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What we are learning about the ubiquitous interactions among multiple social contagion processes
on complex networks challenges existing theoretical methods. We propose an interactive social
behavior spreading model, in which two behaviors sequentially spread on a complex network,
one following the other. Adopting the first behavior has either a synergistic or an inhibiting effect
on the spread of the second behavior. We find that the inhibiting effect of the first behavior can
cause the continuous phase transition of the second behavior spreading to become discontinuous.
This discontinuous phase transition of the second behavior can also become a continuous one
when the effect of adopting the first behavior becomes synergistic. This synergy allows the
second behavior to be more easily adopted and enlarges the co-existence region of both behav-
iors. We establish an edge-based compartmental method, and our theoretical predictions match
well with the simulation results. Our findings provide helpful insights into better understanding
the spread of interactive social behavior in human society. Published by AIP Publishing.
https://doi.org/10.1063/1.5010002

Social contagion on complex networks has been studied
for a long time, but they are limited to a single social
spreading process. The phenomenon of adoption of one
behavior impacting on adopting other behaviors occurs
widely in the real world. The existing conclusions are
not suitable to explain and the interactions among multi-
ple social contagion processes also challenge the existing
theoretical methods. To fill this gap, we try to purpose a
model where two social behaviors sequentially spread
on the same complex network. We, respectively, investi-
gate the inhibitive effect and the synergistic effect of the
adoption of first behavior on adopting the second behav-
ior. Interestingly, both effects of the first behavior can
change the phase transition type of the second behavior
spreading. Therein, the inhibiting effect can cause the
continuous phase transition of the second behavior
spreading to become discontinuous. The synergistic
effect can cause this discontinuous phase transition to
become a continuous phase transition, which is a stark
contrast to the synergy effect in two diseases interacting
spreading. The results help us to obtain a deeper under-
standing of the interactions among multiple social conta-
gion processes, and the developed theoretical method
could also be applied to other analogous interactive
dynamical processes.

I. INTRODUCTION

One spreading process simultaneously or sequentially
interacting with other dynamical processes exists widely in
the real world.1–3 Examples include concurrent infections
with multiple pathogens,4–6 the simultaneous outbreak of
the awareness of a disease and the disease itself,7–14 and
memetic competition in media.15–18 When dynamical pro-
cesses occur sequentially, such as seasonal influenza repeat-
edly returning to a population, one effect can be that
individuals become less susceptible to future outbreaks
when they acquire immunity from previous outbreaks.19,20

Similarly, in a social system, when a consumer has recently
purchased an Android smart phone it lowers the probability
that they will sometime soon purchase an iPhone. On the
other hand, when they purchase a computer or smart phone,
it increases the probability that they will also purchase apps
or other software.21,22

Recently, many researches have been done on interact-
ing spreading phenomena in biological diseases. In terms of
the interplay between the two interacting dynamical pro-
cesses, this research falls into three categories: competi-
tive,23–26 synergistic,27–35 and asymmetric.7–12 A model of
two diseases spreading concurrently and competing for the
same population of hosts is presented in Ref. 25. It found a
coexistence regime in which both diseases can infect a sub-
stantial fraction of nodes in the network. For two diseases
that synergistically spread simultaneously, Refs. 29 and 30
propose models in which a node infected by one diseasea)wwzqbx@hotmail.com
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becomes more susceptible to the other disease. Researchers
have found that synergistic interaction can lead to explosive
outbreaks of a disease and a discontinuous phase transition.
As a further extension of Ref. 30, Cui et al. studied a suscep-
tible-infected-removed-type model with two mutually coop-
erative pathogens on power-law networks; they found that
the epidemic transition is discontinuous when cooperativity
is sufficiently high for the network with a finite second
moment of the degree distribution.31 In the control of disease
spreading, models of asymmetrical interplay between the
disease awareness and the disease are proposed in Refs.
7–12. They found that an awareness-based response
suppresses the spread of disease, but does not cause the con-
tinuous phase transition to become discontinuous.

