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The high-temperature series for the two-spin correlation functions on both the B-site spinel and
diamond lattices have been calculated through tenth order for the Hamiltonian,

K= —J'.E(mE;Q{SD) S7Sf. Here S* is the ath component of the D-dimensional classical spin and
we define # as the spin space symmetry parameter. By <ij > we limit the first summation to
nearest-neighbor pairs of sites / and j on the lattice. The spin space symmetry parameter n is <.
We consider all six models resulting from D =1-3. Qur analysis of the high-temperature series
indicates that while the exponent estimates for the more loosely packed diamond lattice (4 =4)
indicate agreement with the universality hypothesis, the B -site spinel lattice {g =6) series are not yet
displaying their critical behavior. Some conjectures concerning this peculiarity of the series for the

two lattices are made.

I. INTRODUCTION

One aspect of the universality hypothesis! in critical
phenomena is that for a given spatial dimension d the
critical exponents for a given Hamiltonian should be in-
dependent of lattice structure. Existing evidence? in-
dicates that for lattices with “simple” cubic symmetry®
[e.g., simple cubic (sc), body centered cubic (bcc),
and face centered cubic (fcc)] critical exponents are in-
deed independent of lattice structure,

Stanley and Kaplan* observed, however, that sixth-or-
der high-temperature series (HTS) for the magnetic sus-
ceptibility of the Heisenberg model on the B-site spinel
lattice did not support the “universal” D=3 value of
y=1.4. They suggested that ¥ might be as small as =1.
One year later Jasnow and Moore® extended the classi-
cal Heisenberg model series and also obtained new
series for the s =% Ising model® and classical X-Y mod-
el to eighth order on the B-site spinel lattice. They
noted, as did Stanley and Kaplan, that a six-term ratio
plot has become flat indicating an exponent of ¥ =1, but
with the addition of their two new terms the ratios were
bending downward indicating that ¥ might possibly be in-
creasing.

In the present study we calculate tenth-order HTS on
both the B-site spinel lattice and the more familiar dia-
mond lattice.” In Sec. II the two lattices are compared
and in Sec. II the six different models considered are
described. Analysis of the series is presented in Sec.
IV and in Sec. V our conclusions are given.

Il. THE LATTICE STRUCTURES
A. B-site spinel lattice

The discovery of certain insulating ferromagnetic
materials® such as CdCr,Se,, CdCr,S,, and HgCr,Se,
and the antiferromagnets HgCr,S;, ZnCr,Se;, and
ZnCr,S, have stimulated an interest in the spinel struc-
ture. The structure is described by the formula AB,X,
where the A sites are occupied by diamagnetic ions, the
B sites by magnetic ions, and the X sites by nonmagnet-
ic ions. We model materials for which there are sig-
nificant magnetic interactions among only the B sites.
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We will assume these interactions are nearest neighbor
only (see Ref. 8).

The B-site spinel lattice can be understood in terms
of its four sublattice structure.® Consider a cubic unit
cell of the fcc structure with unit cell length being 4a.
The B sites of the spinel lattice will then result if one
superimposes three similar fcc lattices with their ori-
gins located at a(1,1,0), a(1,0,1), and @(0,1,1). From
Fig. 1'° we see that each B site (the unfilled circles)
has six nearest neighbors (g = 6) and that these neighbors
are placed at the corners of a pair of triangular pyra-
mids joined at the site. Hence, the lattice can be con-
sidered as loosely packed since it consists of only half
the sites of an fcc lattice, but it can also be considered
as tightly packed since nearest-neighbor (nn) lattice
sites have common nearest neighbors. This means that,
in the language of graph theory, graphs composed of
triangles will contribute at lower order in the HTS for
the B-site spinel lattice than they will in the HTS for the
sc or bece lattices (traditionally considered more “tight-
ly packed”). Yet the B-site spinel lattice allows a few-
er total number of graphs because of the large regions
of space void of any lattice sites (see, for example, the
center portion of Fig. 1). That the asymptotic behavior
is only slowly reached in the B-site spinel lattice, we
suspect, lies in this peculiarity of the lattice structure
of allowing graphs which normally only fit on tightly
packed lattices and yet of not allowing a great many
chainlike graphs.

