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Based on a novel “exact enumeration” approach, we find evidence suggesting the existence of a phase
transition in the multifractal spectrum of diffusion-limited aggregation. Above a critical point S, the
moment expansion shows an infinite hierarchy of phases, while below B. we find a single phase. At . we
find fluctuations of all energy scales and singular behavior of the energy and specific heat. We also find
that the maximum energy scales with system size L as Emax(L) < L%/InL. Consequently, for 8 < f. the
partition function does not scale with L, which implies that the conventional moment expansion must

break down.

PACS numbers: 64.60.Ak

The diffusion-limited aggregation'™ (DLA) model
has been found to describe a remarkably large number of
interesting physical phenomena, from fluid flow in porous
media to colloidal aggregation.?® Nonetheless, there is
essentially no theoretical understanding of this model.

The growth of a DLA cluster is determined by the set
of growth probabilities {p;}, where p; is the probability
that perimeter site i is the next to be added to the clus-
ter. Knowledge of the complete set {p;} for a given clus-
ter at time ¢ is sufficient to describe the statistical prop-
erties of clusters at time ¢+ 1. Hence much attention
has focused on how the {p;} scale with system size L. In
particular, the density-of-states function™® D(e,L)de
gives the number of growth sites whose value of
€= —Inp/InL is in the range [¢,e+del. Like other dis-
tribution functions, D(¢,L) is characterized by its mo-
ments. Motivated by the analogy with thermodynamics,
we define the partition function as

ZB,L)=XC.Xpla=XD(e, L)L 7P, (1)

where C, is the weight of configuration a, and p; , is the
growth probability of site i of configuration a. It has
been argued that this density-of-states function is not
characterized by a single gap exponent as are familiar
density-of-states functions from critical-point systems, in
the sense that F(B) is not a linear function of B.4® Here
F(B) is defined through

F(ﬂ)ELle F(B,L), (2a)
where
FBL)=— “‘—Zh(g—“ . (2b)

Special attention has focused on the Legendre trans-
form of F(B,L), S(E,L)=BE—F(B,L), where E
=9F(B,L)/0B is the variable conjugate to B. It is con-
ventional to call E the energy, S(E,L) the entropy, and
F(B,L) the free energy’ (see Table I).

An unsolved problem concerns the behavior of the

large-L limit F(B) for negative B. It has been essentially
impossible to obtain reliable calculations, and the reason
was assumed to be numerical accuracy. Moreover, ex-
periments also give values for S(E)=lim;_. »S(E,L)
for large E that disagree with calculations, a fact that
has plagued investigators in this field.®

In this Letter we propose a resolution of this
discrepancy. Specifically, we find a phase transition® in
DLA in the sense that the energy E undergoes a quite
sharp jump near a critical value B.. For values of S
below B, the free energy F(B,L) is dominated by the
maximum energy term Ema(L) which increases with
system size L. Hence the partition function Z(B,L) does
not scale as a power law for B<p.. Another conse-
quence is that the large E part of S(E) is a straight line
with slope B.. Furthermore, because of large fluctua-
tions of energy near ., the convergence to this straight
line exhibits a “critical slowing down.”

Our calculations are based on exact enumeration of all
DLA configurations in a L XL box containing 2L>—L
bonds. This exact enumeration follows the general pro-
cedure outline by Nagatani!® in connection with a
position-space renormalization-group formulation for
DLA. The enormous number of possible configurations
in a box of 2L%— L bonds is reduced by many orders of
magnitude with use of symmetry considerations. We
find that for L =2,3,4,5, we must actually calculate the
growth probability exactly for 9, 5323, 1.2x10°% and
3.0x10"7 configurations (note that the Nagatani calcula-
tions are for L =2,3). With 3.0x10'" configurations, it
is impossible to apply the symmetry arguments on a
case-by-case basis. Rather, we constructed elaborate
computer algorithms to recognize symmetries, reducing

TABLE I. Comparison of notation of this paper and that of
Refs. 3-6.

