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TABLE 1 P Cygni's mean light curve from 1700 to 1990

Date Epoch Mag Number of

(yr) (yr) v) observations
1704-1715 1712 523+0.15 4
1746-1754 1750 515+0.07 2
1779-1795 1791 512+0.27 8
1814-1843 1833 507 +0.06 3
1872-1882 1878 4.97+0.06 3
1884-1897 1891 4.95+0.09 7
1898-1917 1906 492+0.08 3
1952-1954 1953 4.83+0.01 ?
1965-1966 1966 4.80 2
1982 1982 483+0.05 11
1985-1990 1988 4.82+0.01 476

expanding so that the star moves to the right in the HRD at
constant luminosity. The second crossing occurs in a later phase
when the star has lost so much mass that it can no longer sustain
an extended convective envelope above the H-burning shell. In
that phase the envelope contracts and the star moves to the left
of the HRD to become a Wolf-Rayet star.

The observed decrease of T, shows that P Cyg is in the
expansion phase after the main sequence. This expansion is
expected to occur on the Kelvin-Helmholtz timescale for con-
traction

meu = GM?/R, L=520yr (3)

which is of the same order of magnitude as the observed time-
scale of the increase of R,, of 7(R,)=320yr. This supports
the suggestion that the star is in the H-shell burning phase.
The predicted evolutionary speed of a star with the luminosity
of P Cygni in the H-shell burning phase near T, = 20,000 K is
d log(T.y)/dt=—0.013 per century®, which implies a decrease
in T,y of only 3% per century. This is about half the observed
value of 6% per century. So the observed evolution speed of P
Cyg is twice as fast as predicted. The discrepancy between the
ob-served and predicted evolutionary speed might be due to
two effects: (1) The calculated evolutionary speed might be
wrong because the outer layers of the star expand faster than
predicted. In fact, recent calculations of the evolution of
luminous stars by A. Maeder (personal communication) suggest
that dynamical effects due to radiation pressure in the envelope
of the star result in a more rapid expansion of the star and
consequently also in a more rapid decrease in T, than predicted
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FIG. 2 Location of P Cyg in the Hertzsprung-Russell diagram compared with
the predicted evolutionary tracks®® of two stars with initial masses of 40
and 60 M. The zero-age main sequence (dotted) for stars of various initial
masses is also shown. The observed visual brightening of P Cyg indicates
that it is evolving to the right in this diagram at a rate twice as large as
predicted by models of stellar evolution.
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by the quasi-hydrostatic evolution calculations®. (2) The mass
of the star, derived from its luminosity, might be overestimated.
In fact, Pauldrach and Puls'* derived a surface gravity for P
Cyg of log g =2.04£0.01 from detailed modelling of its stellar
wind. Assuming a luminosity of log L/Ly=5.86+0.1, they
derived a mass of M =23+2 M. This is about a factor of 0.6
smaller than the mass of 40+ 4 M derived from the predicted
evolution for a star of P Cyg’s T,y and L if it is evolving to the
right in the HRD', If the core mass is also smaller than predic-
ted, by the same factor of 0.6, the timescale for the core contrac-
tion and the envelope expansion will be about a factor two
shorter than predicted by the evolutionary calculations of
Maeder and Meynet®, as this timescale is proportional to M2,..
This would bring the predicted timescale for the expansion into
agreement with the observed brightening of P Cyg. 0
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THE number of distinct sites visited by a random walker after ¢
steps is of great interest'"?', as it provides a direct measure of the
territory covered by a diffusing particle. Thus, this quantity appears
in the description of many phenomena of interest in ecology'*~'°,
metallurgy®~’, chemistry'”'® and physics'®~?%. Previous analyses
have been limited to the number of distinct sites visited by a single
random walker'® %, but the (nontrivial) generalization to the
number of distinct sites visited by /N walkers is particularly relevant
to a range of problems—for example, the classic problem in
mathematical ecology of defining the territory covered by N mem-
bers of a given species’>'®. Here we present an analytical solution
to the problem of calculating Sy (), the mean number of distinct
sites visited by N random walkers on a d-dimensional lattice, for
d=1, 2, 3 in the limit of large N. We confirm the analytical
arguments by Monte Carlo and exact enumeration methods. We
find that there are three distinct time regimes, and we determine
Sn(t) in each regime. Moreover, we also find a remarkable transi-
tion, for dimensions =2, in the geometry of the set of visited sites.
This set initially grows as a disk with a relatively smooth surface
until it reaches a certain size, after which the surface becomes
increasingly rough.

