
‘‘precursors’’ of the Oct. 1987 crash.
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The central part shows a quadratic behavior on a log-log
scale @Fig. 3~a!#, consistent with a log-normal distribution
@30#. To test this possibility, the appropriately scaled distri-
bution of the volatility is plotted on a log-log plot @Fig. 3~b!#.
The distributions of volatility VT , for various choices of T
~from T5120 min up to T5900 min), collapse onto one
curve and are well fit in the center by a quadratic function on
a log-log scale. Since the central limit theorem holds also for
correlated series @39#, with a slower convergence than for
noncorrelated processes @4,15,28#, in the limit of large values
of T, one expects that P(VT) becomes Gaussian. However, a
log-normal distribution fits the data better than a Gaussian,
as is evident in Fig. 4 which compares the best log-normal fit
with the best Gaussian fit for the data @30#. The apparent
scaling behavior of volatility distribution could be attributed
to the long persistence of its autocorrelation function @28#
~Sec. V!.

2. Tail of the distribution

Although the log-normal seems to describe well the center
part of the volatility distribution, Fig. 3~a! suggests that the
distribution of the volatility has quite different behavior in
the tail. Since our time window T for estimating volatility is
quite large, it is difficult to obtain significant statistics for the
tail. Recent studies of the distribution for price changes re-
port power law asymptotic behavior @14,20,33#. Since the
volatility is the local average of the absolute price changes, it
is possible that a similar power law asymptotic behavior
might characterize the distribution of the volatility. Hence
we reduce the time window T and focus on the ‘‘tail’’ of the
volatility.

We compute the cumulative distribution of the volatility,
Eq. ~2! for different time scales, Fig. 5~a!. We find that the

FIG. 3. ~a! Probability distribution of the volatility on a log-log
scale with different time windows T with Dt530 min. The center
part of the distribution shows a quadratic behavior on the log-log
scale. The asymptotic behavior seems consistent with a power law.
~b! Center of the distribution: The volatility distribution for differ-
ent window sizes T using the log-normal scaling form Anexp(a
1n/4)P(VT) as a function of @ ln(VT)2a#/Apn , where a and n are
the mean and the width on a logarithmic scale. The scaled distribu-
tions are shown for the region shown by the box in ~a!. By the
scaling, all curves collapse to the log-normal form with a50 and
n51, exp@2(ln x)2# ~solid line!.

FIG. 4. Comparison of the log-normal and Gaussian fits for the
volatility distribution for T5300 min and Dt530 min.

FIG. 5. ~a! The cumulative distribution function of the volatility,
scaled by the standard deviation, for time scales T
532,64,128 min with sampling time interval D51 min, using
nonoverlapping windows for the S&P 500 stock index. Regression
lines yield estimates of the exponent m53.1060.08 for T
532 min, m53.1960.10 for T564 min, and m53.3060.15
for T5128 min. The fits were performed over the range of scaled
volatility greater than 1 standard deviation. Choices of D from 16
and 32 min were also studied for the same values of T shown.
Results obtained for these cases and the values of m obtained are
consistent with the present case.
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cumulative distribution of the volatility is consistent with a
power law asymptotic behavior

P~VT.x !;
1

xm
. ~3!

Regression fits yield estimates m53.1060.08 for T
532 min with Dt51 min, well outside the stable Lévy
range 0,m,2.

For larger time scales the asymptotic behavior is difficult
to estimate because of poor statistics at the tails. In view of
the power law asymptotic behavior for the volatility distri-
bution, the drop-off of P(VT) for low values of the volatility
could be regarded as a truncation to the power law behavior,
as opposed to a log-normal.

B. Volatility distribution for individual companies

In this section, we extend the investigation of the nature
of this distribution to the individual companies comprising
the S&P 500, where the amount of data is much larger,
which allows for better sampling of the tails.

From the TAQ data base, we analyze 500 time series
S i(t), where S i is the market capitalization of company i
~i.e., the stock price multiplied with the number of outstand-
ing shares!, i51, . . . ,500 is the rank in descending order of
the company according to its market capitalization on 1 Jan.
1994 and the sampling time is 5 min.The basic quantity stud-
ied for individual stocks is the change in logarithm of the
market capitalization for each company,

G i~ t ![ ln S i~ t1Dt !2ln S i~ t !>
S i~ t1Dt !2S i~ t !

