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We study the potential energy surface ~PES! sampled by a liquid modeled via the widely studied extended
simple point charge ~SPC/E! model for water. We characterize the curvature of the PES by calculating the
instantaneous normal mode ~INM! spectrum for a wide range of densities and temperatures. We discuss the
information contained in the INM density of states, which requires additional processing to be unambiguously
associated with the long-time dynamics. For the SPC/E model, we find that the slowing down of the dynamics
in the supercooled region—where the ideal mode coupling theory has been used to describe the dynamics—is
controlled by the reduction in the number of directions in configuration space that allow a structural change.
We find that the fraction f dw of the double-well directions in configuration space determines the value of the
diffusion constant D, thereby relating a property of the PES to a macroscopic dynamic quantity; specifically, it
appears that AD is approximately linear in f dw . Our findings are consistent with the hypothesis that, at the
mode coupling crossover temperature, dynamical processes based on the free exploration of configuration
space vanish, and processes requiring activation dominate. Hence, the reduction of the number of directions
allowing free exploration of configuration space is the mechanism of diffusion implicitly implemented in the
ideal mode coupling theory. Additionally, we find a direct relationship between the number of basins sampled
by the system and the number of free directions. In this picture, diffusion appears to be related to geometrical
properties of the PES, and to be entropic in origin.
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I. INTRODUCTION

Computer studies of models of liquids have focused on
the slowing down of dynamics approaching the glass transi-
tion @1#, and on the role of the structure of the configura-
tional space in the supercooled states @2–7#. Weakly super-
cooled states, in which the dynamics are four or five orders
of magnitude slower than in normal liquid, have been thor-
oughly investigated via computer simulations @8–12#. The
time dependence of several correlation functions has been
evaluated over time intervals spanning more than five orders
of magnitude. These correlation functions have been com-
pared @13,14#, without fitting parameters, with theoretical
predictions based on the ideal mode coupling theory @15# for
supercooled liquids. The outcome of these studies suggests
that the ideal mode coupling theory adequately describes the
long-time dynamics of weakly supercooled states, even in
network-forming liquids @10,12,16–18#.

Parallel studies on the potential energy surface ~PES!
probed by the liquid are also contributing to the understand-
ing of the origin of the slowing down of the dynamics. These
approaches have called attention to various aspects of the
PES, including the progressive deepening @3,19# of the po-
tential energy of the local minima @20# visited by the liquid
on cooling and the progressive reduction of the number of
local minima and their connectivity @21,22#.

One approach to understanding the role of the PES is to
study the connectivity between different local configurations
using the instantaneous normal mode ~INM! formalism @23#.
Analogous to the standard normal mode theory for solids, an
instantaneous normal mode is the eigenfunction of the Hes-

sian, the matrix of the second derivative of the potential en-
ergy, with respect to the molecular coordinates. In a liquid
state, the eigenvalues of the Hessian matrix are generally not
all positive; the negative eigenvalues indicate a downward
curvature of the PES, i.e., indicate unstable directions for the
system. Previous studies using the INM formalism indicate
that the number of directions with negative curvature is re-
duced on cooling, and this has motivated theories that relate
diffusion in liquids to the INM density of states @24,25#. Low
temperature liquid dynamics involve the superposition of fast
oscillations around quasiequilibrium positions ~intrabasin
motion! and the rearrangement of the system between these
positions ~interbasin motion! @26#. The typical oscillation pe-
riod is much shorter than the typical time needed by the
system to rearrange itself, i.e., the structural relaxation time.
INM theories for diffusion relate the diffusion of the system
to activated processes of interbasin motion in configuration
space. In this respect, the imaginary modes are considered
representative of the barriers crossed when the system
changes basins.