The formalism used to obtain the analytical results, and on
which the exact enumeration® calculations are based, is as
follows. We denote the probability that a single random walker
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FIG. 1 Schematic illustration of the results for the number m
of distinct sites visited by N random walkers initially at the
origin, indicating the fact that at different times t the
behaviour is very different. Here, S, is given by equation (7).
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FIG. 2 Scaling plot demonstrating that equation (4) holds for (a) a one-
dimensional system (d=1), {b) a two-dimensional system (d=2) and (¢) a
three-dimensional system (d=3). Each data point in & and each of the
different symbols in b and ¢ correspond to different values of N.
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is at site r for the first time at step ¢ by f,(r), and the probability
that site r has not been visited by this walker by step ¢ as I',(r).
Then

r(n=1- éof,m )

Because the N walkers are independent, the probability that
site r has not been visited by any of the N random walkers is
[T,(r)]™. The probability that site r has been visited by at least
one walker by step ¢ is 1 —[I',(r)]}". Thus the expected number
of distinct sites visited by any of the N random walkers by step
t is obtained by summing over all sites r in the lattice

Sn(t) =2 {1-[T.(01"} (2)

We can now analyse the very short time behaviour of Sy(1)
(regime I; see Fig. 1). As N tends to infinity, any number raised
to the power N approaches zero if the number is less than one;
hence [T, (r)]~ tends to zero if it is possible that a walker may
arrivé at site r by step t. From equation (2) we see that Sy (1)
consists of all the sites that have non-zero probability of being
visited by step ¢, and is therefore independent of N. As the
walker can take only nearest-neighbour steps, it follows that for
large N, Sx(t) is given by the simple expression

Sn(t) ~ At? [t« t,] [regime 1] 3a)

where A depends on the lattice. This behaviour should hold so
long as the number of accessible sites is much smaller than N
or, more precisely, so long as 1/ P_,;,(¢)« N, where P_;, is the
smallest non-zero occupation probability on the lattice at time
t. Then P,;.(t)=z""', where z is the number of nearest neigh-
bours of a site, so regime I must end at a crossover time f,
which scales logarithmically with N,

t,~In N (3b)

Regime I is not present for small N, because it arises from the
condition that all the accessible sites must be occupied by many
walkers. For large N, the initial growth of the covered territory
is very fast, yet the initial growth rate is independent of N (only
the duration time t, of this regime depends on N).

To discuss times greater than ., we calculate Sy(¢) from
equation (2) using generating function techniques®™°. As we
are now interested in the long-time behaviour, we use the con-
tinuum approximation to evaluate I',(r). This analysis leads to
a compact scaling expression for Sy(t)

Sn()~t22f(x) [1> 1] (4a)

Throughout this paper, the tilde (~) denotes the fact that an
equation holds for N and ¢ both large. The scaled variable x
is given by

N [d=1]
x=¢{ N/Int [d=2] (4b)
N/JVt [d=3]

and the scaling function f(x) by
(In x)%/?
flx)= {
x

Again, these regimes are shown in Fig. 1. Here the second
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FIG. 3 a Visualization of the actual set Sy(t) of sites visited by N random walkers at a
sequence of four successive times t, showing the progressive roughening of the surface
of this set as time increases. Shown is the case N =500. The set of S,(t) visited sites
is shown as white, the 500 individual random walkers are shown in red, and the unvisited
‘virgin territory’ is shown in black. b, The case N =1,000 at late time, which demonstrates
the part played by only a few individual random walkers in causing the roughening of
the interface of the set S,(t).

crossover time ) is

© [d=1]
t.~3 eV [d=2] (6)
N? [d=3]

The predicted scaling form of equation (4) was tested by exten-
sive calculations using the method of exact enumeration; results
are shown in Fig. 2. Note that exact enumerations cannot readily
be carried out to times long enough to see regime III because
equation (6) implies that ¢, occurs at fairly large times
(especially for d =2).