S i~ t !
, ~4!

where the S i denotes the market capitalization of stock i
51, . . . ,500 and Dt55 min.

As before, we estimate the volatility at a given time by
averaging uG i(t)u over a time window T5nDt ,

VT
i [VT

i ~ t ![
1

n (
t85t

t1n21

uG i~ t8!u. ~5!

A normalized volatility is then defined for each company,

vT
i [vT

i ~ t ![
VT

i

A^@VT
i #2&2^VT

i &2
, ~6!

where ^•••& denotes the time average estimated by non-
overlapping windows for different time scales T.

Figure 6~a! shows the cumulative probability distribution
of the normalized volatility vT

i for all 500 companies with
different averaging windows T, where the sampling interval
Dt55 min. We observe a power law behavior

P~vT
i
.x !;

1

xm
. ~7!

Regression fits yield m53.1060.11 for T510 min. This
behavior is confirmed by the probability density function
shown in Fig. 6~b!,

P~vT!;
1

vT
m11

, ~8!

with a cutoff at small values of the volatility. Regression fits
yield the estimate 11m54.0660.10 for T510 min, in
good agreement with the estimate of m from the cumulative
distribution. Both the probability density and the cumulative
distribution, Figs. 7 and 8, show that the volatility distribu-
tion for individual companies are consistent with power-law
asymptotic exponent m'3, in agreement with the
asymptotic behavior of the volatility distribution for the S&P
500 index.

In summary, the asymptotic behavior of the cumulative
volatility distribution is well described by a power law be-
havior with exponent m'3 for the S&P 500 index. This
power law behavior also holds for individual companies with

FIG. 6. ~a! The cumulative probability distribution on a log-log
scale of the normalized volatility for all the 500 individual compa-
nies for various averaging window lengths, with a sampling time
Dt55 min. Power law regression fits yield m53.1060.11 for T
510 min, m53.1660.15 for T520 min, m53.2860.17 for T
540 min, and m53.3860.18 for T580 min. These fits were per-
formed in the region of scaled volatility between 1 and 30 standard
deviations. ~b! The probability density function of the normalized
volatility for single companies. Regression fits yield a slope of 1
1m54.0660.10 for T510 min, 11m54.1560.13 for T
520 min, 11m54.2260.15 for T540 min, and 11m54.38
60.16 for T580 min. The fits were performed in the region of
scaled volatility between 1 and 50 standard deviations.
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similar exponent m'3 for the cumulative distribution, with a
drop-off at low values.

V. CORRELATIONS IN THE VOLATILITY

A. Volatility correlations for S&P 500 stock index

Unlike price changes that are correlated only on very
short time scales @40# ~a few minutes!, the absolute values of
price changes show long-range power-law correlations on
time scales up to a year or more @20–31#. Previous works
have shown that understanding the power-law correlations,
specifically the values of the exponents, can be helpful for
guiding the selection of models and mechanisms @32#. There-
fore, in this part we focus on the quantification of power-law
correlations of the volatility. To quantify the correlations, we
use uG(t)u instead of VT(t), i.e., time window T is set to 1
min with Dt51 min for the best resolution.

1. Intraday pattern removal

It is known that there exist intraday patterns of market
activity in the NYSE and the S&P 500 index @23–25,42#. A
possible explanation is that information gathers during the
time of closure and hence traders are active near the opening
hours, and many liquidity traders are active near the closing
hours @25#. We find a similar intraday pattern in the absolute
price changes uG(t)u ~Fig. 7!. In order to quantify the corre-
lations in absolute price changes, it is important to remove
this trend, lest there might be spurious correlations. The in-
traday pattern A(tday), where tday denotes the time in a day,
is defined as the average of the absolute price change at time
tday of the day for all days:

A~ tday![

(
j51

N

uG j~ tday!u

N
, ~9!

where the index j runs over all the trading days N in the
13-year period (N53309 in our study! and tday denotes the
time in the day. In order to avoid the artificial correlation
caused by this daily oscillation, we remove the intraday pat-
tern from G(t) which we schematically write as

g~ t ![G~ tday!/A~ tday!, ~10!

for all days. Each data point g(t), denotes the normalized
absolute price change at time t, which is computed by divid-
ing each point G(tday) at time tday of the day by A(tday) for
all days.