More recently, it has become clear that the information
contained in the INM density of states requires further pro-
cessing before being unambiguously associated with the
long-time dynamics @27–30#. More specifically, one must se-
lect the imaginary modes that are actually related to diffusion
in configuration space. This detailed analysis has recently
been carried out in a few systems @27#. At the same time, it
has been found that, in the appropriate temperature range,
activated processes are not required for structural rearrange-
ment, and diffusion can occur via exploration of low poten-
tial energy pathways @5,22,29#. This mechanism—which
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we refer to as ‘‘free exploration in configuration space’’—
appears to be the dominant mechanism for diffusion in
weakly supercooled states. It has been hypothesized @29# that
the reduction in the number of directions allowing free ex-
ploration of configuration space is the mechanism of diffu-
sion implicitly implemented in the ideal mode-coupling
theory ~MCT! @15#. The crossover between MCT dynamics
and activated dynamics as T is decreased toward the MCT
critical temperature would be related to the vanishing num-
ber of directions of free exploration on cooling. Indeed, a
recent calculation of the location on the PES of the closest
saddle @21,31# suggests that, in the weakly supercooled
states, the order @32# of the closest saddle decreases and ap-
proaches zero at the MCT critical temperature. In this pic-
ture, diffusion appears to be related to geometrical properties
of the PES and hence, to be entropic in origin.

In this paper, we report an extensive INM study of a rigid
model for water, the SPC/E @33,34#. We study in detail the
supercooled region of this potential for 30 state points ~6
different densities and 5 temperatures!. A preliminary ac-
count of some of the present results has been published in
Ref. @22#.

The reasons for selecting the SPC/E potential are twofold.
~i! The structural, dynamic, and thermodynamic proper-

ties of the SPC/E model have been studied in detail, and it
has been found that the model reproduces the anomalous
pressure and temperature dependence of several quantities.
In the region studied, the SPC/E dynamics follows closely
the predictions of MCT @12,16#. Several properties of the
PES have been calculated, and recently the (r , T) depen-
dence of the configurational entropy has been calculated, and
shown to correlate with the dynamic behavior @6#.

~ii! As observed experimentally, the SPC/E model has a
maximum of the diffusion constant D upon compressing at
constant temperature @35#. The maxima in the diffusion con-
stant D can be exploited as a sensitive probe for testing pro-
posed relations between the change in topology of configu-
ration space and the change in D, allowing identification of a
precise correspondence between diffusion and PES proper-
ties.

The paper is organized as follows. In Sec. II, we review
the INM formalism that we employ. In Sec. III we give the
computational details. We present the results in Sec. IV,
which is divided into subsections detailing the INM density
of states and the relationship to dynamic properties. In Sec.
V we present the conclusions.

II. INSTANTANEOUS NORMAL MODES

A. Definition of instantaneous normal modes

Instantaneous normal modes are defined in analogy with
the standard normal mode analysis for a solid. We consider a
system consisting of N rigid molecules at a given tempera-
ture T and volume V. As coordinates for all N molecules in
the 6N-dimensional configurational space we choose the
center of mass position and the angles connected to rotations
around the three principal axes ~see Ref. @36# for a discussion
on the effects of different coordinate choices!. The instanta-
neous normal modes are the eigenvectors obtained by the

diagonalization of the Hessian matrix H ~the 6N36N matrix
of second derivatives of the potential energy!, and the eigen-
values of the Hessian are the squares of the corresponding
frequencies v associated with each mode. Typical liquid
configurations are not local minima of the potential energy.
Therefore not all the eigenvalues of the matrix H will be
positive.

One can interpret a negative eigenvalue as the square of
an imaginary frequency, and carry on the analysis in analogy
with what is done for solids. The INM can be classified as
stable ~the modes corresponding to a real frequency! and
unstable ~the modes corresponding to an imaginary fre-
quency!. If the eigenmodes of the system do not decorrelate
with time, then modes with real frequency would correspond
to a stable oscillator cos(vt) while modes with imaginary
frequency would exhibit unstable growth cosh(vt).