B. Diamond lattice

The diamond lattice can also be constructed in terms
of fece sublattices. Consider an fcc lattice of unit cell
length 4a. The diamond lattice will then result if one
superimposes an additional fcc lattice with its origin
located at a(1,1,1). Each site then has 4 nn (g =4) and
it is located at the center of a tetrahedron. This lattice
cannot be considered, in any sense, tightly packed. In
fact in doing a “self-avoiding walk™ on the lattice, itis
impossible to form a closed loop in fewer than six
steps.!! The diamond lattice is obtained from Fig. 1 if
only the solid circles are observed,’
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TABLE I. A, Summary of previous work and comparison with present work. C,(») denotes
the pair correlation function from which ¥, u; and Cy follow immediately. B, The names of
the six models are given according to the dimensionality of the spin space D and the spin space
symmetry number . Our estimates for the critical values using all analysis are listed. The
estimate of the critical temperature for the S=1 Ising model on the diamond lattice is from

Ref. 7.
A
B-site spinel Diamond
Function Function
Order Range of n, D calculated Ref. Order Rangeofn, D calculated Ref.
6 n=D=3 X only 4 16 n=D=1 many func- 7
tions but not
Cz(’r)
8 n=D=1; Cylw) 5
n=2, D=3,
n=D=3
10 n=D= 1 5(‘, Z‘H 6
16 n=D=1 Cy 12
Six cases: Six cases:
10 all n with =D Cyly) this | 10 all pwith u=D  Cyly) this
and D=1, 2, 3 work and D=1, 2, 3 work
B
Diamond B-site spinel
D n  Model K,/KYF ¥ 2v+y K /KT
1 1 Ising (S=1%) 1.4793 £0.0002 1.25+0.02 2,55+0.05 1.42+0.01
2 1 D=2, Ising 1.358+0.002 1.25%0.01 2.53+0.01 1.32+£0.01
2 2 Planar 1.540+0.005 1.34+0.02 2.70+£0.05 1.48+0.02
3 1 Ising (§= ) 1.290+0.0005 1.25+0.005 2.53+0.005 1.26+0.005
3 2 X-Y 1.420+0.005 1.33+0.02 2.67+0.03 1.38+0.01
3 3 Heisenberg 1.575+0.005 1.41+0.01 2.70+0.2 1.52+0.02
It is obvious from Fig. 1 that there is a great deal of model for D=2, n=1 simply to give a sense of com-
similarity between the diamond and the B-site spinel pleteness to the present work.

lattices. ‘Gibberd first exploited this similarity.'? By
a transformation technique, he was able to extend the
s=1% Ising model specific heat HTS to 16th order on the
cristobalite®” lattice using the series for the diamond
lattice. (For our purposes the cristobalite and the B-
site spinel lattices are the same—see Refs. 6 and 10.)

Using a computer program based upon the renormal-
ized linked-cluster theory of Wortis et al.,*® we have
obtained HTS for the two-spin correlation functions*

11l. MODELS AND SERIES

We define the interaction Hamiltonian as

n {n<D) o« co
sc_-J“Zj)) aZ; S¢se, (3.1)

where S$¢is the ath component of the D-dimensional
classical spin located at the ith site. The first sum is
over nn pairs of lattice sites while the second sum is
over the components of the spin. The parameter n(n <D)
will be referred to as the spin space symmetry param-
eter, since universality would predict common values of
exponents for common values of #. Our expression [Eq.
(3.1)] is a slightly generalized version of the usually

considered Hamiltonian. In order to avoid confusion we FIG. 1. The structure of the cristobalite lattice (AB,). Here
present the model names associated with the parameters the unfilled circles represent the B sites of the spinel lattice
n and D in the first part of Table I.B. We treat the while the filled circles form the diamond lattice.
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TABLE II. The high-temperature series coefficients for the reduced susceptibility, ¥, second moment, uy, and the reduced speci-
fic heat, Ty, on the B-site spinel lattice are: (a), Ising (S=1) model; (b), D=2, Ising model; (c), planar model; (d), Ising (S= o)

model; (e), X~Y model; (f), Heisenberg model.

