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h i g h l i g h t s

• We suggest to characterize the core–periphery structure of complex network with using network h-core and fingerprint curve.
• The feature of core structure is described by network h-core and the feature of periphery structure is represented by fingerprint curve.
• We also propose Fourier-like analysis as a potential methodology for network analysis.
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a b s t r a c t

It is proposed that the core–periphery structure of complex networks can be simulated
by h-cores and fingerprint curves. While the features of core structure are characterized
by h-core, the features of periphery structure are visualized by rose or spiral curve as
the fingerprint curve linking to entire-network parameters. It is suggested that a complex
network can be approached by h-core and rose curves as the first-order Fourier-approach,
where the core–periphery structure is characterized by five parameters: network h-index,
network radius, degree power, network density and average clustering coefficient. The
simulation looks Fourier-like analysis.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

After complex network study was recalled [1,2], it has developed rapidly[3–6] and produced important theoretical
results [7,8] and practical applications, concerning weighted and unweighted [9,10] as well as single-layer and multi-
layer [11,12] networks. The studies of complex networks have used both global and local measures, and have been carried
out on both homogeneous and heterogeneous structures [13,14]. Although complex network study has become increasingly
complicated, focusing on the core structure enables a simplification [15].
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To study the core structure of networks, the small core or bone structure can be extracted [16]. The h-index [17] has also
been applied to networks [18], and this has produced suchmeasures and structures as theh-degree [19] and theh-subnet [20]
in single-layer networks, and the h-crystal [21] in multilayer networks.

Since 2000 the core–periphery structure has introduced [22,23], a small number of studies have been carried out on
periphery structure. The algorithm of core–periphery is a standard method in network analysis, and it has yielded a series
of improvements and developments [24–28].

Combined with the idea of network fingerprint [29,30], it is feasible to choose a curve as fingerprint curve for simulating
the periphery structure. Supposing that the fingerprint curve should be simple, with keeping two entire-network parameters
in the curve, we choose the spiral or rose curves as fingerprint curves.

The core structure can be described by network h-core, and then the core–periphery structure of a complex network will
be similar with h-core plus fingerprint curve linking to entire-network parameters. We apply following definitions.

The h-core of a network consists of nodes and their links measured using the h-index. In an unweighted network, the
h-core is a subgraph of nodes and their links ranked by node degree produced by the h-index. In a weighted network, the
h-core is a set of n nodes in which all nodes have an h-degree [19] (dh) equal to dh(n). Note that the h-degree (dh) or the
degree h-index is a node-based measure, but that the h-core is a structure that consists of the core nodes and their links.
Thus the network h-corewill be unique. Other research has shown that the h-indices of unweighted network nodes converge
to coreness [31].

The entire network parameters of a network concern the total node (vertices) and total link (edges) measurements and
describe the entire network. These include the average node degree, the average link strength, the average clustering
coefficient (c), the network density (the average degree centrality A), the network diameter or radius (R), and the power
index (k) of the degree distribution. Among these parameters, the network density (A) and average clustering coefficient (c)
are suitable to use for plotting the (logarithmic) spiral curve (r = A exp(cϕ)), while the network radius (R) and power index
(k) are suitable to use for plotting the rose curve (r = R cos(kϕ)), as rose keeps a relatively fixed radius and spiral scatters its
density and cluster.

In more general, for characterizing the core–periphery structure of networks, including unweighted and weighted and
single-layer and multilayer networks, we can introduce a Fourier-like analysis for deeper exploration, in methodology.

2. Methodology

There are two steps in characterizing the core–periphery structure of networks. (i) Using the h-core algorithm to find the
unique core structure of the network. (ii) Applying the network diameter and degree power and the network density and
average cluster coefficient (based on entire network) to find the characteristic parameters of the network. We then merge
the core structure with the characteristic parameters and use the rose curve r = (D/2) cos(kϕ) to produce the periphery
structure while core is h-core.