The short time dynamics can be rebuilt from the knowl-
edge of the INM’s @37#. The average density of states
^p(v)& can be decomposed as the sum of the density of
states ^ps& for stable modes and the density of states ^pu&
for unstable modes,

^p~v !&5K (
i51

N

(
a51

6

d~v2v ia!L 5^ps&1^pu&. ~1!

By convention, the imaginary frequency modes are repre-
sented as negative frequencies, so 2v represents an imagi-
nary frequency mode iv .

B. Instantaneous normal modes and topology of the PES

In the very early INM studies @25#, directions in configu-
rational space with negative curvature were associated with
diffusive directions, i.e., with directions along which the mo-
tion of the system produces a structural change in real space;
in configuration space, a structural change corresponds to a
change of basin of the PES. The total fraction f u of unstable
directions ~were the subscript u stands for unstable! has been
related to D @23#. It was realized that even for configurations
with virtually no diffusion, e.g., deeply quenched glassy con-
figurations or even crystalline states @28,30,38#, a non-
negligible number of imaginary modes is still present, dem-
onstrating that anharmonicities in the potential energy
contribute to the fraction of unstable modes. Thus the infor-
mation contained in the INM density of states requires fur-
ther processing before being unambiguously associated with
the process of diffusion.

Many methods have been proposed for separating the dif-
fusive modes ~basin changes in configuration space! from the
nondiffusive modes ~no basin changes! @27,28,38#. One ap-
proach is to classify the modes according to their potential
energy profile ~Fig. 1!, and partition those unstable modes
into two groups: ~i! imaginary normal modes due to the an-
harmonicities ~shoulder modes, with fraction f sh) and ~ii!
modes along which the system is crossing a saddle ~double-
well modes, with fraction f dw) @28#. In order to distinguish
between shoulder and double-well modes, the potential en-
ergy profile is calculated along straight paths, which follow
the direction of the eigenvector. By calculating the energy
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along this path, one can distinguish double-well modes from
shoulder modes. Although the INM eigenfunctions change
substantially in the process of calculating the energy profile
@39#, the eigenfunctions used to obtain the profile are not
recalculated along the path.

In a dense liquid, any straight direction in configuration
space will ultimately bring together an arbitrary pair of
neighboring atoms, and the repulsive force between them
will cause the energy profile to rise sharply with positive
curvature. This rise of the potential energy ~due to the
straight path approximation! has two major consequences: ~i!
some modes whose true energy profile ~evaluated along a
curvilinear path, not a straight line! would suggest classifi-
cation as a double-well mode will appear as a shoulder mode
@Fig. 2~a!#, ~ii! the energy profile of double-well modes is
strongly affected by the straight path approximation @Fig.
2~b!#. Indeed, both the estimation of the location of the
minima and of the saddle barrier heights are underestimated
by the straight path approximation @24#.

These features—which apparently weaken the INM ap-
proach and seem to question whether the INM analysis can
predict characteristic structural times in the system—are ac-
tually quite useful. In fact, they select the directions along
which the system is very near to a saddle and hence the
directions along which a basin change is happening. There-
fore, despite the error inherent in the straight path approxi-
mation, f dw is a meaningful quantity that correlates well
with D.

Consistent with this picture is the fact that the calculated
difference dE @see Fig. 2~b!# in the energy between the lo-
cation of the point and the ridge is found to be much smaller
than kBT ~where kB is the Boltzmann constant!. Thus the
double-well classification is able to sort out the diffusive
modes even if no physical meaning can be attributed to the
calculated straight-path approximation energy profile.

Some researchers @30,40# have pointed out that even
modes classified as double-well can involve intrabasin
motions—which, if true, renders the classification based on
the straight-path energy profile problematic. As shown in
Fig. 1, the steepest descent paths ~starting from the two dis-
tinct one-dimensional minima detected! may indeed lead to
the same local minima. To remove such spurious nondiffu-
sive contributions to f dw , Gezelter et al. @30# suggested that
a minimization starting from the two apparent minima must
be performed for each double-well mode. According to this
method, the double-well mode under study is considered
diffusive only if the procedure leads to two different minima.

