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Increasing evidence shows that real-world systems interact with
one another via dependency connectivities. Failing connectivities
are the mechanism behind the breakdown of interacting complex
systems, e.g., blackouts caused by the interdependence of power
grids and communication networks. Previous research analyzing
the robustness of interdependent networks has been limited to
undirected networks. However, most real-world networks are
directed, their in-degrees and out-degrees may be correlated, and
they are often coupled to one another as interdependent directed
networks. To understand the breakdown and robustness of inter-
dependent directed networks, we develop a theoretical frame-
work based on generating functions and percolation theory. We
find that for interdependent Erd}os–Rényi networks the direction-
ality within each network increases their vulnerability and exhibits
hybrid phase transitions. We also find that the percolation behav-
ior of interdependent directed scale-free networks with and with-
out degree correlations is so complex that two criteria are needed
to quantify and compare their robustness: the percolation thresh-
old and the integrated size of the giant component during an
entire attack process. Interestingly, we find that the in-degree
and out-degree correlations in each network layer increase the
robustness of interdependent degree heterogeneous networks
that most real networks are, but decrease the robustness of in-
terdependent networks with homogeneous degree distribution
and with strong coupling strengths. Moreover, by applying our
theoretical analysis to real interdependent international trade net-
works, we find that the robustness of these real-world systems
increases with the in-degree and out-degree correlations, confirm-
ing our theoretical analysis.
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The interdisciplinary field of networks has attracted the at-
tention of scientists and engineers studying such wide-rang-

ing topics as power systems (1), computer science (2, 3), biology,
and social science (4, 5). Real-world network systems exhibit a
high degree of heterogeneity, a fat-tailed degree distribution,
and are scale-free (SF) (1). One important property of SF net-
works is that they are significantly more robust against random
failure than classic Erd}os-Rényi (ER) networks (6). The ro-
bustness of a network (7, 8) is its ability to continue functioning
after experiencing targeted attacks or random failures. These can
be characterized by using percolation theory to analyze the
critical thresholds (8, 9) or be defined using the integrated size of
the largest connected component during the attack period (7).
It is increasingly clear that almost all real-world critical infra-

structures interact with one another. This has led to an emerging
new field in network science that focuses on what are variously
called interdependent networks, interconnected networks, a net-
work of networks, multilayer networks, and multiplex networks
(10–14) (SI Appendix, section I and SI Appendix, Fig. S1 compare
these related designations). In these systems, networks interact
with one another and exhibit structural and dynamical features
that differ from those observed in isolated networks. For example,
they may exhibit first-order phase transitions not only in their
percolation (15) but also in their synchronization (16), and they
may also have phase transitions that begin as first order, become

hybrid, and then become second order (17). In interdependent
networks the failure of a node in one network leads to the failure
of the dependent nodes in other networks, which in turn may
cause further damage to the first network, leading to cascading
failures and possible catastrophic consequences. One example of
cascading failure is the electrical blackout that affected much of
Italy in 2003 (18) caused by a breakdown in two interdependent
systems: the communication network and the power grid.
Mathematical frameworks have been proposed for analyzing

the cascading failures in a pair of fully interdependent networks
(15), a pair of partially interdependent networks (19), and a
network of interdependent networks (20–22). These previous
studies have been focused on networks that are undirected. Real-
world networks, on the other hand, have directionality. Examples
include metabolic networks and gene regulatory networks in
biological systems (23), transportation networks and power grids
in infrastructure systems (24, 25), and citation networks and trust
networks in social systems (26). Directed multiplex networks
with a giant strongly connected component (GSCC) are signifi-
cantly more vulnerable than those with a giant weakly connected
component (GWCC) (27).
The correlation between in-degree and out-degree is an im-