For studies on two subsequent spreading processes,
most of them are about competing interactions in which an
individual infected by a first disease becomes harder or can-
not be infected by a second. A model of two diseases spread-
ing one after the other on a single contact network is
presented in Ref. 36. Researchers found a co-existence
threshold above the classical epidemic threshold that indi-
cates that two diseases can coexist. A study of two diseases
successively spreading on overlay networks is presented in
Ref. 37. The results showed that the network structure (e.g.,
the joint degree distribution and the edge overlap) and the
strength of immunity strongly impact the parameter regions
of possible coexistence, but that the immunity provided one
disease does not change the type of phase transition. It also
found that the final density of infection smoothly increases
as the disease transmission rate increases. For other recent
works, see Refs. 38 and 39.

In a social system, Ref. 40 uses two susceptible-
infected-susceptible (SIS) spreading processes to study the
exclusive and nonexclusive influences between two compet-
ing ideas. They find that the two ideas have multiple co-
existences, and that the stationary densities of the ideas are
determined primarily by their respective initial densities.
The competition between an SIS spreading process and a
threshold contagion process on an interdependent network
has also been investigated.41 Researchers found that the con-
tinuous phase transition of the SIS spreading process can be
changed to discontinuous one, and the discontinuous phase
transition of the threshold contagion process can also be
changed to a continuous phase transition with an asymmetry
of intralayer connectivity. Very recently, the coevolution of
internal activation and external activation in social dynamics
is also investigated in complex networks, which displays
rich phenomena, such as the hysteresis loop and the random
switching between two coexisting states (opinions).42,43

The key differences between biological and social con-
tagions are the social reinforcement effect and non-
Markovian properties,44,45 which are not considered in the
existing studies about the interacting spreading dynam-
ics.40,41 Specifically, the research about two interacting
social contagion processes is rare, and there is no mathemati-
cal model that takes both inhibiting and synergistic effects
into consideration. To fill this gap, we propose a model in
which two interacting behaviors spread successively on a
complex network. Each behavior is modeled by the

susceptible-adopted-recovered (SAR) non-Markovian
spreading processes. The interactive mechanism is intro-
duced as the adoption of the first behavior either allows or
inhibits the spread of the second behavior. Our results indi-
cate that introducing the inhibiting impact of the first behav-
ior can change the continuous phase transition in the second
behavior to discontinuous, and synergy from the first behav-
ior can change a discontinuous phase transition in the second
to continuous. This synergy from the first behavior also
allows the second behavior to be more easily adopted, and it
enlarges the co-existence region of both behaviors.

We organize this paper as follows. In Sec. II, we intro-
duce the interacting social contagion model. In Sec. III, we
develop the theory. In Sec. IV, we show the results of numer-
ical simulation that are verified by the proposed theory. In
Sec. V, we summarize our conclusions.

II. INTERACTING SOCIAL CONTAGION MODEL

Our model proposes two behaviors, behavior 1 and
behavior 2, and they spread successively on a network.
Behavior 1 is the first to spread and behavior 2 is the second.
We use the generalized social contagion model proposed in
Ref. 46 to describe the dynamical process of each behavior.
During the spread of each behavior, i.e., behavior
b 2 f1; 2g, each node is susceptible (S), adopted (A), or
recovered (R). When a node is in the susceptible state, it has
not adopted behavior b. In an adopted state, the node has
adopted behavior b and can transmit information about
behavior b to neighbors. In the recovered state, the node has
lost interest in transmitting information to its neighbors.
Note that each susceptible node with property m records
cumulative number of pieces of behavioral information that
it receives from its adopted neighbors. The more pieces of
behavioral information the susceptible node receives, the
larger the probability that it will adopt the behavior, i.e., a
social reinforcement effect.47