An alternative way of distinguishing diffusive double-
well modes from nondiffusive modes is based on the local-
ization properties of the eigenvectors. Bembenek and Laird
@28# have suggested that modes that are nonlocalized are
diffusive. To support their hypothesis, Bembenek and Laird
have studied the participation ratio pa of each mode a @41#.

FIG. 1. Schematic sketch of the possible shapes of the PES
associated with imaginary eigenvalues. Unstable modes are first
separated into shoulder and double-well modes. Furthermore,
double-well modes are split into diffusive ~true double well! and
nondiffusive ones ~false double well!.

FIG. 2. Schematic sketch of the pitfalls associated with the
straight path approximation, on calculating the energy profile.
Lower ~upper! sketch shows the case when the location of the in-
stantaneous configuration is close to ~far from! a saddle point. The
net effect of the straight path approximation is an artificial rise of
the potential energy profile with negative curvature.
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In studying the size dependence of pa in a soft-sphere
system, they have been able to distinguish diffusive nonlo-
calized modes from nondiffusive ones. In their model they
indicate that the estimated liquid-glass transition is associ-
ated with the temperature below which all the unstable
modes become localized, and that the crossover between
stable and unstable modes occurs at a nonzero imaginary
frequency. Unfortunately, due to a limitation in computa-
tional resources, they associated this localization transition
with falling out of equilibrium, rather than with a crossover
in the dynamics at the mode coupling temperature @28#. This
type of analysis is very time consuming, since it requires
finite-size studies that are not feasible for the complicated
potential and the long trajectories that we study here. For this
reason we have not applied the approach proposed in Ref.
@28#.

III. COMPUTATIONAL DETAILS

We study a system composed of 216 water molecules in-
teracting via the SPC/E potential @33#. We analyze recent
simulations for six densities between 0.95 and 1.3 g/cm3

and for each density five temperatures @12#. To achieve
equilibration at the lowest temperatures and to generate in-
dependent configurations, we extended the molecular dy-
namics runs up to 200 ns, corresponding to 200 million in-
tegration time steps. Simulation details are found in Ref.
@12#.

For each state point, we extract 100 equally spaced con-
figurations from which we calculate and diagonalize the Hes-
sian, using the center of mass and the three principal inertia
momenta vectors as molecular coordinates @42#. We also
compare the INM properties of the liquid with those of the
crystalline state ~ice Ih) at several densities. Details of the ice
simulations are given in Ref. @43#.

We diagonalize the Hessian matrix using standard LAPAK

routines @44#. For each unstable-mode eigenvector, we calcu-
late the potential energy profile along the straight eigenvector
path and classify the imaginary modes into two categories,
shoulder modes, and double-well modes @28#. The modes are
classified as shoulder modes when no second minimum is
found within an energy range of 10 kJ/mol.

IV. RESULTS

A. Instantaneous normal mode DOS

Water is one of the first liquids whose INM density of
states ~DOS! has been calculated and for which the T depen-
dence of f u has been estimated @22,29,45#. We show the INM
DOS for the SPC/E water in Fig. 3. The stable modes of the
INM DOS can be partitioned rather clearly into hindered
translations ~below 400 cm21) and hindered rotations
~above 400 cm21). The unstable modes are distributed
around a single peak at '260 cm21. Figure 3~c! shows
also the DOS of the SPC/E ice Ih where the translational and
rotational bands are better resolved. We note that, even in the
crystalline states, the number of unstable modes ~i.e., the
area under the negative frequencies peak! is close to the
number of negative modes in supercooled liquid states, a

clear indication that there are many negative modes that are
not related to the system diffusion. Partitioning the DOS into
the contributions of the shoulder modes and of the double-
well modes @shown in Fig. 3~d! for one selected state point#,
we can identify a lower frequency cutoff uvcu'30 cm21

below which the density of states of the double-well modes
vanishes. This finding is consistent with previous observa-
tions @25,38# that modes with uvu<uvcu do not contribute to
diffusive processes since they are mainly due to anharmo-
nicities of the PES.