portant characteristic of directed network structure. In complex
networks various aspects of this have been the focus of much
study including robustness (28, 29), controllability (30), and
synchronization (31). Much current research focuses on the in-
degree and out-degree correlations of the dependency links be-
tween networks. Ref. 32 shows that the stability of a system relies
on the in-degree and out-degree correlations between the coupled
nodes in interdependent networks because these correlations
curtail the tendency to catastrophic failure caused by the
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interdependence. Still needed is an adequate theoretical analysis
of cascading failures and robustness in interdependent networks
where each network itself is a directed network with in-degree
and out-degree correlations. Understanding how these two fun-
damental properties (the directionality and the in-degree and
out-degree correlation) affect system robustness enables design
of robust interdependent systems.
We develop here a theoretical framework for analyzing the

breakdown of interdependent directed networks with and with-
out in-degree kin and out-degree kout correlations, measured by a
coefficient α with the form kout ∝ kαin (32, 33), and we apply it to
real interdependent international trade networks. Our analysis
leads to several unexpected results:

i) An interdependent system of directed networks is more vul-
nerable than coupled undirected networks, and an interde-
pendent system of directed ER networks exhibits a hybrid
phase transition that is not observed in coupled undirected
ER networks (19).

ii) When comparing the robustness of interdependent SF net-
works with and without in-degree and out-degree correlations,
we find that two criteria used to quantify the robustness—the
critical threshold and the integral of giant component sizes—
produce opposite results for some parameters.

iii) We find that in-degree and out-degree correlations in each
layer could increase the robustness of interdependent net-
works with heterogeneous degree distributions, but decrease
the robustness of interdependent networks with homoge-
neous degree distributions and with strong coupling strengths.

iv) Our theoretical analysis provides a framework for under-
standing the robustness of international trade networks.
We find that an interdependent international trade network
system is less robust than a system of randomized ER net-
works, produced by keeping the number of nodes and the
number of links unchanged, and turning the real networks
into directed ER networks. Furthermore, the in-degree and
out-degree correlations in real networks increase the system’s
robustness.

Model
Fig. 1 shows a system of two interdependent directed networks,
network A and network B, respectively, consisting of NA and NB
nodes and following joint degree distributions PAðkin, kout) and
PBðkin, koutÞ, where kin and kout are the in-degree and out-degree
of a given node, respectively. There are qA fraction of nodes in
network A (A nodes) that depend on the nodes in network B
(B nodes), and qB fraction of B nodes that depend on the A
nodes. In addition, the nodes from the two networks are
coupled following the no-feedback condition (20) that a node
from one network can depend on no more than one node from
the other network, and if node Ai depends on node Bj, node Bj
depends on node Ak, then i= k. A node from one network stops
functioning when the node from the other network on which it
depends fails.

Cascading Failures and Percolation Process
We begin by randomly removing a fraction 1− p1 of A nodes and
a fraction 1− p2 of B nodes. Each network fragments into
strongly connected components, within which each pair of nodes
can reach each other by a directed path. Only the GSCC (28) are
assumed to be potentially functional. Thus, after the initial node
removal, denoted by step t= 1, the fraction of functional A nodes
and functional B nodes (in the GSCC) is, respectively,
ψ ðsÞ
1 = p1pAðp1Þ and ϕðsÞ

1 = p2pBðp2Þ, where pAðxÞ and pBðxÞ are the
formulas for calculating the sizes of GSCC in isolated network A
and isolated network B, respectively, with x being an arbitrary
complex variable (SI Appendix, section III.A). Because of the
dependence between networks, the A nodes that depend on the
failed B nodes fail, so at step t= 2, the fraction of functional

A nodes is ψ ðsÞ
2 =ψ2′ pAðψ2′Þ, where ψ2′ = p1ð1− qAð1− pBðp1Þp2ÞÞ.

Accordingly, any B nodes that depend on the failed A nodes also
fail, and the fraction of functional B nodes is ϕðsÞ

2 =ϕ2′ pBðϕ2′Þ,
where ϕ2′ = p2ð1− qBð1− pAðψ2′Þp1ÞÞ. This process will iterate
back and forth (will be a cascading failure) until there is no
further damage from one network on the other, and the system
goes into its steady state ψ ðsÞ

∞ and ϕðsÞ
∞ (SI Appendix, section III.B).

