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• Multiscale cross-correlations and net cross-correlations among five major world gold markets are studied.
• Multiscale influence measures are proposed for quantify the influence of individual gold markets.
• The cross-correlations, net cross-correlations, and net influences vary across time scales.
• The cross-market correlation between London and New York at each time scale is intense and inherent.
• The London gold market significantly affects the other four gold markets and dominates the world-wide gold market.
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a b s t r a c t

Using the detrended cross-correlation analysis (DCCA) coefficient and the detrendedpartial
cross-correlation analysis (DPCCA) coefficient, we investigate cross-correlations and net
cross-correlations among five major world gold markets (London, New York, Shanghai,
Tokyo, and Mumbai) at different time scales. We propose multiscale influence measures
for examining the influence of individual markets on other markets and on the entire
system. We find (i) that the cross-correlations, net cross-correlations, and net influences
among the five gold markets vary across time scales, (ii) that the cross-market correlation
between London andNewYork at each time scale is intense and inherent, meaning that the
influence of other gold markets on the London–New Yorkmarket is negligible, (iii) that the
remaining cross-market correlations (i.e., those other than London–New York) are greatly
affected by other gold markets, and (iv) that the London gold market significantly affects
the other four gold markets and dominates the world-wide gold market. Our multiscale
findings give market participants and market regulators new information on cross-market
linkages in the world-wide gold market.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For thousands of years gold has been considered the ultimate storage of value and a safe haven in turbulent times. Because
of its role in profit-taking and hedge fund activity, in recent years gold prices have been highly volatile [1,2]. Gold and
its financial products, e.g., exchange-traded funds (ETFs), futures, and other derivatives, are traded on various organized
exchanges and platforms around the world [3]. Although gold is a globally traded asset, according to O’Connor et al. [4]
and GFMS (2015) [5], the current major trading centers are the London over-the-counter (OTC) market, the New York
Commodity Exchange (COMEX), the Shanghai gold market including the Shanghai Futures Exchange (SHFE) and Shanghai
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Gold Exchange (SGE), the Tokyo Commodity Exchange (TOCOM), and the Mumbai Multi Commodity Exchange of India Ltd.
(MCX). For example, in 2014 the net volume of gold transferred in the London OTCmarket was over 157,000 tons,1 followed
by the New York COMEXwith a total volume of 126,028 tons, the Shanghai gold market with 33,994 tons,2 the TOCOMwith
8745 tons, and the Mumbai MCX with 3972 tons [5]. Cross-correlations across different financial agents is an important
characteristic of the complex financial system [6,7]. Thus understanding cross-correlations across different gold markets
has focused the attention of researchers because it can help investors construct a diversified portfolio to balance risk and
optimize returns and help regulatorsmonitormarket stability and formulate effective policies. Our goal here is to investigate
cross-correlations among the fivemajor goldmarkets and detect their influence using the detrendedpartial cross-correlation
analysis (DPCCA) coefficient from a multiscale (or multi-horizon) perspective.

Our work is related to the literature on relationships across different gold markets. For example, Xu and Fung [8] and
Lin et al. [9] study cross-correlations between the New York and Tokyo gold markets using GARCH models. Xu and Fung [8]
find that the New York gold market leads the Tokyo gold market in terms of the information flows, but Lin et al. [9] obtain
a contrary conclusion. Kumar and Pandey [10] investigate cross-market linkages between the New York and Mumbai gold
markets, finding that the New York market is a source of information flows to the Mumbai market. Lucey et al. [3] use the
information share (IS) approach to examine relations between the London andNewYork goldmarkets. Using the vector error
correction model (VECM) and the IS approach, Fuangkasem et al. [11] study cross-market linkages across three gold futures
market, i.e., New York, Tokyo, and Mumbai. Lucey et al. [12] examine return and volatility spillover effects across four major
goldmarkets (i.e., London, New York, Tokyo, and Shanghai) using a spillover indexmethod. Following Lucey et al. [12],Wang
et al. [1] investigate extreme risk spillover effects across the fourmajor goldmarkets based on the Granger-causality risk test.
Other related research includes, in particular, thework of Chang et al. [13], Hauptfleisch et al. [14], and Baklaci et al. [15]. Our
study differs from the existing research in that the DPCCA coefficient allows us to analyze the net cross-correlations across
different gold markets and detect their influence at different time scales.