B—q F(B)—1(q)
E<ra S(E)—f(a)
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FIG. 1. Dependence of InZ(B,L) on InL for (a) =0

(B> ) and (b) B=—5 (B<pB.). The free energy F(B,L) is
given by the negative of the slope of these plots. One sees that
F(B,L) is not defined for the B < B, case, in contrast to the
well-defined free energy for the $=0 and > S. case.

the number of distinct configuration to 3, 14, 259, and
9361, respectively. In particular, we used a burning-type
algorithm!! to remove all the “dead” (p; ,=0) sites.'?
Having the p; from the exact enumeration procedure
for L=2,3,4,5, we then form the partition function
Z(B,L), which is then used to extract F(B8,L) as in Fig.
1. Figure 2(a) shows the free-energy function defined in
Eq. (1) as a function of B. We see that there is remark-
ably rapid convergence as a function of L for g > B, with
B. roughly equal to —1. On the other hand, for g < g,
there appears to be no convergence at all! We also find
that the left-hand side of the S(E,L) plots of Fig. 2(b)
converge well but the right-hand sides converge poorly.
What is the origin of this poor convergence? Do the
thermodynamic limits (the L— oo limits) of the func-
tions F(B,L) and S(E,L) exist? To answer these ques-
tions, we shall argue that there is a phase transition at a
well-defined value of B.. Figure 3 shows the dependence
on € of the density-of-states function D(¢,L) weighted
by the “Boltzmann factor” L ~#¢, thus the summand of
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FIG. 2. Effect of cell size L on (a) free energy and (b) en-
tropy. As L increases, the free energy converges for 8> ., but
not for B < .. The solid line is for 1x 1, the dotted line is for
3x 3, the dashed line is for 4x4, and the dashed-dotted line is
for 5x35.

(1), which shows the contribution of different energy
bins. For B> . [Fig. 3(a)] we see that this function is
peaked at a characteristic value of the energy which is
independent of L. However, as 8 decreases toward B,
there is no characteristic value of energy and one sees
structure on all energy scales [Fig. 3(b)]. Finally, for all
B < B., there is a sharp peak. This sharp peak is cen-
tered on a value of the energy given by the smallest value
of the growth probability, Enax= —In(pmin)/InL. More-
over, we find from Fig. 4 that F 4 strongly depends on
L, with

E max(L) o L?/InL . 3)

To see this transition more clearly, we plot the energy
E(B,L) as a function of g [Fig. 5(a)l. One can see the
sharp variation in E(B,L) near B, = —1. Furthermore,
the magnitude of the variation increases with L, which
becomes clear when we examine the specific heat C(B,L)
=—9E(B,L)/3B [Fig. 5(b)]. Moreover, we see that B,
appears to be independent of system size L.

Additional evidence of the phase transition comes
from the *“‘data collapse” plots [Fig. 5(c)] in which the



VOLUME 61, NUMBER 26

PHYSICAL REVIEW LETTERS

26 DECEMBER 1988

125 [ ; ] e
m 2 B
T 1.00

¥ ]
* -

A 0.75

*

’:}T 0.50 | .
=1

0.25 [ b

0.00 i | Il

o 25 5 7.5 10 125
€e=-lnp/InlL
(a)

1.2 T T 1 T
5 1.00
|
i 0.75
—

*

—_ 0.50

)

)

~ 0.25

0.00 0 25 5 7.5 10 125

e=—-lnp/InL
(b)

1.25 T R
= .00 | ™
>
PEEE 7 ]
*
=]

* 0.50 [ s
a
)
a 025 |- A

0.00 N 1 i | atal V\l}[—‘

0 2.5 5 7.5 10 125
€e=-Inp/InL
(c)

FIG. 3. Energy fluctuations above, near, and below the
phase transition. Shown is the density of states multiplied by
“Boltzmann factor” L ~#¢ for the case L =5 and (a) f=1.0,
(b) p=—1.0, and (c) g= —2.0.

density of states D(¢,L) is scaled by InL, giving the en-
tropy function S(E,L) apart from a normalization fac-
tor. Because good data collapse is found, we argue that
there is a well-defined entropy function S(E) at every
scale of E. Furthermore, the part of the entropy func-
tion with E > 5 is a fairly straight line, which also sug-
gests the existence of a phase transition.

Thus we argue that there is a phase transition at a

In (Emax *In L)

In L

FIG. 4. Dependence of In(EmaXxInL) on InL, where
Emax=—1In(pmin)/InL. The asymptotic slope of two supports
the form (3).

well-defined critical value 8 =p,. Our argument is based
on the following four distinct pieces of evidence: A max-
imum energy that displays a strong dependence on L:
E max(L) & L*/InL, large energy fluctuations for g = B,
sharp variation in E(B,L) near B., and the straight line
portion of the curve InD(¢)/InL for € > e,.

One consequence of this transition is the breakdown of
power-law scaling for 8 < B.. Since for < p., F(8,L)
is dominated by E ;= —In(pmin)/InL, and E ., (L)
diverges in the L — oo limit, it follows that F(B,L) can-
not converge for B below B..'* This is consistent with
our finding that the moment Z(B,L) does not scale as a
power law for g < g, le.g., Fig. 1(b)].