Fig. 1 shows the final GSCC of the two interdependent net-
works to be ψ ðsÞ

∞ = 7=11 (yellow) and ϕðsÞ
∞ = 6=12 (red).

For the symmetric case with coupling strengths qA = qB = q,
nonremoved nodes after initial failure p1 = p2 = p, and degree
distributions PAðkin, koutÞ=PBðkin, koutÞ=Pðkin, koutÞ, whose gen-
erating function is Φðx, yÞ=P∞

kin,koutPðkin, koutÞxkinykout, the final
GSCC size in both networks are the same ψ ðsÞ

∞ =ϕðsÞ
∞ ≡ pðsÞ∞ , and

follow

ð1−Φ1ðz, 1ÞÞ
�
1− q+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− qÞ2 + 4qpðsÞ∞

q �

2ð1− zÞ =
1
p
≡RðsÞðz, qÞ, [1]

where Φ1ðx, 1Þ= ∂yΦðx, yÞ��y=1=∂yΦð1,1Þ is the generating func-
tion of a branching process (28).
For two interdependent directed ER networks with the

same average degree hki, the final GSCC size is pðsÞ∞ =
ð1− zÞð1− ehki=2ðz−1ÞÞ. Fig. 2A shows their percolation behaviors
with the fraction of remaining nodes p varying from 1 to 0 under
three different coupling strengths. For an SF network, its in- and
out-degree distributions follow PðkinÞ∝ k−λinin and PðkoutÞ∝ k−λoutout ,
respectively. Here we set the parameter λin = λout = λ. The sys-
tems of interdependent SF networks with in-degree and out-
degree correlations (Fig. 2 B and C) and without in-degree and
out-degree correlations (Fig. 2D) show similar behaviors as p
varying from 1 to 0 such that

i) when the coupling strength q< qc2 (qc2 is one critical cou-
pling strength), pðsÞ∞ continuously decreases to zero at a

Network A

Network B

Fig. 1. Schematic demonstration of interdependent directed networks and
the final GSCC. Directed networks A and B are coupled by directed de-
pendency links (dotted lines) with a no-feedback condition (20). A dotted
directed line from node i in one network to node j in the other network
indicates that a failure of node i will cause node j to fail. The yellow nodes
(network A) and red nodes (network B) indicate the final GSCC at the
completion of cascading failure.

Liu et al. PNAS | February 2, 2016 | vol. 113 | no. 5 | 1139

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1523412113/-/DCSupplemental/pnas.1523412113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1523412113/-/DCSupplemental/pnas.1523412113.sapp.pdf


percolation threshold pIIc , characterized as a second-order
phase transition;

ii) when q> qc1 (qc1 is another critical coupling strength), pðsÞ∞
discontinuously jumps to zero at another percolation thresh-
old pIc, characterized as a first-order phase transition; and

iii) when qc2 < q< qc1, pðsÞ∞ sharply jumps to zero at pIc followed by
a second-order phase transition at pIIc , characterized as a
hybrid phase transition (17).

Note that in the interdependent undirected ER networks,
there is no hybrid phase transition (19).
The percolation behaviors above can be analytically computed

using the function RðsÞðz, qÞ. When the system exhibits a second-
order phase transition, as shown in Fig. 3A, RðsÞðz, qÞ is a
monotonically increasing function of z, and the maximum value
of RðsÞðz, qÞ is obtained when z→ 1. In addition, for the hybrid
phase (Fig. 3B), RðsÞðz, qÞ is a nonmonotonic increasing function
of z, but the maximum value of RðsÞðz, qÞ is still obtained when
z→ 1, corresponding to the reciprocal of percolation threshold
pIIc . Thus, the percolation threshold pIIc can be written as

pIIc =
1

limz→1RðsÞðz, qÞ=
1

Φ1′ð1,1Þð1− qÞ. [2]