O1

X H, H X M, (_ZH
a Ising (S=1/2) b D=2 Ising
0 1. 0000 0.0 0.0 0 1. 0000 0.0 0.0
1 6.0000 6.0000 3.0000 1 6. 0000 6. 0000 3.0000
2 30.0000 . 72.0000 12. 0000 2 31.5000 72.0000 12,0000
3 136.0000 580. 0000 15. 0000 3 155.2500 596, 2500 39.3750
4 598. 0000 3864, 0000 -40.0000 4 745.5000 4171.5000 105. 0000
5 2628.8000 23088. 8000 ~-148. 0000 5 3541.2500 26502.1250 257.1875
6 11565, 3333 128971.2000 313. 6000 [ 16727.3906 158307.8750 840, 00G0
7 50703. 8762 688926, 4762 4425. 6667 7 78718.6738 906423.7832 4455, 9443
8 220989, 6952 3565320. 2286 20716.9524 8 369152.1081 5033000. 9284 24946, 9323
9 957169.2106 18014889, 1471 56633. 4476 9 1725131, 9227 27301997, 9184 120227.3312
10 4128674.7613 89309944, 5699 77235. 6960 10 8037097, 92892 145404666. 0129 505611.2916
c Planar d Ising (S==)
0 1.0000 6.0 0.0 0 1.0000 0.0 0.0
1 6.0000 6.0000 3.0000 1 6.0000 6.0000 3.0000
2 30,0000 72,0000 12. 0000 2 32.4000 72.0000 12,0000
3 135, 0000 579. 0000 13. 5000 3 167, 0400 606,2400 54,3600
4 582.0000 3834. 0000 -60. 0000 4 841. 6800 4363.2000 196.8000
5 2492, 0000 22646, 0000 -242,5000Q 5 4188.7190 28706, 0356 647.0890.
6 '10688. 5000 124463, 0000 210.0000 6 20700, 8758 178206.3713 2255, 2869
7 45732, 6250 652171.6250 5026, 4375 7 101859, 0454 1062511, 8065 9168.5835
8 194221, 666 3304705, 4167 22107, €667 8 499506, 5556 6150315. 9830 41888, 2776
9 817617.5333 16329057, 1167 42378.3375 9 2442372.0146 34805908, 7648 199105, 2876
10 3419942, 0589 79074458, 2537 -52837.5815 10 11911548, 7638 193492861, 9353 927675, 0581
e X-Y f Heisenberg
0 1. 0000 0.0 0.0 0 1.0000 0.0 0.0
1 6. 0000 6.0000 3.0000 1 6.0000 6.0000 3.0000
2 31.2000 72,0000 12.0000 2 30.0000 72.0000 12.0000
3 150.7200 592,3200 33.4800 3 134, 4000 578. 4000 12. 6000
4 703, 6300 4089. 6000 62.4000 4 572. 4000 3816. 0000 -72.0000
5 3237.809%6 25497.2473 59.1184 5 2409.3257 22379,7257 -300. 6857
6 14799.9701 148841.2212 152.2286 6 10159, 9543 121748. 4343 149. 7600
7 67371.1715 830422, 9256 2469,8201 7 42793.7829 630120.4114 5570, 0400
8 305404. 4177 4483086. 0433 18621.1989 8 178816,1368 3149863, 9151 23023, 8661
9 1378116. 5925 236193990.2148 90460. 0585 9 739096. 0685 15341627, 5839 34754. 6965
10 6191866.8178 122006899, 8256 319592. 5468 10 3028914. 0691 73179134, 4345 ~-139875. 2514
to tenth order in K=J/k,T for all six models. The Cy=C,T/nN==-1T (8/8T)§;>C2(6) ] (3.4)

physical quantities such as the reduced susceptibility ¥,
the second moment pp, and the reduced specific heat
Cy can all be obtained from the correlation functions
Cz(r);

QEXTkB/NU2:§Cz(r), 3.2)
Ha=20]r|2C,(x), (3.3)

and

Here § is the nn lattice vector. The HTS for these
quantities for the B-site spinel laftice are given in Ta-
ble II, and similarly the series for the six models on
the diamond lattice are contained in Table III, '°