Three methods—correlation function, power spectrum,
and detrended fluctuation analysis ~DFA!— are employed to
quantify the correlation of the volatility. The pros and cons
of each method and the relations between them are described
in the Appendix.

2. Correlation quantification

Figure 8~a! shows the autocorrelation function of the nor-
malized price changes g(t), which shows exponential decay
with a characteristic time of the order of 4 min. However, we
find that the autocorrelation function of ug(t)u has power law
decay, with long persistence up to several months, Fig. 8~b!.
This result is consistent with previous studies on several eco-
nomic time series @20–28,40#.

More accurate results are obtained by the power spectrum
@Fig. 9~a!#, which shows that the data fit not one but rather
two separate power laws: for f . f 3 , S( f ); f 2b1, while for
f , f 3 , S( f ); f 2b2, where

b150.3160.02, f . f 3 , ~11!

b250.9060.04, f , f 3 , ~12!

and

f 35

1

570
min21, ~13!

FIG. 7. The 1-min interval intraday pattern for absolute price
changes of the S&P 500 stock index ~1984-1996! ~shifted! and for
the absolute price changes, averaged for the chosen 500 companies
~1994–1995!. The length of the day is 390 minutes. In order to
avoid the detection of spurious correlations, this daily pattern is
removed. Otherwise one finds peaks in the power spectrum at the
frequencies of 1/day and larger. Note that both the curves have a
similar pattern with large values within the first 15 min after the
market opens.

FIG. 8. ~a! Semilog plot of the autocorrelation function of g(t).
~b! Autocorrelation function of ug(t)u in the double log plot, with
sampling time interval Dt51 min. The autocorrelation function of
g(t) decays exponentially to zero within half an hour, C(t)
;exp(2t/t) with t'4.0 min. A power law correlation C(t);t2g

exists in the ug(t)u for more than three decades. Note that both
graphs are truncated at the first zero value of C(t). The solid line in
~b! is the fit to the function 1/(11tg) from which we obtain g
50.3060.08. The horizontal dashed line indicates the noise level.
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where f 3 is the crossover frequency.
The DFA method confirms our power spectrum results

@Fig. 9~a!#. From the behavior of the power spectrum, we
expect that the DFA method will also predict two distinct
regions of power law behavior, F(t);ta1 for t,t3 with
exponent a150.66 and F(t);ta2 for t.t3 with a250.95,
where the constant time scale t3[1/f 3 , where we have
used the relation @39#,

a5~11b !/2. ~14!

Figure 9~b! shows the results of the DFA analysis. We ob-
serve two power law regions, characterized by exponents

a150.6660.01, t,t3 , ~15!

a250.9360.02, t.t3 ~16!

in good agreement with the estimates of the exponents from
the power spectrum. The crossover time is close to the result
obtained from the power spectrum, with

t3'1/f 3'600 min ~17!

or approximately 1.5 trading days.

B. Volatility correlations for individual companies

The observed correlations in the price changes and the
absolute price changes for the S&P 500 index raises the
question if similar correlations are present for individual
companies which comprise the S&P 500 index @38#.

In the absolute price changes of the individual companies,
there is also a strongly marked intraday pattern, similar to
that of the S&P 500 index. We compute the intraday pattern
for single companies in the same sense as before,

A i~ tday![

(
j51

N

uG i
j~ tday!u

N
, ~18!

where time tday refers to the time in the day, the index i
denotes companies, and the index j runs over all days—504
days. In Fig. 7 we show the intraday pattern, averaged over
all the 500 companies and contrast it with that of the S&P
500 stock index.

In order to avoid the intra-day pattern in our quantifica-
tion of the correlations, we define a normalized price change
for each company,

g i~ t ![G i~ tday!/A i~ tday!. ~19!