Figures 4~a! and 4~b! show the T dependence of the aver-
age frequencies of the unstable modes ^vu& and of the
double-well modes ^vdw&. In the studied range of the phase
diagram, both average frequencies increase monotonically
with T and with r . Hence, the anomalous density dependence
of D ~i.e., the fact that D shows a maximum in r) cannot

FIG. 3. Instantaneous normal modes density of states for SPC/E
water. ~a! T dependence at r51.0 g/cm3, ~b! r dependence at
T5210 K, ~c! r dependence for SPC/E ice Ih , and ~d! density of
states of the unstable modes partitioned into shoulder and double-
well modes at T5210 K and r51.0 g/cm3.
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arise from the r dependence of ^vu& and ^vdw&.
As discussed in Sec. II B, the energy profile reconstructed

along a straight path is very different from the curvilinear
energy profile. Moreover the potential energy difference dE
between the energy of the instantaneous configuration and
the energy of the maximum represents an upper limit esti-
mate of the energy required to change basins along a double-
well direction. Figure 5 shows the distribution P(dE), which
follows an approximately exponential law. Figure 5 supports
the fact that the system is always located very close to the
ridge separating different basins. The average dE is '1000
times smaller than the value of the thermal fluctuations
(3kBT'5 kJ/mol). Hence, energy barriers do not hinder the
motion between different basins; the system does not require
rare energy fluctuations to change basins, and basin crossing
is limited only by the number of possible escape directions to
another basin.

Motivated by this, we consider the behavior of the f dw , as
well as f u and f sh . The T and r dependence of the fractions
of imaginary ~unstable! modes f u , double-well modes f dw ,
and shoulder modes f sh ~where f u5 f dw1 f sh) is shown in
Fig. 6. As already noted in Refs. @29,38#, f dw, f sh for water,
while f dw' f sh for a Lennard-Jones liquid. A possible expla-
nation could be related to the presence of hydrogen bonds in
water, which are highly directional interactions. Hence, even
a small rotation of one water molecule results in displace-

ment of the proton out from the oxygen-oxygen line, produc-
ing a breaking of the bond with an associated energy loss of
several kJ/mol and resulting in a dramatic increase of the
potential energy along the eigendirection followed. This in-
crease in potential will result in a shoulder mode, as sche-
matically explained in Sec. II B. Such a mechanism does not
exist in Lennard-Jones liquids, and so fewer shoulder modes
are expected. Hence it is possible that the distortion of the
hydrogen bond during the evaluation of the one-dimensional

FIG. 4. T dependence of the average frequency ~a! of the un-
stable modes ^vu& and ~b! of the double-well modes ^vdw&.

FIG. 5. Distribution of the potential energy difference dE @see
Fig. 2~b!# between the energy of the starting configuration and the
energy of the one-dimensional saddle.

FIG. 6. Density dependence at temperatures of T5210 K
~filled s), T5220 K (h), T5230 K ~filled L), T
5240 K (n), and T5260 K ~filled n) of several INM proper-
ties: ~a! the fraction of imaginary ~unstable! modes f u ~also shown
by the symbol v is f u for ice Ih at T5210 K), ~b! fraction of
double-well modes f dw , ~c! fraction of shoulder modes f sh , ~d! the
diffusion coefficient D @12#, ~e! product f u^vu&, and ~f! product
f dw^vdw&.
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energy profile may contribute to the abundance of shoulder
modes ( f sh. f dw) in water.

On the basis of a comparison between the INM’s of water
and the ones of a Lennard-Jones liquid CS2 it has been sug-
gested that the ratio S1[(12 f u)/ f dw and the ratio S2

[ f sh / f dw are related to the kinetic behavior of the model
itself @38#. It has been speculated that the values of S1 and S2

correlate with the degree of ‘‘strength’’ ~in the strong-fragile
Angell nomenclature @46#!. The strength of a liquid can been
estimated by the ratio between the MCT critical temperature
TMCT and the temperature TK @47# at which the extrapolated
configurational entropy appears to vanish. Figure 7 shows
S1 , S2, and TMCT /TK . We observe a clear anticorrelation
between S1 or S2 and TMCT /TK , questioning the previous
interpretation of S1 and S2 as possible indicators of strength
@38#.