IV. ANALYSIS OF SERIES

We have expressed the thermodynamic function, say
X(K), in terms of a finite number of exact coefficients,
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x=2a, K. (4.1) lim p, = (KX*/K) {1+ [(r-1)/1]+ 0%}, (4.3)
!

where K)'F =k /a,J is the critical temperature predicted
by mean field theory. From Eq. (4.3) one can obtain
both the critical temperature and exponent from the ra-
XT)~(T-T)" T-T;. (4.2) tios in the asymptotic limit. In Figs. 2 and 3 we have
plotted the ratios of the coefficients of the reduced sus-
ceptibility series vs 1/I. Observe in both figures that
for the three models with n =D the ratio plots display the
same general shape. In the case of the B-site spinel
lattice, this is seen by the general flattening at I=5 and
For a power law singularity it is well known that the 6 and then the smooth bending over for higher orders.
ratios of coefficients p;=a,/(a,.;a,) satisfy the relation, On the diamond lattice, similarities between the n=D

We shall assume that y diverges near its critical tem-
perature in a power law form with an exponent 7,

Below we describe the principal methods of analysis of
the series employed in the present work. !®

A. Ratio test

TABLE III. The high-temperature series coefficients for the reduced susceptibility, second moment, and the reduced specific heat
on the diamond lattice are: (a), Ising (§=1) model; (b), D=2 Ising model; (c), planar model; (d), Ising ($=«) model; (e}, X-Y
model; (f), Heisenberg model.

0l

X . M, EH X ) q
a Ising (5=1/2) b D=2, Ising
0 1.0000 0.0 0.0 0 1.0000 0.0 0.0
1 4.0000 4.0000 2.0000 1 4. 0000 4. 0000 2.0000
2 12. 0000 32,0000 0.0 2 13. 0000 32.0000 0.0
3 34,6667 162. 6667 -2.0000 3 41.5000 169.5000 8.2500
4 100. 0000 682.6667 0.0 4 129.5000 760.0000 0.0
5 288.5333 2592.5333 61.3333 5 402. 8333 3106.8333 65.8333
6 808.5333 9281.4222 0.0 [3 1233.2917 11994, 3333 0.0
7 2258.1841 31834.7175 -56.7556 7 3768.4701 44450.4701 401.3014
8 6307.2381 105734.5016 0.0 8 11434. 0169 159891.5é08 0.0
9 17589. 3256 342716.6166 1884.3937 9 34654. 2076 561956.1659 3004. 2445
10 48686. 6557 1090225, 7823 0.0 10 104527.7569 1930471. 6906 0.0
¢ Planar d Ising (S==)
0 1.0000 0.0 0.0 0 1.0000 0.0 0.0
1 4.0000 4.0000 2. 0000 1 4.0000 4.0000 2.0000
2 12.0000 32.0000 0.0 2 13,6000 32,0000 0.0
3 34. 0000 162. 0000 ~3.0000 3 45,7600 173,7600 14. 6400
4 96. 0000 672. 0000 0.0 4 149.7829 808. 9600 0.0
5 271.3333 2511,3333 63.3333 5 488.9273 3448.2873 101.5184
6 743. 0000 8829, 3333 0.0 6 1574, 8362 13911.3953 0.0
7 2012, 0833 29692, 0833 -171.2083 7 5064, 8900 53957.8138 787.3431
8 5462, 5000 96481. 3333 0.0 8 16169, 5436 203389, 9645 0.0
9 14828.3833 305441,7167 2117.8500 9 51573.7114 749702, 1539 6255, 6971
10 39791. 3833 947985, 0222 0.0 10 163739, 7350 2715372, 3149 0.0
€ X-Y f Heisenberg
0 1.0000 0.0 0.0 0 1. 0000 0.0 . 0.0
1 4.0000 4.0000 2.0000 1 4, 0000 4.0000 2.0000
2 12.8000 32.0000 0.0 2 12,0000 32,0000 0.0
3 39. 6800 167. 6800 5,5200 3 33.6000 161.6000 -3. 6000
4 120.2286 737.2800 0.0 4 93. 6000 665, 6000 0.0
5 362.1878 2942, 6678 51,0694 5 261,2571 2462, 8571 65.1429
6 1071.9033 11060, 9972 0.0 [ 705,4629 8562.8343 0.0
-7 3155, 8541 ‘ 39827.8268 222.1161 7 1873.3714 28449, 0971 ~-241.6800
8 9227, 8708 138930.3515 0.0 8 4992.6171 91195.9771 0.0
9 26911.7416 472836. 0560 1712.4045 -9 13326,8123 284479, 0865 2399.0026
10 78077.3175 1578315. 3196 0.0 10 35083, 7951 869377.5138 0.0
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curves are seen in the downward trend for I =5-7, the up-
ward trend for /=9, and finally back downward at /=10.
The similarities in the peculiar shapes of these ratio
plots suggest the loose packedness of the lattices.'”