The average autocorrelation function of g i(t), i
51,2, . . . ,500, shows weak correlations up to 10 min, after
which there is no statistically significant correlation. The av-
erage autocorrelation function for the absolute price changes
shows long persistence. We quantify the long-range correla-
tions by two methods—power spectrum and DFA. In Fig.
10~a!, we show the power spectral density for the absolute
price changes for individual companies and contrast it with
the S&P 500 index for the same two-year period. We also
observe a similar crossover phenomena as that observed for
the S&P 500 index. The exponents of the two observed
power laws are

b150.2060.02, f . f 3 , ~20!

b250.5060.05, f , f 3 , ~21!

where the crossover frequency is

f 35

1

700
min21. ~22!

In Fig. 10~b!, we confirm the power spectrum results by
the DFA method. We observe two power law regimes with

a150.6060.01, t,t3 , ~23!

a250.7460.03, t.t3 ~24!

FIG. 9. Plot of ~a! the power spectrum S( f ) and ~b! the de-
trended fluctuation analysis F(t) of the absolute values of detrended
increments g(t) with the sampling time interval Dt51 min. The
lines show the best power law fits (R values are better than 0.99)
above and below the crossover frequency of f 35(1/570) min21 in
~a! and of the crossover time, t35600 min in ~b!. The triangles
show the power spectrum and DFA results for the ‘‘control,’’
shuffled data ~see text for details!.
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with a crossover

t3'1/f 3'700 min. ~25!

The exponents characterizing the correlations in the abso-
lute price changes for individual companies are on average
smaller than what is observed for the S&P 500 price
changes. This might be due to the cross-dependencies be-
tween price changes of different companies. A systematic
study of the cross-correlations and dependencies will be the
subject of future work @41#.

C. Additional remarks on power-law volatility correlations

Even though several different methods give consistent re-
sults, the power-law correlation of the volatility needs to be
tested. It is known that the power-law correlation could be
caused by some artifacts, e.g., anomaly of the data or the
peculiar shape of the distribution, etc.

1. Data shuffling

Since we find the volatility to be power-law distributed at
the tail, to test that the power-law correlation is not a spuri-
ous artifact of the long-tailed probability distribution, we
shuffled each point of the ug(t)u randomly for the S&P 500
data. The shuffling operation keeps the distribution of ug(t)u
unchanged, but destroys the correlations in the time series
totally if there are any. DFA measurement of this randomly
shuffled data does not show any correlations and gives ex-
ponent a50.50 ~Fig. 9!—confirming that the observed long-
range correlation is not due to the heavy-tailed distribution of
the volatility.

2. Outliers removal

As an additional test, we study how the outliers ~big
events! of the time series ug(t)u affect the observed power-
law correlation. We removed the largest 5 and 10 % events
of the ug(t)u series and applied the DFA method to them,
respectively, the results are shown in Fig. 11. Removing the
outliers does not change the power-law correlations for the
short time scale. However, that the outliers do have an effect
on the long time scale correlations, the crossover time is also
affected.

3. Subregion correlation

The long range correlation and the crossover behavior ob-
served for the S&P 500 index are for the entire 13-year pe-

FIG. 10. ~a! The power spectrum for the absolute values of the
normalized price changes for individual companies, with the sam-
pling time interval Dt55 min. This is obtained by averaging the
power spectrum S i( f ) for all the 500 companies. We contrast this
with the power spectrum of the S&P 500 for the same two-year
period 1994–1995. Similar to the S&P 500, we observe two power
laws separated by a crossover frequency. Power law regression fits
yield exponents b150.20 for the high frequency region and b2

50.50 for the low frequency region. The crossover occurs at ap-
proximately 700 min—slightly larger than that found for the S&P
500 index. ~b! The average DFA results of 5 min sampled ug(t)u for
the single companies, averaged over all 500 companies. It is con-
trasted with the result of the S&P 500 index. There are two regions
characterized by power laws with exponents a150.60 for small
time lags and a250.74 for large time lags.

FIG. 11. DFA results of removing top 5% and 10% data points
of the ug(t)u for the S&P 500 data. The crossover time is approxi-
mately 600, 1000, and 10 000 min for the data removing the top 5%
and the top 10%, respectively. The DFA exponent a1 for the short
time scale does not change, the power law regression fit gives a1

'0.66 for all three curves. Regression fits for the exponent a2 give
0.9160.02, 0.9160.03, and 1.0260.04 for three cases, respec-
tively.
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riod. Next, we study whether the exponents characterizing
the power-law correlation are stable, i.e., does it still hold for
periods smaller than 13 years. We choose a sliding window
~with size 1 yr! and calculate both exponents a1 and a2
within this window as the window is dragged down the data
set with one month steps. We find @Fig. 12~b!# that the value
of a1 is very ‘‘stable’’ ~independent of the position of the
window!, fluctuating slightly around the mean value 2/3.
However, the variation of a2 is much greater, showing sud-
den jumps when very volatile periods enter or leave the time
window. Note that the error in estimating a2 is also large.