B. Relationship to diffusion constant

We next discuss the relation between the diffusion con-
stant D and the fraction of imaginary modes. The T and r
dependence of D is shown in Fig. 6~d!. The close correlation
of the r dependence of f dw and D is striking. At r
'1.15 g/cm3, f u and f dw show maxima, supporting the
view that f u and f dw are good indicators of molecular mobil-
ity. There is only a weak maximum in f sh , at a slightly lower
density r'1.05 g/cm3. Therefore we conclude that the
presence of the maximum in f u is mainly due to the contri-
bution of the double-well modes. We attribute the weak
maximum in f sh to the occasional erroneous identification of
double-well modes as shoulder modes. The presence of
maxima in both D and f dw at the same density is a strong
indication that f dw is directly related to D, at least for the
SPC/E potential.

In the early INM studies @48,49#, D was related to the
product f u^vu& ~or to f dw^vdw&). The r and T dependence of
these two products are shown in Figs. 6~e! and 6~f!. We
observe that both products have maxima, but for a density
that is shifted compared to the D maximum. Hence the data
very clearly suggest that f dw ~as opposed to f dw•^vdw& or
f u•^vu&) correlates best with the D data.

To support the hypothesis that f dw is the relevant quantity
controlling the dynamics in the range of T and r studied, we
show D versus f dw for all six isochores studied ~Fig. 8!. We
note that D is a monotonic function of f dw , and that all
points fall on the same master curve, covering several orders
of magnitude in D. For D*0.331026 cm2/s, the relation
between D and f dw is approximately linear, in agreement
with the finding of Keyes and co-workers for different liq-
uids @23,24#. The data in Fig. 8 show that, surprisingly, the
knowledge of the fraction of double-well directions f dw , is
sufficient to determine the value of D, thereby relating a
property of the PES to a macroscopic dynamic quantity.

Reference @12# showed for SPC/E that the T dependence
of D is well represented by the MCT prediction

D;~T2TMCT!g, ~2!

where the diffusivity exponent g changes between roughly
2.24 and 2.84 with density.

We conjecture that

D;~ f dw2 f 0!a. ~3!

Figure 8 shows that this conjecture is consistent with our
calculations of f dw and D. The best-fit values of the fitting
parameters are f 050.00760.001 and a52.060.2. Within
the numerical error, D depends on r only via the r depen-

FIG. 7. Density dependence of the quantities S1[(12 f u) f dw

and S2[ f sh / f dw evaluated at T5210 K. Also shown is the ratio
between the MCT critical temperature TMCT and the Kauzmann
temperature TK at which the extrapolated configurational entropy
appears to vanish @47#.

FIG. 8. Plots ~a! of log D versus f dw and ~b! of D1/2 versus f dw .
The dashed line represents a fit using Eq. ~5!. The arrow indicates
the parameter f 0. A log-log plot of D versus f dw is also shown ~c!.
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dence of f dw . Thus the functional form of Eq. ~3! supports
an apparent universal relation connecting dynamics in real
space to a property of the PES.

Equations ~2! and ~3! imply that exists a nonuniversal,
density-dependent power-law relation between f dw2 f 0 and
T2TMCT with slope g(r)/a . As a consistency check we plot
f dw2 f 0 and T2TMCT and find that, within the numerical
error, our calculations support this expectation ~Fig. 9!.

At first sight, one might expect that if D is related to a
property of the PES, then D;( f dw)a, i.e., that f 0'0. To
explain why f 0Þ0, we recall the discussion in Sec. II B,
where we underline how a double-well mode may not con-
tribute to diffusion.