Note that for the case of ER networks with average degree hki,
we obtain pIIc = 2=ðhkið1− qÞÞ. As shown in both Fig. 3 B and C,
when the system displays a hybrid or a first-order phase transi-
tion, RðsÞðz, qÞ as a function of z has a peak at zc, and zc is the
smaller root of ∂zRðsÞðz, qÞ= 0. Accordingly, the percolation
threshold pIc is

pIc =
1

RðsÞðzc, qÞ. [3]

We apply our theoretical prediction of the percolation thresh-
olds to interdependent directed ER networks and SF networks.
Fig. 3 D–G shows that the percolation threshold pIIc (solid lines)
increases gradually for q∈ ½0, qc1� and that the other percolation
threshold pIc (dashed line) appears at q= qc2 and then increases
for q∈ ½qc2, 1�. In the region ½qc2, qc1�, two percolation thresholds
pIIc and pIc coexist, indicating a hybrid phase transition. The
percolation thresholds pIIc and pIc in interdependent directed SF
networks (Fig. 3F) are larger than those in interdependent un-
directed networks (Fig. 3G), because nodes in the GSCC must
reach and be reached by one another and nodes in the GWCC
must reach or be reached by one another.
One critical coupling strength qc2 separates the second-order

and the hybrid phase transitions, and another critical coupling
strength qc1 separates the hybrid and the first-order phase tran-
sitions. These two critical coupling strengths can be analytically

A B

DC

Fig. 2. Percolation of interdependent directed ER networks and SF net-
works with and without degree correlations. (A) The final GSCC size of in-
terdependent directed ER networks (hki= 10) as a function of p for three
different values of coupling strength q. The system shows a second-order
phase transition when q= 0.4<qc2 = 0.646, a hybrid phase transition when
qc2 <q= 0.655<qc1 = 0.692, and a first-order phase transition when q=
0.9>qc1. (B) The final GSCC size of interdependent directed SF networks
(λ= 2.8) without in-degree and out-degree correlations with critical coupling
strengths qc2 = 0.597 and qc1 = 0.707. (C) The final GSCC size of interdepen-
dent directed SF networks with in-degree and out-degree correlations with
qc2 = 0.823 and qc1 = 0.972. (D) The final GWCC size of interdependent di-
rected SF networks with in-degree and out-degree correlations. The simu-
lation results (averaged over 60 runs and N= 106) are shown using symbols
and the theoretical predictions are obtained by using Eq. 1 and substituting
the corresponding generating functions of ER networks (SI Appendix, Eq.
S26) and SF networks with and without (SI Appendix, Eqs. S39 and S45) in-
degree and out-degree correlations, respectively.

A

D

B C

E

F G

Fig. 3. Percolation thresholds of interdependent directed ER networks and
SF networks with and without degree correlations. (A) When the coupling
strength is q≤qc2, RðsÞðz,qÞ is an increasing function of z, revealing a second-
order phase transition with a percolation threshold pII

c . (B) When the cou-
pling strength is qc2 ≤q≤qc1, RðsÞðz,qÞ shows a maxima as 1=pI

c and its
maximum value is obtained when z→ 1 as 1=pII

c , indicating a hybrid phase
transition with two percolation thresholds, pII

c and pI
c. (C) When the coupling

strength is q≥qc1, the maxima of RðsÞðz,qÞ is also the maximum for z∈ ½0,1�,
exhibiting a first-order phase transition with a percolation threshold pI

c. In
(D) interdependent directed ER networks, (E) SF networks without in-degree
and out-degree correlations, and (F and G) SF networks with in-degree and
out-degree correlations, the percolation threshold pII

c (solid lines) increases
gradually for q∈ ½0,qc1�, and the other percolation threshold pI

c (dashed
lines) appears at q=qc2 and then increases for q∈ ½qc2, 1�. In the region
½qc2,qc1�, two percolation thresholds pII