Both indicators and models are important in any possible applications.
(1) Indicators

When describing the entire network, network diameter D, average cluster coefficient c , node degree d, and degree
distribution p (d, k) are the common indicators. The general random network formula is

D = 2R =
lnN
ln pN

=
lnN
ln⟨d⟩

(1)

c =
⟨d⟩
N

×
N
N

=
⟨d⟩
N

(2)

p(d, k) =
1

ς (k)
d−k

; d ≥ 1, (3)

where R is the radius, N the total nodes in the network, ⟨d⟩ the average degree of nodes, p the connection probability, d the
degree, k the power index (note that this differs from common usage in which k is the degree and α or γ the power index),
and ζ (k) is the Riemann ζ -function. Another important indicator is the degree centrality. The average degree centrality A is
equal to the network density

A =
1
N

N∑
i=1

d(i)
N − 1

(4)

in which d(i)/(N − 1) is the degree centrality of node i.
The parameters R, A, c , and k describe the entire network, then are transformed into spiral or rose curve parameters. As

rose curve has its radius and power index gives key factor, we choose R and k for charactering rose curve, and then remains
A and c for spiral one. The selection looks a natural choice.

We use the h-core to reveal the core. In an unweighted network the h-core is a subgraph that consists of nodes with links
ranked by node degree according to the principle of h-index. In a weighted network the h-core is set of nodes all have links
of at least h-degree [19], where the h-degree (dh) of node n is equal to dh(n) if dh(n) is largest natural number such that node
n has at least dh(n) links eachwith a strength of at least dh(n). In total, there are five indicators {h, R, k, A, c} that are themain
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Fig. 1. The basic shape of the spiral.

parameters for describing the core–periphery structure of a network, where h is the core and R, k, A, and c are entire-network
parameters for charactering periphery.
(2) Models

A spiral curve is described by

r(A, c) = A exp(cϕ). (5)

Here A is a size factor that does not affect the shape of the spiral curve. Thus c is the key factor. Fig. 1 shows the basic shape
of the spiral.

The simple equation for the rose curve in a polar coordinate system (r , ϕ) is

r(R, k) = R cos(kϕ). (6)

The equivalent equation in a Cartesian coordinate system (x, y) is

x = R cos(kϕ) cosϕ

y = R cos(kϕ) sinϕ

}
. (7)

Although a rose curve can be also expressed using a sine function, we apply a cosine function for charting, because cos(z)
is the real part of exp(iz). The parameters R and k determine the shape of the rose curve. Because R is only a size factor, k is
the key factor that affects the shape, as shown in Fig. 2.

Fig. 2 shows that k is the sensitive parameter for rose shape, and that a small difference in k strongly affects the rose
curves.

Spiral or rose, which is better to be fingerprint curve? We will solve the problem via empirical studies.
When we use rose curves, one important finding concerns the merging and overlying of networks. When two networks

are merged, the process can be modeled by merging their rose curves in special conditions.
Suppose we have two rose curves,

r1(R1, k1) = R1 cos(k1ϕ) (8)

and

r2(R2, k2) = R2 cos(k2ϕ). (9)

When we overlay the two curves, the synthesized curve is

r(R, k) = r1 + r2 = R1 cos(k1ϕ) + R2 cos(k2ϕ). (10)

When R1 = R2 = R, k1 = k2 = k, Eq. (7) can be simplified to be

r(R, k) = 2R cos
kϕ + kϕ

2
cos

kϕ − kϕ
2

= 2R cos kϕ. (11)
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Fig. 2. The different rose curves with k = 2.29, 2.30, and 2.31, and R = 1.

When the situation is R1 ≈ R2 ≈ R, k1 ≈ k2 ≈ k, the fusion of two similar curves will generate a larger network on nodes
with a similar degree distribution.

A related finding concerns the core stability.When a network is complex (particularly when it is amultilayer ormultiplex
network), its core is approximately stable. This property is shown in Eq. (11), where the k value is approximately the same
as k1 or k2 when k1 ≈ k2. This indicates that the core remains relatively stable when the network is extended [32]. When
the two layers are merged, the multiplex network effects are the same.

Solving the partial derivatives, we find that

∂2r(R, k)
∂R2 = 0 (12)

and

∂2r(R, k)
∂k2

= −2Rϕ2 cos kϕ. (13)

Analytically, the spiral curve displays clearer properties. The change rate of its radius is

∂r(A, c)
∂ϕ

= Ac exp(cϕ) = cr. (14)

Using the Euler formula

exp(iz) = cos z + i sin z (15)

we can introduce the relation between the spiral or rose curves when A = R and c = k,

r(A, ic) = A exp(icϕ) = A cos cϕ + iA sin cϕ = rcos(R, k) + irsin(R, k) (16)

which means that overlaying a real cosine rose curve and an imaginary sine rose curve generates a complex spiral curve.
(3) Possible extension: Fourier-like analysis