To test whether the small fraction f 0 of double-well
modes is indeed related to diffusivity, we have further scru-
tinized every double-well mode following the procedure sug-
gested in Refs. @30,40#; for each double-well mode, we per-
form a potential energy minimization starting from the two
apparent one-dimensional minima and locate the two associ-
ated local potential energy-minimum configurations ~the in-
herent structures! @20#. The minimization is performed
implementing a conjugate gradient algorithm with tolerance
10215 kJ/mol @50#. The distance between the two quenched
configurations is calculated as

d5A(
i51

3N

~ri
1
2ri

2!2/~3N !, ~4!

where ri
b is the ith atom position in the inherent structure b

and N is the number of molecules. We have performed more
than 50 000 minimizations.

Figure 10 shows a histogram of the distance d between
the two inherent structure configurations obtained by conju-

gate gradient minimization. The histogram is characterized
by a bimodal distribution, as previously found for Lennard-
Jones liquids @27#, with peaks separated by more than one
order of magnitude. We associate the left peak, centered
around d50.004 nm, with nondiffusive directions. Indeed,
the difference of the distance d between these two configu-
rations b51 and b52 is so small that if they differed by the
displacement of only one molecule, then the displacement of
the center of mass of this one molecule would be '0.06 nm,
i.e., about 1/5 of the nearest neighbor distance, which is
about 0.28 nm.

According to Refs. @30,40#, we classify the modes con-
tributing to this left peak as ‘‘false’’ ~or nondiffusive! double-
well modes, and focus only on the remaining directions in
configuration space, which we call ‘‘escape’’ directions. In
Fig. 11 we show a parametric plot of D1/2 versus the fraction
of escape directions f esc . The dependence of D on f esc ap-
pears still to be well represented by the same power law of
Eq. ~3!, where the fitting parameter f 0 is reduced by more

FIG. 9. Log-log plot of f dw2 f 0 vs T/TMCT21. The lines have
been shifted for clarity. Consistency between the power law fit D
;(T2TMCT)g and D5Do( f dw2 f 0)a requires the exponent m in
the figure to be equal to g/a .

FIG. 10. Histogram of the distance d defined in Eq. ~4! between
the two inherent structure configurations associated with the two
minima along one straight path eigendirection. Here d is measured
in nm.

FIG. 11. Parametric plot of D1/2 versus f esc , the fraction of the
escape directions. The arrow denotes f 0'0.003.
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than a factor of 2, but still is not zero. The small number of
escape directions results in poorer statistics than obtained for
the double-well data ~Fig. 8!. Following Ref. @27#, we also
evaluate the total number of distinct basins which can be
reached along every escape direction. The number of distinct
basins—normalized by 6N23 to be consistent with the nor-
malization of f dw and f esc—is called f dist .

The density dependences of f dw , f dist , and f esc at one
selected T are shown and compared with f dw in Fig. 12. Note
that all three curves have similar behavior. The T dependence
of f dw , f esc , and f dist is shown in Fig. 13~a! for one density.
We linearly extrapolate all the quantities to zero to calculate
the locus where f dw50, the locus where f esc50, and the
locus f dist50. The last two loci coincide within the errors.
We note that for most densities and temperatures studied,
f dw2 f esc50.004560.0025 @Fig. 13~b!#, accounting within
the numerical error for the nonzero value of f 0.

We next compare in Fig. 14 the locus f esc50 in the (T ,r)
plane with the r dependence of TMCT @12#. We also report
the T at which the fraction f dw of double-well modes van-
ishes. We find that the locus of f esc50 nearly coincides with
the TMCT line, while the f dw50 locus tracks the TMCT line,
but it is shifted to lower temperature.