This irregular behavior of ratios makes it difficult to
obtain estimates for the critical indices by the ratio
method alone.

B. Pade approximants

Independent estimates for the critical temperature and
exponent can be obtained by finding Padé approximants
(PA’s) to the logarithmic derivative of the series. Shown
in Table IV are the estimates of the critical values given
by the diagonal and near-diagonal elements of the PA’s
to the susceptibility and second moment series for the
six different models on the two lattices. A comparison
of these tables indicates that the estimates for the more
loosely packed diamond lattice, surprisingly, appear
more convergent than do those for the B-site spinel lat-
tice.

For the diamond lattice the PA tables also indicate
three additional singularities. There are a pair of com-
plex conjugate singularities located at K,/KMF=0.1

0.86
X B-Site Spinel

0.84

0.82

571

Ising {S=00)

0.80

—0.78
Ising (D=2)

T
0.76

X-Y (S=c0}

—0C.74

Ising (S=1/2) —10.72

~0.70
Ptanar
]
Heisenberg
-10.68
] | | I N W B
i 1 1 1111 X
3 4 5 6 7 8910 o
172

FIG. 2. The normalized ratios of coefficients p; =a;/(a.ay)
for the susceptibility series (4.1) on the B~site spinel lattice.
Note the similar trend for the ratios of coefficients where
n=D.

0.84
X Diamond Lattice B
—0.82
—0.80
Ising (S=c0)
—~0.78
-J 0.76
Ising (D=2) Te
T TN
—0.74
X-Y (S=c0)
—0.72
‘ Ho0.70
Ising (S=1/2) |
—10.68
Planar -
Heisenberg | 0.86

W=

1
3

Bl
Q= -
-~
~I= =
@i— |
O|1— -
ol

172

FIG. 3. The ratios of coefficient p; = q;/(a;.,a;) for the suscep-
tibility series (4.1) on the diamond lattice.

+(1.5) { and an antiferromagnetic singularity at about
-1.5. These three singularities consistently appear

in the PA tables and occur with a strength (exponent)
similar in magnitude to the ferromagnetic singularity.
Thus, it is reasonable to believe that the PA’ s cannot
accurately represent the ferromagnetic singularity until
the order of the PA is sufficiently high to represent at
least all four singularities. This is strikingly seen in
Table IV, '* where the values of the PA’s suddenly be-
come convergent for D (order of the denominator)great-
er than or equal to four. The one exception is theS=
Ising model series which seems to be represented by
only the ferromagnetic and antiferromagnetic singular-
ities.

The B-site spinel series also indicates a pair of com-
plex conjugate singularities located at K,/KM* =1.5
+(1.5)i. These do not, however, appear consistently
throughout the Padé table and hence one does not see the
sudden convergence to the ferromagnetic singularity.