VI. CONCLUSION

In this study, we find that the probability density function
of the volatility for the S&P 500 index seems to be well fit
by a log normal distribution in the center part. However, the
tail of the distribution is better described by a power law,
with exponent 11m'4, well outside the stable Lévy range.
The power law distribution at the tail is confirmed by the
study of the volatility distribution of individual companies,
for which we find approximately the same exponent. We also
find that the distribution of the volatility scales for a range of
time intervals.

We use the detrended fluctuation analysis and the power
spectrum to quantify correlations in the volatility of the S&P
500 index and individual company stocks. We find that the
volatility is long-range correlated. Both the power spectrum
and the DFA methods show two regions characterized by
different power law behaviors with a crossover at approxi-
mately 1.5 days. Moreover, the correlations show power-law
decay, often observed in numerous phenomena that have a
self-similar or ‘‘fractal’’ origin @47–51#. The scaling prop-
erty of the volatility distribution, its power-law asymptotic
behavior, and the long-range volatility correlations suggest
that volatility correlations might be one possible explanation
for the observed scaling behavior @18# for the distribution of
price changes @37#.

ACKNOWLEDGMENTS

We thank L. A. N. Amaral, X. Gabaix, S. Havlin, R.
Mantegna, V. Plerou, B. Rosenow, and S. Zapperi for very
helpful discussions through the course of this work, and the
DFG, NIH, and NSF for financial support.

APPENDIX: METHODS TO CALCULATE
CORRELATIONS

1. Correlation function

The direct method to study the correlation property is the
autocorrelation function

C~ t ![
^g~ t0!g~ t01t !&2^g~ t0!&2

^g2~ t0!&2^g~ t0!&2
, ~A1!

where t is the time lag. Potential difficulties of the correlation
function estimation are the following: ~i! The correlation
function assumes stationarity of the time series. This crite-
rion is not usually satisfied by real-world data. ~ii! The cor-
relation function is sensitive to the true average value
^g(t0)& of the time series, which is difficult to calculate re-
liably in many cases. Thus the correlation function can
sometimes provide only qualitative estimation @39#.

2. Power spectrum

A second widely used method for calculating correlation
properties is the power spectrum analysis. Note that the
power spectrum analysis can only be applied to linear and
stationary ~or strictly periodic! time series.

3. Detrended fluctuation analysis

The third method we use to quantify the correlation prop-
erties is called detrended fluctuation analysis ~DFA! @43,44#.
The DFA method is based on the idea that a correlated time
series can be mapped to a self-similar process by integration
@39,43,44#. Therefore, measuring the self-similar feature can
indirectly tell us information about the correlation properties.
The advantages of DFA over conventional methods ~e.g.,
spectral analysis and Hurst analysis! are that it permits the
detection of long-range correlations embedded in a nonsta-
tionary time series, and also avoids the spurious detection of
apparent long-range correlations that are an artifact of non-
stationarities. This method has been validated on control
time series that consist of long-range correlations with the
superposition of a nonstationary external trend @43#. The
DFA method has also been successfully applied to detect
long-range correlations in highly complex heart beat time
series @44,45#, and other physiological signals @46#.

A description of the DFA algorithm in the context of heart
beat analysis appears elsewhere @43,44#. For our problem, we
first integrate ug(i)u time series with N total data points

y~ t8![(
i51

t8

ug~ i !u. ~A2!

Figure 13~b! shows y(t8) after subtracting the ‘‘global’’
trend, computed by performing a linear fit in the entire range
of y(t8). Figures 13~b!,13~c! show the integrated time series

FIG. 12. ~a! The S&P 500 index Z(t) for the 13-year period. ~b!