c and pI
c coexist, indicating a hybrid

phase transition. The percolation thresholds pII
c and pI

c in (F) interdependent
directed SF networks are larger than those in (G) interdependent undirected
networks.
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solved using the function RðsÞðz, qÞ and its derivations. We draw
the phase diagram for interdependent directed ER networks in
the q− hki plane and the phase diagrams for interdependent SF
networks in the q− λ plane, as shown in Fig. 4. We observe a
hybrid phase transition in interdependent directed ER networks,
as shown in Fig. 4A, which is not observed in interdependent
undirected ER networks (19). The region of the first-order and
the hybrid phase transitions in interdependent directed SF net-
works (Fig. 4C) is much broader than that in interdependent
undirected SF networks (Fig. 4D). The critical coupling strengths
qc2 and qc1 of interdependent SF networks without in-degree and
out-degree correlations (Fig. 4B) are, respectively, smaller than
those of interdependent SF networks with in-degree and out-
degree correlations (Fig. 4C), indicating that the in-degree and
out-degree correlations dramatically enlarge the region of sec-
ond-order phases and shrink the region of first-order phases. If
the degree distribution exponent 2≤ λ≤ 3 and the scales of both
networks N→∞, then qc1 = 1 in interdependent directed SF
networks with in-degree and out-degree correlations (Fig. 4C)
and undirected SF networks (Fig. 4D), i.e., the first-order phase
transition, emerges only if q= 1 (SI Appendix, section VI). When
interdependent directed SF networks have no in-degree and out-
degree correlations, as shown in Fig. 4B, qc1 < 1 even when
2≤ λ≤ 3, indicating that they are much more vulnerable than
when correlations are present.

Influence of In-Degree and Out-Degree Correlations
The robustness of the interdependent networks can be defined
either by the percolation thresholds denoted by RI, where the
smaller the value of RI the more robust the system (criterion I),
or by the integrated size of the final GSCC during the entire

attack process, denoted by RII =
R 1
0 pðsÞ∞ ðpÞdp (20), where the

larger the value of RII the more robust the system (criterion II).
In previous research on the robustness of interdependent un-
directed networks, these two criteria always led to the same re-
sult when comparing the robustness of two systems with different
average degrees (15), coupling strengths (19), degree exponents
(17), and even with a different number of coupled networks (20,
22). However, when we compare the robustness of two in-
terdependent directed SF networks with and without in-degree
and out-degree correlations, opposite results can appear (the
purple region of Fig. 5) when using these two criteria for some
certain degree exponents and coupling strengths. This indicates
that either of these two criteria used alone is insufficient for
characterizing the robustness of interdependent networks, so we
must use both.
We compare the robustness of two systems of SF networks

with and without in-degree and out-degree correlations in the
λ− q plane. As shown in Fig. 5, in the yellow and green regions,
either system shows a higher or lower robustness in both RI and
RII, whereas in the purple region, one system shows higher ro-
bustness in RI and lower robustness in RII. Moreover, Fig. 5
shows that when using criterion I, in-degree and out-degree
correlations increase the robustness of the system of networks
with a degree exponent 2< λ< 3, called heterogeneous networks,
while decreasing the robustness of the system of networks with
λ> 3, called homogeneous networks, with a strong coupling
strength q (the orange area). When using criterion II, the ro-
bustness of systems composed of networks with degree expo-
nents 2< λ< 3 also increases with the in-degree and out-degree
correlations (the green area). Thus, the in-degree and out-degree
correlations increase the robustness of interdependent directed
networks with heterogeneous degree distributions but decrease
the robustness of interdependent networks with homogeneous
degree distributions and with strong coupling strengths. Most
networks in the real world are heterogeneous, so the in-degree