Because we find contributions from all energy scales
for B= B., the conventional derivation of S(E,L) from
F(B,L) must be called into question. This derivation
uses the method of steepest descents, which assumes
most of the contribution to an energy integral comes
from energies close to the saddle-point energy E*. Our
results show this assumption fails for = B.. Specifical-
ly, we find exceptionally large energy fluctuations for
B=pB. [Fig. 3(b)], which cause a significant slowing
down of the convergence.

Corresponding to this difficulty, we find poor conver-
gence for the part of S(E,L) corresponding to == f,;
this is the right-hand side of Fig. 2(b), which is expected
to converge to a straight line of slope ..

In summary, by using an exact enumeration approach
to DLA, we find that there is a critical point B, above
which we find the usual infinite hierarchy of phases (the
conventional multifractal spectrum) but below which we
find a single phase. This phase is characterized by a
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FIG. 5. Dependence of (a) energy E(B,L) and (b) specific
heat C(B,L) on B, displaying features near 8 =p. characteristic
of a phase transition. (c) Data collapse plot showing depen-
dence of InD(¢,L) scaled by InL on —InP scaled by InL. The
solid line is for 2% 2, the dotted line is for 3% 3, the dashed line
is for 4x4, and the dashed-dotted line is for 5x5.
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maximum energy that increases with system size
Emax(L) o L?/InL. We believe that this is the reason
that multifractal analysis must fail below ..

We thank P. Alstrém, M. Jensen, and S. Redner for
helpful feedback, and the NSF, ONR, and Boston Uni-
versity Academic Computing Center for support.

IT. A. Witten and L. Sander, Phys. Rev. Lett. 47, 1400
(1981).

ZFor background, see J. Feder, Fractals (Pergamon, New
York, 1988); Random Fluctuations and Pattern Growth: Ex-
periments and Models, edited by H. E. Stanley and N. Os-
trowsky (Kluwer Academic, Dordrecht, 1988); T. Vicsek,
Fractal Growth Phenomena (World Scientific, Singapore,
1989).

3Many applications are described by P. Meakin, in Phase
Transitions and Critical Phenomena, edited by C. Domb and
J. L. Lebowitz (Academic, Orlando, 1988), Vol. 12.

4T. C. Halsey, P. Meakin, and I. Procaccia, Phys. Rev. Lett.
54, 854 (1986).

>C. Amitrano, A. Coniglio, and F. di Liberto, Phys. Rev.
Lett. 57, 1016 (1986).

6P. Meakin, A. Coniglio, H. E. Stanley, and T. A. Witten,
Phys. Rev. A 34, 3325 (1986).

™. J. Feigenbaum, J. Stat. Phys. 46, 919, 925 (1987);
T. Bohr and D. Rand, Physica (Amsterdam) 25D, 387 (1987).

8See, e.g., the discussion on this point by K. J. Malgy,
F. Boger, J. Feder, and T. Jg¢ssang, in Time Dependent Effects
in Disordered Materials, edited by R. Pynn and T. Riste (Ple-
num, New York, 1987) and by P. Alstrém, Phys. Rev. A 37,
1378 (1988); see also, J. Nittmann, H. E. Stanley, E. Touboul,
and G. Daccord, Phys. Rev. Lett. 58, 619 (1987); H. E. Stan-
ley and P. Meakin, Nature (London) 335, 405 (1988).

9The concept of a phase transition in multifractal spectra
was found in the study of simple systems, such as the logistic
map {T. Bohr and M. Jensen, Phys. Rev. A 36, 4904 (1987);
M. Duong-van, in Proceedings of the International Conference
on the Physics of Chaos and Systems far from Equilibrium,
Monterey, California, 1987 [Nucl. Phys. B Proc. Suppl. 2, 521
(19871}, charged needle [T. C. Halsey, M. H. Jensen, L. P.
Kadanoff, I. Procaccia, and B. I. Shraimann, Phys. Rev. A 33,
1141 (1986)], and Julia sets (T. Bohr, P. Cvitanovic and
M. Jensen, to be published). However, the present work
presents the first evidence for a phase transition in a realistic
model system.

10T, Nagatani, Phys. Rev. A 36, 5812 (1987), and J. Phys. A
20, L381 (1987).

'H. J. Herrmann, D. C. Hong, and H. E. Stanley, J. Phys. A
17, L261 (1984).

12Note that the dead sites are removed, so that Emax arises
from sites with small but nonzero values of p; ,.