To start the spread behavior 1, we randomly choose a
seed to be in a behavior 1 adopted state and set the remaining
nodes in the susceptible state. During each time step, the
adopted node transmits information about behavior 1
(“information 1”) to each of its susceptible neighbors with
an independent probability k1. After the adopted node u suc-
cessfully transmits information 1 to its susceptible neighbor
v, it stops transmitting information 1 to neighbor node v, i.e.,
information transmission is non-redundant, and the total
number of pieces of information 1 that node v possesses is
increased by one. This new piece of information will cause
node v to adopt behavior 1 with a probability

pðk;mÞ ¼ 1$ ð1$ s1Þm; (1)

where m is the cumulative number of pieces of information 1
that node v has received from adopted neighbors, s1 is the
unit of adopting probability for each reception of information
1, and k is the degree of node v. Because node v can receive
information 1 from multiple adopted neighbors during each
time step, each time it receives information 1, it will attempt
to adopt behavior 1. Here, if node u has received m – 1
pieces of information 1 and then receives the ðnþ 1Þ-th
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piece of information about behavior 1, it adopts behavior 1
with a probability pðk;mþ nÞ. The model is necessarily a
non-Markovian process, since the adopting probability
depends on the memory which is quantified by the cumula-
tive number of pieces of information. Each adopted node
recovers with a probability c1. The dynamical process of
behavior 1 terminates when all adopted nodes have recov-
ered. Denote variable Xu as the final state of each node u for
behavior 1; Xu¼ S means node u does not adopt behavior 1
and Xu¼R means node u has adopted behavior 1.

When the dynamical process of behavior 1 terminates,
we randomly choose a seed node to be in the adopted state
for behavior 2 and set the remaining nodes to be in the sus-
ceptible state for behavior 2. The spreading dynamics of
behavior 2 are mathematically identical to the dynamics of
behavior 1, except that the probabilities for transmission k2

and recovery c2 differ. In addition, when in this step, a sus-
ceptible node u of degree k and the X state for behavior 1
receives the p-th piece information 2 and the cumulative
number of pieces of received information 2 is m, then node u
adopts behavior 2 with a probability

wðk;m;XÞ ¼
1$ ð1$ s2Þm; X ¼ S;

1$ ð1$ as2Þm; X ¼ R;

(

(2)

where s2 is the unit adopting probability for each reception
of information 2. The impact of adopting behavior 1 on the
spread of behavior 2 is introduced. When a node has adopted
behavior 1, i.e., when X¼R, the actual unit adoption proba-
bility sa

2 for this node for each reception of information 2
changes to sa

2 ¼ as2. The parameter a quantifies the strength
of impact of the adoption of first behavior and is set in the
range of ½0; 1=s2', where a ¼ 0 indicates that when a node
has adopted behavior 1, it never adopts behavior 2, and the
maximum value 1=s2 indicates that a node that has adopted
behavior 1 needs to receive only one piece of information 2
for it to adopt behavior 2. In addition, adopting behavior 1
inhibits the spread of behavior 2 when a 2 ½0; 1Þ, and this
impact becomes synergistic when a 2 ð1; 1=s2'. Adopting
behavior 1 has no impact on adopting behavior 2 when a
¼ 1. The dynamical process terminates when all adopted
nodes of behavior 2 have recovered.

III. EDGE-BASED COMPARTMENTAL THEORY

To describe the strong dynamical correlations among
the states of neighbors in this model, we establish an edge-
based compartmental approach inspired by Refs. 46 and
48–50. As described above, the dynamical processes of
behavior 1 and behavior 2 differ in their dynamical parame-
ters. Thus, we only need to derive the equations for behavior
1. Let SbðtÞ; AbðtÞ, and RbðtÞ be the fraction of the suscepti-
ble, adopted and recovered nodes of behavior b 2 f1; 2g at
time t, respectively. When t!1, Rbð1Þ is the final adop-
tion fraction of behavior b. For simplicity, we shorten
Rbð1Þ and Sbð1Þ to Rb and Sb, respectively.