Results of dragging a window of size 1 yr down the same data base,
one month at a time, and calculating the best fit exponent a1

~dashed line! and a2 ~full line! for the time intervals t,t3 and t
.t3 , respectively, where t35600 min.
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y(t8) divided into boxes of equal length t. In each box, a
least squares fit to the data is performed, representing the
trend in that box. The y coordinate of the straight line seg-
ments is denoted by y t(t8). Next we detrend the integrated
time series, y(t8), by subtracting the local trend, y t(t8), in
each box. The root-mean-square fluctuation of this integrated
and detrended time series is calculated

F~ t !5A1

N (
t851

N

@y~ t8!2y t~ t8!#2. ~A3!

This computation is repeated over all time scales ~box
sizes! to provide a relationship between F(t), the average
fluctuation, and the box size t. In our case, the box size t
ranged from 10 min to 105 min ~the upper bound of t is
determined by the actual data length!. Typically, F(t) will
increase with box size t @Fig. 13~d!#. A linear relationship on
a double log graph indicates the presence of power law scal-
ing. Under such conditions, the fluctuations can be charac-
terized by a scaling exponent a , the slope of the line relating
logF(t) to logt @Fig. 13~d!#.

In summary, we have the following relationships be-
tween, above three methods.

~i! For white noise, where the value at one instant is com-
pletely uncorrelated with any previous values, the integrated
value, y(t8), corresponds to a random walk and therefore
a50.5, as expected from the central limit theorem @47–49#.
The autocorrelation function C(t) is 0 for any t ~time-lag!
not equal to 0. The power spectrum is flat in this case.

~ii! Many natural phenomena are characterized by short-
term correlations with a characteristic time scale t and an
autocorrelation function C(t) that decays exponentially @i.e.,
C(t);exp(2t/t)#. The initial slope of logF(t) vs logt may be
different from 0.5, nonetheless the asymptotic behavior for
large window sizes t with a50.5 would be unchanged from
the purely random case. The power spectrum in this case will
show a crossover from 1/f 2 at high frequencies to a constant
value ~white! at low frequencies.

~iii! An a greater than 0.5 and less than or equal to 1.0
indicates persistent long-range power-law correlations, i.e.,
C(t);t2g. The relation between a and g is

g5222a . ~A4!

FIG. 13. ~a! Time series of absolute price changes ug(i)u sampled at 1-min intervals. Parts ~b! and ~c! show the integrated time series
y(t8) after subtracting its ‘‘global’’ trend. The global trend is computed by performing a linear fit in the entire range of y(t8). The time series
y(t8) divided into boxes of equal length t. In each box, a least squares linear fit is made to the data, representing the local trend in that box.
Next we detrend the integrated time series y(t8) by subtracting the local trend y t(t8) in each box. ~d! The root-mean-square fluctuation F(t)
as a function of various box sizes t, defined in Eq. ~A3!.

1398 PRE 60YANHUI LIU et al.



Note also that the power spectrum S( f ) of the original signal
is also of a power-law form, i.e., S( f );1/f b. Because the
power spectrum density is simply the Fourier transform of
the autocorrelation function b512g52a21. The case of
a51 is a special one which has long interested physicists
and biologists—it corresponds to 1/f noise (b51).

~iv! When 0,a,0.5, power-law anticorrelations are
present such that large values are more likely to be followed
by small values and vice versa @39#.

~v! When a.1, correlations exist but cease to be of a
power-law form.

The a exponent can also be viewed as an indicator of the
‘‘roughness’’ of the original time series: the larger the value
of a , the smoother the time series. In this context, 1/f noise
can be interpreted as a compromise or ‘‘trade-off’’ between
the complete unpredictability of white noise ~very rough
‘‘landscape’’! and the much smoother landscape of Brown-
ian noise @52#.
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e-print cond-mat/9705075.

@29# Y. Liu, P. Cizeau, M. Meyer, C.-K. Peng, and H. E. Stanley,
Physica A 245, 437 ~1997!.

@30# P. Cizeau, Y. Liu, M. Meyer, C.-K. Peng, and H. E. Stanley,
Physica A 245, 441 ~1997!.

@31# M. Pasquini and M. Serva, e-print cond-mat/9810232; e-print
cond-mat/9903334; R. Baviera, M. Pasquini, M. Serva, D.
Vergni, and A. Vulpiani, e-print cond-mat/9901225.