The crossover from regime II to regime III can be understood
in the following way. In regime II, the walkers are contained
within a d-dimensional sphere of radius & ~ 1'/? (except for rare
fluctuations). Hence Sx(¢) must be bounded from above by the
volume of this sphere, V(t)~t%/2. A second upper bound on
Sx(t) is NS,(t), where

2 [d=1]
Si()~{t/Int [d=2] (7)
t [d=3]

is the number of distinct sites visited by one random walker. A
crossover in Sy(#) will occur if the system passes from one
constraint to the other. For d =1, V(1) < NS,(¢) for all ¢, so no
crossover occurs, and regime II holds for arbitrarily large ¢,
confirming the result of equation (6a) above. For d =2 and 3,
we find V(1) < NS,(¢) initially, but for sufficiently large ¢, V(¢) >
NS (t). Thus t! is obtained from the condition

V(t) ~ NS,(t) (8)

For d =2, equations (7) and (8) lead to ¢, ~ Nt'./In t,, so that
t ~ e™; this confirms the result (6b) above. Similarly, for d =3,
(t.y’*~ Nt implies t,~ N2 confirming the result (6¢).
Actually, following the same kind of reasoning, we can conclude
that the crossover time to the final regime in any dimension
higher than 2 will be given by

t~NYED [d>2] 9

This result is a consequence of the fact that S,(¢)~t for any
dimension larger than 2. One can interpret ¢t} as the time up to
which the walkers visit the same places very frequently. For
times longer than t} , the walkers ‘almost’ do not see each other,
and can be treated independently. Equation (9) shows the effect
of the space dimension on ti; the higher the dimension, the
shorter the times at which walkers become ‘independent’.
From Monte Carlo simulations for d = 2, we find a remarkable
transition in the geometry of the set of visited sites. This set
initially grows in the shape of a disk with a relatively smooth
surface; this occurs at very short times, during regime I. The
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surface then becomes increasingly rough in regime II (see Fig.
3) as the walkers move further away from one another, until
they are so sparse that they can be treated independently; this
occurs in regime II1. This phenomenon can be linked to Sy(¢)
by noting that the walkers can find new sites only on the surface
of the set of visited sites. Accordingly, the ‘growth rate’ 3Sy(¢)/3t
will be proportional to the number of surface sites. For d =2
and 3, the number of surface sites increases rapidly as the surface
roughens, thus leading to an increase in the growth rate of Sy(t)
until it reaches its maximum possible value in regime III. For
d =1, the surface always consists of two points (the two ends
of the set of visited sites), so there is no roughening contribution
to the growth rate of Sy (¢), which again agrees with the absence
of regime III in the one-dimensional case.

The roughening of the surface of the set of visited sites (Fig.
3) can be understood as follows. We denote by P(r, t) the
probability that a walker initially at the origin is found at a
distance r from the origin at time ¢ Then the average number
of walkers at position r at time t will be given by NP(r, t). In
regime I, we have NP(r, t1)> NP_;.(t)» 1, so on average all
accessible sites are multiply occupied. This set is roughly a
sphere of radius ¢ A different situation occurs in regime II, in
which there exists a distance p for which NP(p, t)=1; for r> p,
the walkers are increasingly sparse. This results in the roughen-
ing of the surface of the set of visited sites. Thus regime 1 is
characterized by filling a region of radius r, ~ 1, whereas in
regime II there are insufficient walkers to fill more than a region
of radius r, ~v/£. The region between r, ~+/t and r, ~ t is charac-
terized by walkers who become increasingly isolated from one
another with time, leading to an increasingly rough exterior
surface. This phenomenon may have been observed by Skel-
lam", who plotted contours delineating the advance of the
muskrat population, and noted that the contours were initially
smooth but later became rough (see Fig. 1 of ref. 13).

Finally, we note that the existence of the different time regimes
is a consequence of the initial localization of all N walkers at
the origin, which is not an unreasonable assumption in many
cases of interest. Suppose, on the other hand, that walkers are
initially localized in a box of linear size I. Then we can distinguish
three types of behaviour for Sy (1). If I« £(t,)~+In (N), we
expect to observe all three growth regimes of Sy, (#). If £(¢,) < I«
£(t5), then the system would initially be in regime II, and only
the crossover to regime III would occur. If I » £(t¢),), then regime
I1T will hold for all times.
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MEMBRANES composed of bilayers of amphiphiles such as phos-
pholipids generally exhibit two-dimensional liquid-like structure
within the layers. When the constituent molecules of such a mem-
brane are permanently cross-linked to each other, the membrane
becomes less flexible, forming a two-dimensional solid. Solid mem-
branes are expected to exhibit very different behaviour from their
liquid counterparts'™, including transitions between a two-
dimensional flat phase, a crumpled phase of fractal dimension 2.5
and a compact, three-dimensional phase. Experimental evidence
for the crumpled phase has, however, been lacking. As this phase
was not observed in computer simulations*, it has been suggested
that it may always be absent for self-avoiding (and therefore all
real) membranes* . To the contrary, we report here the experi-
mental observation of the crumpled conformation in an aqueous
suspension of graphite oxide membranes. Static light scattering
measurements indicate the presence of membrane conformations
with a fractal dimension of 2.54%0.05. As the intra-membrane
affinity is enhanced by changing the composition of the solvent,
the membranes collapse to a compact configuration.