A. Dynamics of behavior 1

During the spread of behavior 1, node u is set to be in
the cavity state,51 which means it can receive information 1
from its adopted neighbors but cannot transmit information 1
to its susceptible neighbors. Let h1ðtÞ be the probability that
a random neighbor v of node u has not transmitted informa-
tion 1 to node u by time t. [The derivation of h1ðtÞ is
presented in the Appendix.] Thus, for a node u of degree k
that is initially susceptible, the probability that node u has m
pieces of information 1 at time t is Bk;m½h1ðtÞ', where Bk;mðwÞ

is a binomial function of w that is equal to
k
m

! "
wk$m

ð1$ wÞm. At time t, if node u is still in the susceptible state,
it means that node u does not adopt behavior 1 at each recep-
tion of information 1. Thus, the probability that node u with
cumulative m pieces of information is still in a susceptible
state is

Qm
i¼0½1$ pðk; iÞ'. In addition, combining all possibil-

ities of m, the probability that node u of degree k is still in
the susceptible state at time t is

S1ðk; tÞ ¼
Xk

m¼0

Bk;mðh1ðtÞÞ
Ym

i¼0

1$ pðk; iÞ½ ': (3)

Combining the degree of distribution P(k) of the network,
the fraction of susceptible nodes at time t is

S1ðtÞ ¼
X

k

PðkÞS1ðk; tÞ: (4)

The fraction of adopted nodes A1ðtÞ increases when sus-
ceptible nodes adopt behavior 1 and decreases when they
recover, which also causes R1ðtÞ to increase. Thus, the evolu-
tion equations for the fraction of adopted and recovered
nodes of behavior 1 are

dA1ðtÞ
dt
¼ $ dS1ðtÞ

dt
$ c1A1ðtÞ (5)

and

dR1ðtÞ
dt
¼ c1A1ðtÞ; (6)

respectively. To solve Eqs. (3)–(6), we need to know h1ðtÞ,
which can be written as

dh1ðtÞ
dt
¼ $k1h1ðtÞ þ k1

P
k0 k
0Pðk0ÞU1ðk0; h1ðtÞÞ
hki

þc1 1$ h1ðtÞ½ 'ð1$ k1Þ; (7)

where U1ðk0;h1ðtÞÞ ¼
Pk0$1

m¼0 Bk0$1;mðh1ðtÞÞ
Qm

i¼0½1$ pðk0; iÞ'.
We present derivations of Eq. (7) and U1ðk0;h1ðtÞÞ in the
Appendix. Using Eqs. (3)–(7), we can compute the fraction
of each stated node at any time t.

The dynamical process of behavior 1 terminates when
all the nodes adopting behavior 1 have recovered. Thus,
there is no information 1 transmitted from the adopted node
to its neighbors, which means that the right side of Eq. (7) is
equal to zero when t!1. For the sake of simplicity, we
use h1 to represent h1ð1Þ, and Eq. (7) can be written as
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h1 ¼
P

k0 k
0Pðk0ÞU1ðk0; h1Þ
hki

þ c1ð1$ h1Þð1$ k1Þ
k1

: (8)

Solving Eq. (8), we obtain the value of h1 and calculate the
fraction of susceptible nodes S1 by substituting h1 into Eqs.
(3)–(4). The final adoption fraction of behavior 1 is
R1 ¼ 1$ S1.

For a fixed s1, there is a critical value of k1 above which
behavior 1 is widely adopted and below which it does not.
We can obtain this critical value by determining when a non-
trivial solution of Eq. (8) appears [h1 ¼ 1 is a trivial solution
of Eq. (8)] as

g1ðh1; k1Þ ¼
P

k0 k
0Pðk0ÞU1ðk0; h1Þ
hki

þ c1ð1$ h1Þð1$ k1Þ
k1

$ h1; (9)

which is tangent to the horizontal axis at the critical value of
hc

1. Thus, combining Eq. (8) and

dg1ðh1; k1Þ
dh1

####
hc

1

¼ 0; (10)

we obtain the critical transmission rate of information 1 for
fixed s1.