The approaches used in our study are related to the literature on detrended fluctuation analysis (DFA) and detrended
cross-correlation analysis (DCCA) and their extensions. The seminal work is done by Peng et al. [16] who proposed the
DFA for analyzing long-range auto-correlations of time series. Kantelhardt et al. [17] extend the DFA to multifractal DFA
(MF-DFA) to study the multifractal characterization of a time series. The DFA is extended to the DCCA by Podobnik and
Stanley [18] to quantify long-range cross-correlations between two time series. To detect the multifractal feature in power-
law cross-correlations, Zhou [19] proposes multifractal DCCA (MF-DCCA), which is a combination of MF-DFA and DCCA.
Other related extensions include multifractal height cross-correlation analysis (MF-HXA) [20] and the multifractal cross-
correlation analysis (MFCCA) [21]. An alternative approach to the DFA is the detrending moving-average (DMA) analysis
[22,23], and its extensions include multifractal DMA (MF-DMA) [24] and multifractal detrending moving-average cross-
correlation analysis (MF-X-DMA) [25]. Inspired by DFA and DCCA, Zebende [26] proposes a multiscale cross-correlation
coefficient, the DCCA coefficient, that measures the strength of cross-correlations between two time series at different
time scales.3 The DCCA coefficient has been widely used to explore multiscale cross-correlations in financial markets (see,
e.g., Refs. [29–32]), and we use it here to measure the cross-correlation level across the five major gold markets at different
time scales.

Thus our work is also related to the literature on the application of theMF-DFA, DCCA andMF-DCCA on gold markets. For
example, Bolgorian et al. [33] investigate the multifractal features and scaling behavior of daily gold prices in the London
OTC market during the 1968–2010 period using the MF-DFA. Ghosha et al. [34] divide the sample of daily gold prices in the
London OTC market during the 1973–2011 period into subsamples with five years each and study the time variation of the
level of multifractality. Unlike in Refs [33] and [34], Wang et al. [35] use the MF-DAF to examine the multifractality of daily
gold prices in the New York COMEX market over the period from 13 July 1990 to 15 September 2009. Yuan et al. [36] study
the time-varying cross-correlations between the gold spot and futures returns using theDCCA. Yuan et al. [37] investigate the
price-volume cross-correlations in the Chinese gold spot and futures markets based on the MF-DCCA. They find significant
multifractal properties between price and volume in the Chinese gold markets.

We also use the DPCCA coefficient to measure net cross-correlations and the influence of the five major gold markets at
different time scales. Thus our paper is also related to the literature on partial cross-correlation analysis. There are threeways
of computing the partial cross-correlation coefficient, (i) linear regression, (ii) the iterativemethod, and (iii) matrix inversion
(see,Wang et al. [38]). Kenett et al. [39,40] use the iterative approach to estimate the partial cross-correlation coefficient and
propose influence measures for analyzing the relationships among stocks. Fernandez [41] study the influence in commodity
markets using the measures proposed by Kenett et al. [39,40]. Qian et al. [42] extend the DCCA to the DPCCA using the
linear regression and also propose the relevant DPCCA coefficient. In contrast to Ref. [42], Yuan et al. [43] propose the DPCCA
coefficient using matrix inversion.4 Our study uses the DPCCA coefficient as in Ref. [43] to capture net cross-correlations

1 According to GFMS (2015) [5], the net volume in the London OTC market is approximately one-third of its total volume.
2 The total volume traded on the Shanghai gold market is the sum of volumes traded on SHFE and SGE, where the volume of gold futures traded on SHFE

was 23,858 tons and the volumes of Au(T+D) futures and the physical spot contracts traded on SGE were 7576 tons and 2560 tons, respectively.
3 Kristoufek [27] proposes a similar approach, i.e., the detrending moving-average cross-correlation analysis (DMCA) coefficient based on DMA and

DMCA. Kwapień et al. [28] develop an extension of the DCCA coefficient based on the MF-DFA and MF-DCCA.
4 Note that Yuan et al. [44] extend the DCCA andDPCCA into the temporal evolution of DCCA (TDCCA) and temporal evolution of DPCCA (TDPCCA), which

are used to investigate cross-correlations on multi-time scales and over different periods. One possible extension for our work is to develop time-varying
andmultiscaling influencemeasures based on the TDCCA and TDPCCA for examining the dynamic influence of individualmarkets over different time scales.
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across the five major gold markets, and it extends the influence measures of Kenett et al. [39,40] to multiscale influence
measures to quantify each gold market’s average influence at different time scales.