Eq. (16) looks Fourier-like elements. In Fourier analysis, any periodic function f (x) can be expanded as a series at [−π, π ]

f (x) ∼
a0
2

+

∞∑
n=1

(an cos nx + bn sin nx) =

∞∑
n=−∞

cn exp(inx) (17)

where

an =
1
π

∫ π

−π

f (t) cos ntdt (n = 0, 1, 2, . . .) (18)

bn =
1
π

∫ π

−π

f (t) sin ntdt (n = 1, 2, . . .) (19)

cn =
1
2π

∫ π

−π

f (t)exp(−int)dt (n = 0, ±1, ±2, . . .). (20)
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Similarly, in network analysis any network G(V , E) can be expanded by approaching spiral–rose curves

G(V , E) = G(X, Y ) ∼

∑
j

Xj exp(iYjϕ) = h +

∑
j

(XjconYjϕ + iXj sin Yjϕ), (21)

where V and E are the vertices and edges of a network (graph), and (Xj, Yj) = f (V , E) are the characteristic parameters of
the series of curves. When j = 1 (the first-order Fourier-approach), there is one spiral or one rose and thus five parameters
{h, R, k, A, c} can be used to describe the core–periphery network structure, where h describes the core and R, k, A, and c
do the whole structure. We suggest that a Fourier-like analysis be used in future network studies, by means of which the
simplest core–periphery structure of a complex network can be characterized by the first-order Fourier-approach described
above in the single spiral–rose curve model.

Decomposing Xj

X−j =
1
2
(aj + ibj)

X+j =
1
2
(aj − ibj)

⎫⎪⎬⎪⎭ , (22)

where aj and bj are expected to link with characteristic parameters and spectra of complex network. We insert (22) into (21)
and let X0 = a0, then obtain

G(X, Y ) = a0 +

+∞∑
j=1

[
1
2
(aj − ibj) exp(iYjϕ)] +

+∞∑
j=1

[
1
2
(aj + ibj) exp(−iYjϕ)]

= a0 +

+∞∑
j=1

{
1
2
aj[exp(−iYϕ) + exp(iYJϕ)] +

i
2
bj[exp(−iYjϕ) − exp(iYjϕ)]}.

(23)

Using the Euler formula, we have

1
2
[exp(−iYjϕ) + exp(iYjϕ)] = cos(Yjϕ)

i
2
[exp(−iYjϕ) − exp(iYjϕ)] = sin(Yjϕ)

⎫⎪⎬⎪⎭ , (24)

which allows us to rewrite Eq. (23) to be at a0=h.

G(X, Y ) = h +

+∞∑
j=1

[aj cos(Yjϕ) + bj sin(Yjϕ)]. (25)

Eq. (25) transforms the field from a complex to a real field in which h describes h-core, and the rose curves are determined
by the characteristic parameters Yj. The complete Fourier-like transformation is thus

F (U,V) =
1
2π

∫
+π

−π

∫
+π

−π

G(X, Y) exp(iw) exp(iz)dwdz. (26)

This approach promises to be a potentially useful methodology for future network research.
In our empirical study we searched the Web of Science (WoS) database for articles, letters, and reviews published in

Nature and Science. We divided them into three time periods (1981–1990, 1991–2000, and 2001–2010). We treated each
article, letter, and review in these datasets as a node and charted their bibliographic coupling networks.

3. Results

The bibliographic coupling networks of Nature and Science are separately set up and then merged them together. All the
network parameters are shown in Table 1.

Each time period contains more than 11,000 papers. These constitute the nodes of the bibliographic coupling network.
Figs. 3–5 show their core–periphery structures with using both spiral and rose approaches, respectively, for comparison, in
which network parameters are drawn using Python programming (NetworkX from https://networkx.github.io/ and power
law package [33]) and spiral–rose curves using R programming.

Table 2 shows the empirical and theoretical network parameters when the Nature and Science networks are merged into
one (Nature + Science).

The theoretical estimated parameters are computed using separate Nature and Science data with an average estimation
of k = (k1 + k2)/2 when k1 ≈ k2 and c = (c1 + c2)/2 when c1 ≈ c2, while the empirical computation is based on real data
of Nature + Science. The errors occur when k1 ̸= k2 and c1 ̸= c2. When k1 = k2 and c1 = c2, the theoretical estimation will
be k = (k1 + k2)/2 and c = (c1 + c2)/2 strictly.

https://networkx.github.io/
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Table 1
Network parameters of sample datasets.