B. Dynamics of behavior 2

In the above analysis, when the spread of behavior 1 ter-
minates, the probability that a random node has adopted
behavior 1 is approximately the final adoption size R1 of
behavior 1, and it correlates with h1. For the sake of simplic-
ity, let xðXÞ be the probability of a random node with X state
for behavior 1. Here, X¼ S indicates that the node has not
adopted behavior 1, and X¼R indicates that the node has
adopted behavior 1, therein, xðSÞ ¼ 1$ R1 and xðRÞ ¼ R1.
The actual unit adoption probability sa

2 for each transmission
of information 2 is based on whether the node has or has not
adopted behavior 1. The probability S2(k,t) of a node u with
degree k is still susceptible to behavior 2 at time t can be
divided into two parts. The first is that node u has not
adopted behavior 1 and does not adopt behavior 2 by time t.
The second is that node u has adopted behavior 1 and does
not adopt behavior 2 by time t. Similar to Eq. (3), we com-
bine these two and write S2(k,t) as

S2ðk; tÞ ¼
X

X2fS;Rg
xðXÞ

Xk

m¼0

Bk;m h2ðtÞ½ ' (
Ym

i¼0

1$ wðk; i;XÞ½ ';

(11)

where h2ðtÞ is the probability that a random neighbor v of
node u has not transmitted information 2 to u by time t. The
fraction of susceptible nodes in the network for behavior 2 at
time t is S2ðtÞ ¼

P
k PðkÞS2ðk; tÞ.

We replace pðk0; iÞ with wðk0; i;XÞ in Eq. (A2) and can
obtain the probability U2ðk0; h1; h2ðtÞÞ that a neighbor node v
of degree k0 is susceptible to behavior 2. Substituting
U2ðk0; h1; h2ðtÞÞ into Eq. (8), we obtain the final state of h2ðtÞ

h2 ¼
P

k0 k
0Pðk0ÞU2ðk0; h1; h2Þ

hki
þ c2ð1$ h2Þð1$ k2Þ

k2
; (12)

and the function g2ðk2; h1; h2Þ for behavior 2 is written as

g2ðk2; h1; h2Þ ¼
P

k0 k
0Pðk0ÞU2ðk0; h1; h2Þ

hki

þ c2ð1$ h2Þð1$ k2Þ
k2

$ h2; (13)

where h2 is the shortened notation for h2ð1Þ. Thus, for given
k1 and k2, we obtain the values of h1 and h2 by combining
Eqs. (8) and (12). Substituting h1 and h2 into Eqs. (4) and
(11), we obtain the final fraction of susceptible nodes S2, and
the final adoption fraction of behavior 2 is R2 ¼ 1$ S2.

Similar to the deviation in the critical transmission rate
of information 1 for a given h1 (i.e., k1), we combine Eq.
(12) and

dg2ðk2; h1; h2Þ
dh2

####
hc

2

¼ 0; (14)

to calculate the critical information transmission rate of
behavior 2.

Note how the spread of behavior 1 affects the phase
transition of R2 on k2, which can be analyzed by observing
how h2 changes with k2. Solving Eqs. (8) and (12), we obtain
the relationship between h2 and k2 for different k1, as shown
in the top panel of Figs. 1 and 3. Here, h2 ¼ 1 is the trivial
solution of Eq. (12), which indicates no spread of behavior 2.
For a 2 ð0; 1Þ, e.g., a ¼ 0:5, and k1 ¼ 0:2, when we fix all
parameters except k2, Eq. (12) has only one root (i.e., a fixed
point) for different values of k2 [Fig. 1(a)], and h2 smoothly
decreases with k2, which means that R2 also smoothly
increases with k2. Figure 1(b) shows that when k1 ¼ 0:8, the
number of roots of Eq. (12) depends on k2 and the equation
will have 3 roots for a range of k2, which means that a
saddle-node bifurcation occurs.52 When the equation has 3
roots, only the largest stable value is physically meaningful.
When we vary k2 and cross its critical value (i.e., kI