@32# P. Bak, K. Chen, J. A. Scheinkman, and M. Woodford, Rich-
erche Economichi 47, 3 ~1993!; J. A. Scheinkman and J.
Woodford, Am. Economic Rev. 84, 417 ~1994!; P. Bak, M.
Paczuski, and M. Shubik, Physica A 246, 430 ~1997!.

@33# P. Gopikrishnan, M. Meyer, L. A. N. Amaral, and H. E. Stan-
ley, Eur. Phys. J. B 3, 139 ~1998!.

@34# F. Black and M. Scholes, J. Political Economy 81, 637 ~1973!.
@35# J. Cox, S. Ross, and M. Rubinstein, J. Financial Economics 7,

229 ~1979!.

PRE 60 1399STATISTICAL PROPERTIES OF THE VOLATILITY OF . . .



@36# The Trades and Quotes Database, 24 CD-ROM for 1994–
1995 ~New York Stock Exchange, New York, 1995!.

@37# P. Gopikrishnan, V. Plerou, L. A. N. Amaral, M. Meyer, and
H. E. Stanley, e-print cond-mat/9905305; V. Plerou, P.
Gopikrishnan, L. A. N. Amaral, M. Meyer, and H. E. Stanley
~unpublished!.

@38# The majority of the chosen 500 companies belong to the S&P
500 index. However, the companies comprising the S&P 500
index varies by a small fraction every year, but this effect is
not considerable for the two-year period.

@39# J. Beran, Statistics for Long-Memory Processes ~Chapman &
Hall, New York, 1994!.

@40# E.-F. Fama, J. Finance 25, 383 ~1970!.
@41# V. Plerou, P. Gopikrishnan, L. A. N. Amaral, and H. E. Stan-

ley ~unpublished!.
@42# P. D. Ekman, J. Futures Markets 12, 365 ~1992!.
@43# C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stan-

ley, and A. L. Goldberger, Phys. Rev. E 49, 1685 ~1994!.
@44# C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger,

Chaos 5, 82 ~1995!.
@45# N. Iyengar, C.-K. Peng, R. Morin, A. L. Goldberger, and L. A.

Lipsitz, Am. J. Physiol. 271, R1078 ~1997!.
@46# J. M. Hausdorff and C.-K. Peng, Phys. Rev. E 54, 2154 ~1996!.
@47# J. Feder, Fractals ~Plenum Press, New York, 1988!; H. Taka-

yasu, Fractals in the Physical Sciences ~Manchester University
Press, Manchester, 1990!; T. Vicsek, Fractal Growth Phenom-
ena, 2nd ed. ~World Scientific, Singapore, 1993!.

@48# E. W. Montroll and W. W. Badger, Introduction to Quantita-
tive Aspects of Social Phenomena ~Gordon and Breach, New
York, 1974!.

@49# A. Bunde and S. Havlin, in Fractals and Disordered Systems,
edited by A. Bunde and S. Havlin, 2nd ed. ~Springer, Heidel-
berg, 1996!.

@50# P. R. Krugman, The Self-Organizing Economy ~Blackwell
Publishers, Cambridge, 1996!.

@51# M. H. R. Stanley, L. A. N. Amaral, S. V. Buldyrev, S. Havlin,
H. Leschhorn, P. Maass, M. A. Salinger, and H. E. Stanley,
Nature ~London! 379, 804 ~1996!; L. A. N. Amaral, S. V.
Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger,
H. E. Stanley, and M. H. R. Stanley, J. Phys. I 7, 621 ~1997!;
L. A. N. Amaral, S. V. Buldyrev, S. Havlin, M. A. Salinger,
and H. E. Stanley, Phys. Rev. Lett. 80, 1385 ~1998!; Y. Lee, L.
A. N. Amaral, D. Canning, M. Meyer, and H. E. Stanley, ibid.
81, 3275 ~1998!; V. Plerou, L. A. N. Amaral, P. Gopikrishnan,
M. Meyer, and H. E. Stanley, e-print cond-mat/9906229; Na-
ture ~London! ~to be published!.

@52# W. H. Press, Comments. Astrophys. 7, 103 ~1978!.

1400 PRE 60YANHUI LIU et al.