A B

DC

Fig. 4. Phase diagrams of interdependent directed ER networks and SF
networks with and without degree correlations. Systems exhibit different
phase transitions when the coupling strength q varies: a second-order
(q<qc2, green region labeled “Phase II”), a first-order (q>qc1, orange re-
gion labeled “Phase I”), and a hybrid phase transition (qc2 <q<qc1, purple
region labeled “Hybrid”). (A) A hybrid phase transition emerges in in-
terdependent directed ER networks that does not occur in coupled un-
directed ER networks (19). The critical coupling strengths qc2 and qc1 in
interdependent SF networks (B) without in-degree and out-degree corre-
lations are smaller than (C) when no degree correlations exist. This indicates
that the in- and out-degree correlations increase the robustness. The region of
the first-order and hybrid phase transitions in the percolation of in-
terdependent directed SF networks (C) is much broader than the region in
interdependent undirected SF networks (D). This indicates that directionality
increases the system vulnerability. The lines between phases are predicted by
our analytic framework, and the symbols are simulation results (N= 106

nodes in each network).

Fig. 5. Influence of the in-degree and out-degree correlations on ro-
bustness. We compare the robustness of interdependent SF networks
with and without in-degree and out-degree correlations using criteria I
and II. We divide the q− λ space into three regions. In each region we
show the illustrative percolation curves of the two systems. The robust-
ness of the correlated SF networks is higher than when there is no cor-
relation (green region where RI

Cor >RI
Rand and RII

Cor >RII
Rand), and lower in

the orange region where RI
Rand >RI

Cor and RII
Rand >RII

Cor, as determined using
criteria I and II. In the purple region where RI

Cor >RI
Rand and RII

Rand >RII
Cor, the

robustness of the correlated SF network is higher than the robustness of
the uncorrelated SF networks when using criterion I, and lower when
using criterion II.
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and out-degree correlations can increase the robustness of real
interdependent directed networks.

Application to Real Networks
We use eight commodity-specific trade networks among world
countries in 2013 (34), a list of which is displayed in SI Appendix,
Table S1. In each trade network consisting of N = 240 countries,
a directed link from node i to node j indicates that country i
sells the commodity to country j. In multiplex networks two
nodes in different layers of the network depend on each other
because they represent the same individual or share the same
property in different layers (35), thus in each pair of interdependent
trade networks two nodes in different networks depend on each
other because they represent the same country. In addition, the
percolation modeling that we apply is related to the study of per-
colation in multiplex networks in the context of interdependent
networks (35). Using the partially interdependent undirected net-
work in ref. 19, we assume that a fraction of q nodes in each net-
work depends on nodes in other networks and forms a network of
eight commodity-specific trade networks in which each pair of
networks forms a subsystem of interdependent networks connected
by q fraction of dependency links, and the total number of sub-
systems is 28.
Fig. 6A shows the robustness RII of these eight single networks

averaged over 600 attack events, which indicates that RII is a
good measure of the robustness because the error bars are small.
Fig. 6 B and C relates the size of a node to the robustness RII of
an individual network. The width of the links is related to the RII

of the network with higher robustness (Fig. 6B) and the network
with lower robustness (Fig. 6C) in the system, indicating that the
robustness of this system is primarily determined by the lower
robustness level. Apart from a few subsystems whose simulation
values of robustness are slightly higher than the theory com-
puting values due to the degree–degree correlations between
networks (SI Appendix, Fig. S4), the robustness of most subsys-
tems calculated by our theory framework RII

Theo agrees well with
the simulation results RII

Sim (Fig. 6D), and the degree–degree
correlations between networks is caused by the fact that a hub
country in one network (trading soaps) may also be a hub in
another network (trading papers). Fig. 6E shows that the ER
randomized networks (SI Appendix, section VIII) are much more
robust than those in real-world interdependent networks because,
for a certain commodity, there are many countries that only sell or
only buy it. According to definition, every node within a GSCC has
outgoing links that reach to other nodes and incoming links that
reach from other nodes, thus a country that only sells a certain
commodity (no outgoing links from this node) or only buys the
commodity (no incoming links to this node) does not belong to the
GSCC, and in real interdependent networks this dramatically de-
creases the final GSCC size. If we preserve the elements of the in-
degree and out-degree sequences and then randomize the networks
(SI Appendix, section VIII), these randomized networks are less
robust than those in real-world systems, shown in Fig. 6F, because
the in-degree and out-degree correlations in the interdependent
real-world networks increase their robustness.
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Theo, calculated by our
theory framework, agrees with simulation results RII