C. Transformation methods

When there are nonphysical singularities located close
to the physical singularity, it is sometimes possible to
improve the estimates for the physical singularity by
applying a transformation, *° thereby minimizing the ef-
fects of the nonphysical singularities. We have used the
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TABLE IV. Estimates for the critical values by Padé approximants to the susceptibility and second moment
series. N and D refer to the orders for the polynomials of the numerator and denominator, respectively,
K/K¥F=T¥F/T . The models are: (a), Ising (S=%); (b), D=2, Ising; (c), planar; (d) Ising (S=«); (e), X-Y;
(f), Heisenberg.

a Ising (S=1/2) ) b D=2, Ising
Diamond B-Site Spine Diamond B-Site Spinel

N K /KM ¥ Kk MY y Nb K /KM ¥ Kk ME y
3,2 1.3846 0.9954 1.3915 1.1039 3,2 1.3498 1.2256 1.2955 1.1059
2,3 1.3807 0.9846 1. 4057 1.1590 2,3 1. 3408 1.1897 1.3057 1.1610
3,3 1.3040 0.8764 1.3904 1.0987 3,3 --- --- 1.3030 1.1459
4,3 1.5116 1.4141 1.4633 1. 5600 4, 1.3640 1.2859 1.2904 1.0858
3,4 1.4818 1.2654 1.4008 1.1423 3,4 1.3576 1.2494 1.3054 1.1593
4,4 1.4827 1.2694 1.4524 1.4639 4,4 1.3593 1.2591 1.3397 1.4199
5,4 1.4796 1.2528  1.4662 1.5838 5,4 1.3594 1.2593 1.3152 1.2086
4,5 1. 4820 1,2662 1.4273 1.2717 4,5 1.3594 1.2593 1.3194 1.2411
N,D 2v+y 2v+y N,D 2v+y 2vty
3,2 1.3881 2.0059 1.3598 1.9677 3,2 1. 3466 2.4516 1.2961 2.2323
2,3 1.3795 1.9545 1.4090 2,3858 2,3 1.3428 2.4207 1.3041 2.3293
3,3 1.4271 2.2075 1.4000 - 2.3071 3,3 --- --- 1.3076 2.3718
4,3 1.5016 2.7836 1.4803 3.5704 4,3 1.3621 2.5875 1.2817 2.1091
3,4 1.4813 2.5722 1. 4067 2.3683 3,4 1.3571 2.5288 1.3034 2.3222
4,4 1.4815 2.5743 1.4458 2.8660 4,4 1.3588 2.5478 1.3272 2.6333
c Planar d Ising (S==)
3,2 1.3699 0.8841 1.3414 0.7944 3,2 1.2846 1.2236 1.4747 0.7816 .
2,3 1.3504 0.8365 1. 4482 1.1939 2,3 1.2798 1,2035 1.5186 0.7058
3,3 1. 4440 1. 0485 1.4429 1.1730 3,3 1.297t 1,3046 1.2857 1.3452
4,3 1.5758 1.5344 1, 4987 1.4765 4,3 1.2905 1.2534 1.2625 1.2498
3,4 1.5364 1.3345 1.4475  "1.1917 3,4 1.2894 1.2454 1.2635 1.2565