This paper is organized as follows. Section 2 introduces themethods including theDCCA coefficient, theDPCCA coefficient,
and the relevant influencemeasures. Section 3 describes the data for five major goldmarkets and presents empirical results.
Section 4 provides concluding remarks.

2. Methodology

In this sectionwe first introduce the DCCA coefficient [26] for quantifying cross-correlations across different goldmarkets
at different time scales and then present the DPCCA coefficient [43] for examining net cross-correlations. Finally we show
the multiscale influence measures for detecting the average influence of each gold market.

Given two return series {rX (t)} and {rY (t)} of gold markets X and Y of equal size T , we calculate two integrated series
RX (k) =

∑k
t=1rX (t) and RY (k) =

∑k
t=1rY (t), where k = 1, 2, . . . , T . We then divide both integrated series into T − n

overlapping boxes, each containing n+1 values. In each box starting at i and ending at i+n, we define the ‘‘local trends’’ R̃i
X (k)

and R̃i
Y (k) (i ≤ k ≤ i+n) as the linear least-squares fittings of RX (k) and RY (k). For each return serieswe define the ‘‘detrended

walk’’ or the residual as the difference between the original walk and the ‘‘local trend’’, i.e., εX (k) = RX (k) − R̃i
X (k) and

εY (k) = RY (k)− R̃i
Y (k). We compute the covariance of the residuals in each box to be CovXY (n, i) = 1/(n−1)

∑i+n
k=1εX (k)εY (k).

We average over all T − n overlapping boxes with scale n and obtain the scale-dependent (or detrended) covariance

CovXY (n) = (T − n)−1
∑T−n

i=1
CovXY (n, i). (1)

When only one return series is investigated, the DCCA reduces to the DFA, and the scale-dependent covariance reduces
to the scale-dependent variance

VarM (n) = (T − n)−1
∑T−n

i=1
VarM (n, i),M ∈ {X, Y }, (2)

where VarM (n, i) = 1/(n − 1)
∑i+n

k=1ε
2
M (k).

The DCCA coefficient of Zebende [26] is defined as the ratio of the scale-dependent covariance to two scale-dependent
variances

ρDCCA
XY (n) =

CovXY (n)
√
VarX (n)VarY (n)

, (3)

where ρDCCA
XY (n) is a dimensionless coefficient ranging from −1 to 1 at each time scale n.5 We obtain a DCCA coefficient

matrix for N gold markets, i.e.,

ρ(n) =
(
ρDCCA
XY (n)

)
N×N , (4)

where 1≤ X, Y ≤ N .
As in Ref. [43], we compute the DPCCA coefficient using amatrix inversion. The first step is to calculate the inversematrix

of ρ(n), i.e.,

C (n) = ρ−1(n) = (cXY (n))N×N . (5)

Then the DPCCA coefficient between two gold markets X and Y is defined

ρDPCCA
XY (n) = −

cXY (n)
√
cXX (n)cYY (n)

, (6)

where cXX (n) and cYY (n) are diagonal elements of C (n). The DPCCA coefficient ρDPCCA
XY (n) defined here allows us to characterize

the net cross-correlation between two gold markets X and Y at time scale n.
We introduce a quantity ∆ρXY (n), defined as the difference between the DCCA coefficient and the DPCCA coefficient,

∆ρXY (n) = ρDCCA
XY (n) − ρDPCCA

XY (n), (7)

which measures the influence from all the other markets to the market pair X and Y at time scale n. The quantity ∆ρXY (n)
is large when a significant fraction of the cross-correlation between markets X and Y is caused by all the other markets. We
propose another DPCCA coefficient, ρXY :Z (n), between markets X and Y conditional on market Z , which is defined

ρXY :Z (n) =
ρDCCA
XY (n) − ρDCCA

XZ (n)ρDCCA
YZ (n)√[

1 − (ρDCCA
XZ (n))2

] [
1 − (ρDCCA

YZ (n))2
] . (8)

5 We follow Kantelhardt et al. [17] and set time scale n at the range [4, T/4].
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Table 1
Summary statistics of daily returns of the London, New York, Shanghai, Tokyo, and Mumbai gold markets during the period from 2008 to 2016. Notes:
The Jarque–Bera statistic tests for the null hypothesis of normal distribution for the sample returns. Each Jarque–Bera statistic is significant at the 1% level,
rejecting the null hypothesis of normal distribution for each returns.