A natural state for a solid membrane is a flat configuration.
Unlike in a liquid membrane which lacks internal shear elas-
ticity, out-of-plane thermal undulations in a solid membrane
are not energetically favoured, because they are accompanied
by in-plane strains®’. When the in-plane elasticity is sufficiently
weak or the temperature high enough, it has been argued that
a crumpled conformation with random orientations should form
because the entropy gain from the increased number of bent
and folded configurations more than compensates the internal
energy cost’®. Like the coiled polymer, the crumpled membrane
is a tenuous fractal® with a dimension determined by the compe-
tition between the configurational entropy and steric constraints.
If the affinity between the molecules is increased, the membrane
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may collapse completely into a compact configuration'®'.

Figure 1 provides a schematic representation of these three
phases.

In computer simulations*~®, flat and compact'®'! conforma-
tions have been realized by tuning simple potentials, but the
intermediate crumpled phase has not been observed in equili-
brium. This has led to the conjecture that a crumpled phase is
always absent in self-avoiding membranes’. Experimental
studies of solid membranes are therefore most desirable. Candi-
dates for solid membranes include sheets of graphite oxide
(GO)'*'* and MoS, (ref. 16), the spectrin network extracted
from red blood cells (C. Schmitt, personal communication) and
polymerized liquid membranes'’. Previous electron microscope
images show that both GO'> and MoS, (ref. 16) form irregular
and folded configurations when dried on the microscope stage.
Here we study conformations of GO membranes suspended in
dilute solution.

GO membranes are synthesized by exfoliating bulk graphite
with strong oxidizing agents'®!*!'>;

10,11

; we used potassium per-
manganate. The product of the oxidation reaction is GO,
brownish yellow in colour, which consists of carbon layers
bonded by oxygens"*. Electron microscopy has shown that the
GO membranes have a crystalline internal order'® and can be
as thin as one carbon layer'®. Hydroxyl (OH) groups are bound
to the surfaces of the GO membranes'*. These hydroxyl groups,
capable of forming hydrogen bonds with water molecules, are
responsible for the compatibility of GO with aqueous solutions.

A light scattering study of the structure of membranes in
solution requires some control over their sizes. This was achieved
by using polycarbonate filters (Nucleopore). The GO suspension
was sequentially passed through filters with 8-pm and 3-pm
pore size. The membranes retained on the 3-pm filter were
redispersed in a solution, with the original buffer conditions.
The final solution contains GO membranes sized between 3 and
8 wm with a concentration of ~0.01 wt%.

In static laser-scattering experiments, conformations of GO
membranes are probed through the structure factor, S(q), at a
wave vector g, which is directly related to the radius of gyration,
R, and to the fractal dimension®, d;, of the scattering objects.
The membrane conformations can be differentiated by their
fractal dimensions: for a flat membrane, d;= 2, whereas a com-
pact conformation corresponds to d; = 3. The fractal dimension
of the intermediate crumpled phase is estimated to be 2.5, from
a Flory argument®’. For a monodisperse solution®'®, S(gq)=
1—(qRgs)*/2 for gqRg <1, and S(g) =g % for gR;> 1. As our
solutions are polydisperse, the power law should be checked
only at length scales shorter than the size of the smallest GO
membranes (3 pm). As our shortest probing length is 0.2 um
(half of the laser wavelength), we have a range of about 1.5
decades in g to determine the scaling exponent d; for the decay
of S(q).

Figure 2 illustrates the structure factors of GO membranes
obtained from aqueous solutions at three pH values. The
behaviour of S(q) is fairly consistent with a self-similar scaling
of density fluctuations at length scales less than the size of
membranes. The best fits give a value of d;=2.54+0.05, very
close to the theoretical estimate® of 2.5. The fractal dimension
was found to be insensitive to pH and salt concentrations. This
is understandable considering the low density of the ionizable
groups (one COOH group for every fifty carbons'*). When 10%
acetone is added to the solution, the structure factor, shown in
Fig. 3, suggests formation of a compact conformation with a
fractal dimension of ~3, and a somewhat smaller radius of
gyration. This observation can be explained by the fact that
acetone molecules are less polar than water molecules. On
addition of acetone, the solvent becomes poorer, and the intra-
membrane affinity is enhanced.

Although our observation of a fractal dimension of ~2.5 is
consistent with a crumpled phase of membranes, we also con-
sider some other possible explanations. Haphazard crushing of
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