4 1.5406 1.3528 1.5124 1.5818 4,4 1.2903 1.2515 1.2414 1.0738

,4 1.5390 1.3442 1.5009 1. 4904 5,4 1.2904 1.2523 1.2574 1.2175

.5 1.5394 1. 3471 1,4788 1.3330 4,5 1.2905 1.2535 1.2580 1.2222
3,2 1.3868 1.8336 1.3588 1.6833 3,2 1.2842 2,4676 1.3222 2.5863
2,3 1.1920 0.9823 1.4504 2.4323 2,3 1.2799 2.4315 1. 4007 2.0650
3,3 1. 4845 2.3431 1.4505 2.4330 3,3 1.2920 2.5602 1.2669 2.5691
4,3 1.5664 3.0218 1.4954 2.9363 4,3 1.2902 2.5321 1.2587 2.4780
3,4 1.5351 2. 6961 1.4504 2.4323 3,4 1.2900 2.5294 1.2595 2.4901
4,4 1.5389 2.7308 1.4997 2.9982 4,4 1.2904 2.5354 1.2556 2.4307
(] X-Y f Heisenberg
3, 1.4011 1.2522 1. 3242 1. 0258 3,2 1.3585°  0.8159 1.3291 0.6835
2, 1.3929 1.2201 1.3536 1.1810 2,3 1.1598 0.4586 1.4748 1.2115
3, --- --- 1.3578 1.2028 3,3 1.4955 1.1305 1.4796 1.2300
4, 1.4321 1.3832 1.4927 2.5604 4,3 1.6178 1,6140 1.5256 1.4643
3, 1.4193 1.3112 1.3527 1.1776 3,4 1.5719 1. 3800 1.4740 1.2092
4,4 1.4235 1.3335 1.3863 1.3752 4,4 1.5793 1.4127 1.5584 1.7142
5,4 1, 4243 1.3382 1.3711 1.2607 ,4 1.5794 1.4134 1.5332 1.5095
4,5 1.4245 1.3401 1.3769 1.3065 4,5 1.5794 1.4134 1.5122 1.3656
3, 1.3969 2,4921 1.8177 1.9713 . 1.3832 1.7202 1.3334 1. 3567
2, 1.3943 2.4717 1.3518 2,3636 ) 2.0032 4,2933 1.4763 2.4532
3, 1.3674 2.3535 1.3633 2,4899 , 1.5206 2.4306 1.4855 2.5285
4, 1.4297 2.7758 1.4052 3. 0543 s 1.6093 3.1839 1.5235 2, 9229
3, 1.4186 2.6473 1.3387 2.2618 3,4 1.5703 2.7784 1.4722 2.4296
4,4 1.4228 2.6928 1.3812 2.7029 , 1.5776 2. 8447 1.5413 3,1747
following two transformations with limited success: and

K—-K/[1 - (K/B)] (4.4) K~K/[1-(K/C)?]. (4.5)
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The first transformation, (4.4), is particularly useful

in removing antiferromagnetic singularities, but it also
maps complex singularities, such as those present in

the spinel series, slightly farther from the origin. The
second transformation, (4. 5), has the property of stretch-
ing the imaginary axis of the complex K plane while
keeping the real axis within the interval [~ C, C].

Both transformations seem to “straighten” the ratio
plots for the spinel series. But we find that the expo-
nents are rather sensitive to the transformation param-
eter. For this reason the transformations must be
employed with care. The diamond lattice critical tem-
perature estimates are only slightly improved by these
transformations. This is because when the antiferro-
magnetic singularity is removed by transformation
(4. 4), the interference by the complex pair is enhanced.
Similarly when transformation (4.5) is used, the anti-
ferromagnetic singularity still remains strongly inter-
fering.

Table I.B contains our estimates for the critical val-
ues for all the models. The diamond lattice exponents
are all seen to be consistent with the universality values
{(i.e., they depend only on n). We are not able to obtain
reasonable estimates for the B-site spinel lattice expo-
nents, since the 10-term series is still too irregular to
indicate its limiting behavior.

V. DISCUSSION AND CONCLUSIONS

In the present study we have considered HTS on two
lattices which are considered loosely packed. Surpris-
ingly, the series for the diamond lattice with the smaller
coordination number (g =4) appears to show its critical
behavior much sooner than the series for the B-site
spinel lattice with the higher coordination number {g = 6).
This fact, we believe, is due to a peculiarity of the B-
site spinel lattice. Because the lattice has a relatively
large number of nearest neighbors which are common
(tetrahedron shaped) and yet it has large regions of space
void of any sites, the graphs which contribute near the
origin are overweighted. Evidence supporting the idea
that graphs of this type are dominating the behavior of
the series is also contained in Gibberd’s work.!2 In
spite of his lengthy 16th-order specific heat series on
the lattice, he could not obtain estimates for the expo-
nent a. On the other hand our diamond lattice series
appears to give much better covergence. This is, per-
haps, a consequence of the fact that the graphs which ex-
tend farther from the origin play a more equal role rel-
ative to the graphs which reach only to the nearest neigh-
bors.

In conclusion, we find that our estimates of the criti-
cal exponents for the diamond lattice (see Table 1. B)
agree with the values for the lattices with “simple” cu-
bic symmetry® (fcc, bce, and sc). However, we cannot
obtain estimates of the critical exponents for the B-site
spinel lattice, since the series are still too irregular.
Thus, we find that the universality hypothesis is upheld
for the diamond lattice while we cannot find any evidence
to contradict it for the B-site spinel lattice.
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