London New York Shanghai Tokyo Mumbai

Mean 0.0119 0.0115 0.0066 0.0143 0.0389
Maximum 6.8414 8.6432 5.8482 10.7623 10.4498
Minimum −9.5962 −9.8206 −7.1333 −12.0816 −8.6577
Std. Dev. 1.2289 1.2344 1.2167 1.3104 1.0462
Skewness −0.3267 −0.2287 −0.2780 −0.6943 −0.0790
Kurtosis 8.2767 8.5758 7.5369 13.7498 13.1879
Jarque–Bera 2749.2570 3043.8033 2031.8106 11425.456 10096.414

Following Kenett et al. [39,40],we introduce an influence quantity, defined as the difference between theDCCA coefficient
ρDCCA
XY (n) of markets X and Y and the DPCCA coefficient ρXY :Z (n) of markets X and Y conditional on market Z , i.e.,

dXY :Z (n) = ρDCCA
XY (n) − ρXY :Z (n), (9)

which quantifies the influence of market Z on the market pair X and Y at time scale n. A large value of dXY :Z (n) means
that a large proportion of the cross-market correlation between X and Y can be explained bymarket Z . When considering all
possiblemarket combinations forN goldmarkets, there areN(N−1)(N−2)/2 partial cross-correlation interactions dXY :Z (n).
For simplicity, we define the average influence dX :Z (n) of market Z on the cross-correlations between market X and all the
other markets as

dX :Z (n) = ⟨dXY :Z (n)⟩Y ̸=X , (10)

which approximates the net influence from market Z to market X at time scale n.
By averaging over all X markets, we define the average influence dZ (n) of market Z on all the other markets to be

dZ (n) = ⟨dX :Z (n)⟩ , (11)

which represents the net influence of market Z on the system at time scale n.

3. Data and empirical results

Our study focuses on the top five gold trading centers, including the London OTC market, the New York COMEX market,
the Shanghai gold market, the TOCOM market, and the Mumbai MCX market. For simplicity, we refer to these five trading
centers as the London,NewYork, Shanghai, Tokyo, andMumbai goldmarkets. Following Lucey et al. [3,12] andWang et al. [1],
we use the daily afternoon (3:00 PM) gold fixing prices in the London Bullion Market (LBMA) as the empirical data for the
London gold market. For the other four futures markets, we use the gold futures prices in the New York COMEX market, the
SHFE market, the TOCOM market, and the Mumbai MCX market as empirical data. In particular, the data for each futures
market are the daily closing prices of the near-month futures contract on a continuous rolling basis. We collect the data for
the five gold markets during the period from 9 January 2008 to 30 December 2016, available from Datastream. The daily
return of gold market X is defined as rX (t) = 100 ln(PX (t)/PX (t − 1)), where PX (t) is the daily closing (fixing) price of gold
market X on day t .6 We set the beginning of the sample time period at 9 January 2008, which is the date the SHFE market
launched its first gold futures contract.

Fig. 1 shows the daily returns of the five major gold markets during the entire period. We find that the five returns
during the 2008–2009 global financial crisis show violent fluctuation. The possible reason is that a large number of market
participants sought gold as a tool of risk-avoidance because the market was experiencing distress. Table 1 summarizes the
daily return statistics for the five gold markets during the investigated period. The Mumbai gold market has the largest
mean value of returns, followed by Tokyo, London, New York, and Shanghai. The Tokyo and Mumbai gold markets have the
largest and smallest standard deviations, respectively, and the other three gold markets have a similar standard deviation.
Each skewness value is negative and each kurtosis value is larger than three, suggesting that each return series obeys a
leptokurtic distribution with a left tail and disobeys a normal distribution. Each Jarque–Bera statistic is significant at the 1%
level, once again suggesting that each return series is not a normal distribution.