The coincidence of f esc50 with TMCT is particularly rel-
evant. First of all, it confirms that the quantity f esc is a good
measure of the diffusive modes, supporting the validity of
our mode classification. Second, and perhaps more impor-
tant, this coincidence strengthens the hypothesis that the
ideal MCT critical temperature is the temperature at which
free exploration of configuration space is not possible any
longer. This statement is consistent with the general consen-
sus that the dynamical processes above and below TMCT are
different. The reduction of mobility on cooling appears to be
related to the properties of the PES. The system mobility is
reduced because the number of directions that connect dif-
ferent local minima and allow the system to freely explore
the configuration space is decreasing @51#. Hence, the ob-
served reduced mobility is ‘‘entropic’’ in origin. Since in the
studied (r ,T) range MCT provides a good description of the
dynamics, this implies that MCT is able to describe the en-
tropic slowing down of the dynamics associated with the
vanishing of f esc .

In a recent work @6#, we investigated the relation between
diffusion and configurational entropy. In the formalism intro-
duced by Stillinger and Weber @20#, the configurational en-
tropy is a measure of the logarithm of the number of differ-
ent basins V(T ,r) in configuration space sampled by the
system in equilibrium. We have found that the slowing down
of the dynamics correlates with the decrease of configura-
tional entropy.

The fact that both V(T ,r) and the number of free direc-
tions are strongly tied to diffusion suggests the possibility of
a direct relation between the two quantities. The simplest
possibility is that each of the sampled basins is connected to
all other V(T ,r) basins, i.e., f esc is proportional to V or
log(fesc);Sconf . This possibility is consistent with our data

FIG. 12. Density dependence of f dw , f dist , and f esc at one se-
lected temperature T5220 K.

FIG. 13. ~a! T dependence of the fraction of double-well, escape
and distinct directions f dw , f esc , and f dist density: r51.05 g/cm3.
~b! f dw2 f esc for all densities as a function of T(s r50.95 g/cm3;
h r51.0 g/cm3; L r51.05 g/cm3; n r51.1 g/cm3; v r51.2
g/cm3; ¹ r51.3 g/cm3).

FIG. 14. Locus f dw50 and f esc50 in the T ,r plane and the r
dependence of the ideal MCT critical temperature, previously cal-
culated for the same potential TMCT @12#.
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~Fig. 15!. Note that the same relation has been recently de-
rived in the framework of a random energy model ~REM! for
supercooled liquids @52#.

V. CONCLUSIONS

The calculations presented here provide evidence that two
different dynamical mechanisms affect the slowing down of
the dynamics in supercooled states.

~i! In the weakly supercooled region, the slowing down of
the dynamics arises from the progressive reduction in the
number of directions where free exploration of configuration
space is possible. The system is always located close to a
multidimensional ridge between different basins, and the
time scale of the long-time dynamics is set by the time re-
quired to probe one of the free directions. In this range of T,
the diffusion is not limited by the presence of energy barriers
that must be overcome by thermally activated processes, but

is controlled by the limited number of directions leading to
different basins along almost constant potential energy paths
@21#. As shown in Fig. 8, independent from the density, the
number of free directions completely determines the value of
D.

~ii! Close to the MCT critical temperature, the system
starts to sample regions of configuration space that have no
free directions. The change in the dynamics above and below
TMCT can be viewed as a change in the properties of the PES
sampled in equilibrium, from configurations always close to
a ridge of progressively lower dimension to configurations
far from any ridge @29,21#. Below TMCT , the system must go
close to the ridge and then select the right direction. The
search for the ridge below TMCT , i.e., the search for a rare
event, can be probably described as an activated process.
More work is required in this direction @53#. Current com-
puter facilities are beginning to explore the region below
TMCT , and detailed information on the dynamics, and on the
properties of the PES sampled below TMCT in simple models,
will be hopefully available.

Finally, the relation between connectivity and number of
local minima in the PES ~Fig. 15!—which can be calculated
in theoretical models as recently done for the random energy
model ~REM! @52#—may help build on the existing ideas
bridging thermodynamics and dynamics @54#. It will be im-
portant to verify if the same relation holds also for different
models of liquids and, in particular, to study the validity of
this relation above and below TMCT .
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