Sim except when RII
Sim >RII

Theo, which is caused by degree–degree correlations between networks. (E) ER
randomized networks are more robust than real networks RII

ER−Rand >RII
Sim because many participating countries only sell or only buy one commodity. (F) If we

preserve the elements of the in-degree and out-degree sequences and randomize the networks, these randomized networks are less robust than real
networks RII

Sim >RII
Degree−Rand because the in-degree and out-degree correlations in interdependent real networks increase their robustness. Each result is

averaged over 600 realizations.
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Discussion
In summary, we have developed a general theoretical framework for
analyzing the breakdown of interdependent directed networks and
have discovered that the behavior of interdependent directed net-
works differs from that in interdependent undirected networks. For
example, the interdependent directed ER networks system shows a
hybrid phase transition that is not observed in coupled undirected
ER networks (19). We find that the in-degree and out-degree
correlations in each layer of network could increase the robustness
of interdependent networks with heterogeneous degree distribu-
tions, but decrease the robustness of interdependent networks with
homogeneous degree distributions and with strong coupling
strengths. By comparing the robustness of real-world interdependent
international trade networks with the robustness of the in-degree
and out-degree distribution that preserves randomized networks, we
find that the in-degree and out-degree correlations improve the ro-
bustness of real-world interdependent networks.
Real-world interdependent international trade networks are

less robust than ER randomized networks because some coun-
tries in the network only sell or only buy a particular commodity
and thus do not belong to the GSCC. To increase the robustness
of the system, countries that only sell a certain commodity must
be encouraged to buy the same commodity, and vice versa. Note
that this “encouragement” harmonizes with the structural prop-
erties of the socioeconomic dynamics driving trade networks in
which the nodes are connected by bilateral links, and that these
socioeconomic dynamics driving trade networks are usually robust
(36). The robustness of interdependent trade networks can also
be increased by increasing the in-degree and out-degree correla-
tions between the participating countries. Moreover, in our work
we study the robustness of the subsystems composed by two of
eight trade networks. When we treat the eight together as a
multiplex network with eight fully interdependent layers, it will be
much less robust than any of its subsystem, and its final GSCC size
can be solved by substituting SI Appendix, Eq. S5 into equation 30

in ref. 37, which could trigger some open questions for future
studies: (i) What is the theoretical framework of the robustness of
a network of more than two directed networks? (ii) How do the
degree–degree correlations between networks influence the ro-
bustness of interdependent directed networks?

Methods
Generating Functions. Given a directed network with a degree distribution
Pðkin, koutÞ, whose generating function is Φðx, yÞ=P∞

kin ,kout
Pðkin, koutÞxkinykout

(28), Φ1ðx, 1Þ= ∂yΦðx, yÞ��y=1=∂yΦð1,1Þ and Φ1ð1, yÞ= ∂xΦðx, yÞjx=1=∂xΦð1,1Þ are
the generating functions of branching processes.

Percolation Theory. The size of the GSCC for a single network is S= 1−
Φðxc , 1Þ−Φð1, ycÞ+Φðxc , ycÞ, where xc =Φ1ðxc , 1Þ and yc =Φ1ð1, ycÞ. We pro-
pose a general analytic framework to study the breakdown process in
interdependent directed networks based on generating functions and percolation
theory. The SI Appendix, section III contains further information.

In-Degree and Out-Degree Correlations. In some real-world networks, the in-
degree kin and out-degree kout of a given node are correlated with the form
kout ∝ kα

in (32, 33). The correlation between in-degree and out-degree is
positive, negative, or not correlated when the coefficient α∈ ð0,1�, α∈ ½−1,0Þ
and α= 0, respectively. For simplicity, we set α= 1 in our numerical simula-
tions, but the extension to other values of α is straightforward.
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