To examine the strength of cross-correlations among the five gold markets at different time scales, Fig. 2 shows DCCA
coefficients ρDCCA

XY (n) between the ten gold market pairs. All DCCA coefficients between the ten gold market pairs vary
across time scales. According to the trend of DCCA coefficients, the gold market ten pairs can be broadly classified into
two groups. The first includes London–New York, London–Shanghai, and New York–Shanghai, whose cross-correlations
increase as the time scale increases, a phenomenon known as the Epps effect [46]. The second group comprises the other of

6 To test the robustness, we follow Forbes and Rigobon [45] and use the two-day rolling-average returns to eliminate asynchronous market data caused
by time-zone differences. Similar to Forbes and Rigobon [45], the results based on the two-day rolling-average returns are consistent with our findings.
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Fig. 1. Daily returns of the (a) London, (b) New York, (c) Shanghai, (d) Tokyo, and (e) Mumbai gold markets during the 2008–2016 period.

seven gold market pairs, and their cross-correlations increase as the time scale increases when time scale n is shorter than
100 days and declines otherwise. For all time scales, London–New York has the largest DCCA coefficient, suggesting that
there is a strong relationship between the London and New York gold markets. With the exception of Tokyo–Mumbai, all
other gold market pairs also show strong cross-correlations at large time scales, especially when the time scale is n > 20
days.

To quantify the net cross-correlations among the five gold markets at different time scales, Fig. 3 shows the DPCCA
coefficients ρDPCCA

XY (n) between the ten gold market pairs. The DPCCA coefficient of London–New York at each time scale
is always the largest and falls in a range from 0.7 to 0.9 with an increasing trend, suggesting that there is a high level of net
cross-market correlation between London and New York. This also indicates that the cross-correlation between the London
and New York gold markets is pure and less affected by other gold markets. The DPCCA coefficients at different time scales
for the other nine gold market pairs are less than 0.3, and some coefficients are close to zero, implying that these nine pairs
of net cross-market correlations are weak and are strongly influenced by othermarkets. For example, the DPCCA coefficients
of New York–Shanghai, New York–Tokyo, and New York–Mumbai are close to zero, but their DCCA coefficients significantly
differ from zero, indicating that the relations between New York and the other three goldmarkets are highly correlated with
and affected by the London goldmarket. The trend of the DPCCA coefficient of Tokyo–Mumbai is unique because the variable
ρDPCCA
XY between Tokyo andMumbai is amonotonically-decreasing function of time scale n that decreases from 0.3 to−0.3 as

the time scale increases. The negative net cross-correlation between the Tokyo and Mumbai gold markets when time scale
n > 100 days provides a risk-hedging opportunity for market participants.

Quantifying the influence of all the other gold markets on the two targeted gold market pairs, Fig. 4 shows the ∆ρXY (n)
values among the ten gold market pairs, defined as the difference between ρDCCA

XY (n) and ρDPCCA
XY (n). In each time scale, the

∆ρXY (n) value of the London–New York pair is <0.1, indicating that the influence from the other three gold markets on the
cross-correlation between the London and New York gold markets is negligible. The ∆ρXY (n) values of the remaining nine
gold market pairs show that the influence of all other gold markets on the cross-market linkages of the nine pairs is strong.
The trend of ∆ρXY (n) values indicates that the remaining nine gold market pairs fall into two groups. The first includes New
York–Shanghai, Shanghai–Tokyo, and Shanghai–Mumbai in which the ∆ρXY (n) values increase as the time scale increases.
This means that the influence of all other markets on this group’s cross-market correlations increases with the time scale.
The second group is made up of the remaining six gold market pairs for which each ∆ρXY (n) curve is a downward-opening
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Fig. 2. (Color online) DCCA coefficients ρDCCA
XY (n) across five major gold markets, i.e., London (LD), New York (NY), Shanghai (SH), Tokyo (TK), and Mumbai

(MB), at different time scales. TheDCCA coefficientρDCCA
XY (n)measures the strength of the cross-correlation between twogoldmarketsX andY at time scalen.

Fig. 3. (Color online) DPCCA coefficients ρDPCCA
XY (n) across five major goldmarkets, i.e., London (LD), New York (NY), Shanghai (SH), Tokyo (TK), andMumbai

(MB), at different time scales. The DPCCA coefficient ρDPCCA
XY (n) quantifies the strength of the net cross-correlation between two gold markets X and Y at

time scale n.

parabola, i.e., the value of∆ρXY (n) first increases as the time scale increases, then decreases after reaching its maximum. The
crossover time scale for the ∆ρXY (n) curve is close to 100 days.