Sample Parameter Time Periods

1981–1990 1991–2000 2001–2010

Nature

Total nodes 16 097 14 127 11 388
Total links 660 213 234 022 221 975
Average node degree 82.0293 33.1312 38.9840
Average link strength 1.8042 2.6570 2.9746
Average clustering coefficient 0.4120 0.3733 0.3588
Network density 0.0051 0.0023 0.0034
Network diameter 15 15 12
Network power 1.3343 1.3763 1.3502
h-degree 12 9 10
Nodes of h-core 21 18 10

Science

Total nodes 10 755 12 032 10 912
Total links 247 937 206 714 101 893
Average node degree 46.1064 34.3607 18.6754
Average link strength 2.6194 3.1827 3.9463
Average clustering coefficient 0.3483 0.3549 0.3338
Network density 0.0043 0.0029 0.0017
Network diameter 15 12 19
Network power 1.3861 1.3583 1.4054
h-degree 11 9 7
Nodes of h-core 20 12 23

Nature + Science

Total nodes 26 852 26 159 22 300
Total links 1 607 079 813 134 539 486
Average node degree 119.6990 62.1686 48.3844
Average link strength 1.7339 2.2598 2.5850
Average clustering coefficient 0.3978 0.3743 0.3566
Network density 0.0045 0.0024 0.0022
Network diameter 13 13 17
Network power 1.3104 1.3150 1.3177
h-degree 13 11 10
Nodes of h-core 30 21 22

Table 2
Empirical and theoretical parameters: A comparison.

Type Parameters Nature + Science

Empirical computation power index (k) 1.3177
average clustering coefficient (c) 0.3566

Theoretical estimation power index (k) 1.3778
average clustering coefficient (c) 0.3463

In above empirical examples, we saw that Nature and Science had different h-core and fingerprint curves, as well as
different ones in different period for same journal. So the h-core plus fingerprint curves revealed core–periphery structure
visually. As to the differences of Nature and Science, the reason came from their different contents of bibliographic coupling
networks and then expressed as different core–periphery structure.

4. Discussion

Both rose curves and spirals are simple curves mastered by two parameters R and k, or by A and c . The symmetrically
beautiful shape of the rose curve is sensitive to k and insensitive to R, but the curved spiral looks insensitive to both
parameters A and c visually. Based on above empirical results, we suggest to use real rose curve as visual fingerprint
curve, and ignore spiral curve. This simplified approach reveals the core–periphery characteristics of network, where the
complexity of the entire network would be produced by merging and overlying the simple subgraphs, with keeping the
network h-core stable relatively.

The reasons that we did not choose one-parameter curves such as the archimedean spiral r = aϕ or the hyperbolic spiral
r = a/ϕ as fingerprint curves focus on two points: (1) the mathematical terms of con and sin in Eqs. (21) and (25) contain
two parameters, which are important for analytical methodology; (2) two parameters could keep bothmore entire-network
parameters and necessary simplicity.

Using rose curves also provide advantages when focusing on analytical properties. Because trigonometric functions link
with exponential functions (via the Euler formula) as well as Fourier analysis, they may prove beneficial in extending future
theoretical developments. Themethodologymay be used on either weighted or unweighted single-layer networks, andmay
be also suitable for multilayer networks when we divide the multilayers into a series of single layers.
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Fig. 3. The core–periphery structure using h-core and fingerprint curve at time period 1981–1990.

The limitations of the method are seen when it is applied to connected networks without branches. If a network is
hierarchical it has many branches, the method is less effective, and a branch coefficient needs to be considered.

5. Conclusion

The core–periphery structure can be characterized by h-core and fingerprint curve in complex networks, in which the
fingerprint curve can be rose curve linking to entire-network parameters.

When we describe the core–periphery structure with using the h-core and fingerprint curves, a complex network looks
like a ‘‘flower’’ (such as rose) configuration. While the h-core characterizes the core structure, the fingerprint curves use the
entire-network parameters (R, k) to simulate the periphery distributions, so that the ‘‘flower’’ reveals the core–periphery
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Fig. 4. The core–periphery structure using h-core and fingerprint curve at time period 1991–2000.

structure. The ‘‘flower’’ metaphor is useful because it enables us to characterize the network configuration, and different
networks display differing ‘‘flower’’ structures. A Fourier-like analysis of networks may enable us to simplify complex
networks by means of a simple rose expansion plus h.
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Fig. 5. The core–periphery structure using h-core and fingerprint curve at time period 2001–2010.
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