Quantifying the net influence of one gold market on another, Fig. 5 shows the values of the average influence dX :Z (n) of
market Z on the cross-correlations between market X and all the other markets. We find that dX :Z (n) is not equal to dZ :X (n),
e.g., the dX :Z (n) value from London to New York is always larger than the dZ :X (n) value from New York to London at each
time scale n, indicating that the net influence between two gold markets is asymmetrical. The influence of London on New
York (i.e., LD→NY shown in Fig. 5) has the largest dZ :X (n) value at each time scale, followed by the influence of London on
Mumbai, on Tokyo, and on Shanghai, indicating that the London gold market strongly affects these four gold markets and
dominates the world-wide gold market. The dX :Z (n) values indicate that the net influence of a given market on the other
four markets shows a similar pattern. For example, the dX :Z (n) value of London, New York, or Shanghai on other markets
increases as the time scale increases, indicating the net influence of these three markets on other markets increases as the
time scale increases. The curve of net influence of the Tokyo or Mumbai market on other markets is a downward-opening
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Fig. 4. (Color online) Values of ∆ρXY (n) across five major gold markets, i.e., London (LD), New York (NY), Shanghai (SH), Tokyo (TK), and Mumbai (MB), at
different time scales. The quantity ∆ρXY (n) is defined as the difference between the DCCA coefficient ρDCCA

XY (n) and the DPCCA coefficient ρDPCCA
XY (n) at time

scale n, which measures the influence from all the other markets to the pair of markets X and Y .

Fig. 5. (Color online) Average influence dX :Z (n) of market Z on the cross-correlations between market X and all the other markets for five major gold
markets, i.e., London (LD), New York (NY), Shanghai (SH), Tokyo (TK), and Mumbai (MB), at different time scales. The quantity dX :Z (n) approximates the net
influence from market Z to market X at time scale n. In the legend, Z → X represents the net influence from market Z to market X .

parabola, i.e., dX :Z (n) first increases to a peakwhen time scale n approaches 30 days, and then declinesmonotonically to zero,
indicating that these two gold markets lose their net influence on other markets at a long time scale (e.g., 600 days).

Quantifying the net influence of a given goldmarket on the entire system, Fig. 6 shows the values of the average influence
dZ (n) of market Z on all other markets. At each time scale, the London goldmarket has the strongest average influence dZ (n),
once again confirming that the London gold market leads the world gold markets. The trend in dZ (n) values in individual
markets is similar to the trend in dX :Z (n) values. Note that the net influence of individual markets on the entire system in
descending order is London, Mumbai, Tokyo, New York, and Shanghai at small time scales (n < 20 days). This order changes
when the time scale n > 60 days and becomes London, New York, Shanghai, Mumbai, and Tokyo.
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Fig. 6. (Color online) Average influence dZ (n) of market Z on all the other markets for five major gold markets, i.e., London (LD), New York (NY), Shanghai
(SH), Tokyo (TK), and Mumbai (MB), at different time scales. The quantity dZ (n) represents the net influence of market Z on the system at time scale n.

4. Conclusion

We have studied the cross-correlations and influences among five major gold markets, i.e., those of London, New
York, Shanghai, Tokyo, and Mumbai. We analyze multiscale cross-correlations and net cross-correlations across the five
gold markets using the DCCA coefficient and the DPCCA coefficient. We find (i) that the cross-correlations and net cross-
correlations between different gold markets vary across time scales, (ii) that London–New York has the largest DCCA and
DPCCA coefficients and has a negligible∆ρ(n) value at each time scale, indicating that the cross-market correlation between
London and New York is strong and inherent, and (iii) that other cross-market correlations are significantly affected by
other markets. Using multiscale influence measures, we have investigated the net influence of one market on another and
on the entire system, and we find (i) that the net influence changes across time scales, (ii) that the London gold market
greatly influences the other four gold markets and dominates the world-wide market, and (iii) that the net influence of
Tokyo and Mumbai on other markets and on the entire system is negligible at long time scales. Our work contributes to
the literature on cross-market linkages between gold markets, and it provides new information for market participants
building a diversified portfolio and regulators analyzing the co-movement across different gold markets. Specifically, our
study provides the following information for the international gold investors or hedgers: (i) the cross-correlations and net
cross-correlations between different gold markets vary across time scales, suggesting that construing gold portfolios should
change over different time horizons, (ii) because the London gold market dominates the world gold markets, investors
should pay much attention to its gold price fluctuation and timely adjust the asset portfolio, and (iii) the decreasing cross-
correlations and negative net cross-correlations between the Tokyo and Mumbai gold markets at long time scales suggest
that investors or hedgers could benefit from the gold portfolio from these two markets with a long investment or hedging
horizon.
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