2c), it
jumps to its smallest roots, which means R2 increases with k2

discontinuously [Fig. 1(b)]. It is the same for a 2 ð1; 1=s2Þ,
e.g., a ¼ 1:5, as shown in Figs. 3(c) and 3(d). Thus, when we
vary k1 (i.e., k1 ¼ 0:2 and k1 ¼ 0:8), it changes the phase
transition of R2 on k2 from continuous (discontinuous) to dis-
continuous (continuous) for the inhibition (synergy) effect of
behavior 1, which means that the crossover phenomena in
phase transition53 exists in the system for both the inhibiting
and synergetic effects of behavior 1. To determine the criti-
cal condition of the continuous (discontinuous) transition
being changed to a discontinuous (continuous) transition in
the inhibition (synergy) effect, we numerically solve Eqs.
(12) and (14), and

d2g2ðk2; h1; h2Þ
dh2

2

####
hc

2

¼ 0; (15)

to obtain the critical hc
1 value. Then, substituting hc

1 into Eq.
(8), we obtain the critical value of k1. We denote kII

2c and kI
2c
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as the continuous and discontinuous critical information
transmission rates of behavior 2 for R2 on k2, respectively.

IV. SIMULATION RESULTS

Here, we present simulation results and theoretical pre-
dictions, and study how the first behavioral adoption
impacts the phase transition of R2 on k2 and the co-
existence region of both behaviors. We first perform simu-
lations on the Erd€os-E"enyi (ER) network54 and then, on a
configuration network with a power-law degree distribu-
tion.55 Unless otherwise specified, the network size and the
network mean degree are, respectively, set to N ¼ 5( 104

and hki ¼ 10. The recovery probabilities for both behaviors
are set to c1 ¼ 1:0 and c2 ¼ 1:0. We use at least 2( 103

independent dynamical realizations on a fixed network to
calculate the pertinent average values and further average
them over 20 network realizations.

To identify the simulation threshold of information
about behavior b 2 f1; 2g, we employ a relative variance
vðRbÞ method56

vðRbÞ ¼
hRb $ hRbii2

hRbi2
; (16)

where h) ) )i is the ensemble average and Rb the final adoption
fraction of behavior b. Figures 1(c) and 1(d) and 3(c) and
3(d) show that vðR2Þ reaches a maximum value at the critical

information transmission rate (i.e., kI
2c and kII

2c) of behavior
2, which is the simulation threshold of behavior 2.

In Sec. IV B, we separately discuss the inhibiting effect
and the synergistic effect of adopting first behavior on the
spread of the second behavior on ER networks. And then, we
present the simulation results of the two interacting behavior
spreading on the network of power-law degree distribution.

A. Inhibiting effect of the first behavior on ER
networks

A previous theoretical analysis of Eq. (12) found that
the transmission rate k1 of information 1 impacts the type of
phase transition of the second behavior. Here, we show that
it also occurs in simulations and provide a qualitative expla-
nation. For the adoption of behavior 1 inhibiting the spread
of behavior 2, i.e., a < 1, and the unit adopting probabilities
set to s1 ¼ 0:4 and s2 ¼ 0:4, we find that the outbreak of
behavior 1 will change the continuous phase transition of
R2 on k2 to discontinuous, as shown in the bottom panel of
Fig. 1. When k1 ¼ 0:8 (i.e., behavior 1 outbreaks), the actual
unit probability sa

2 for nodes that have adopted behavior 1 is
decreased to as2 ¼ 0:2. The probabilities that these nodes (i.e.,
nodes that have adopted behavior 1) are still susceptible after
receiving the first, second, and third pieces of information
2 are 1$ wðk; 1;RÞ ¼ 0:8, ½1$ wðk; 1;RÞ'½1$ wðk; 2;RÞ'
¼ 0:48, and ½1$ wðk; 1;RÞ'½1$ wðk; 2;RÞ'½1$ wðk; 3;RÞ'
¼ 0:192, respectively. Compared to nodes with no pieces of
information 2, these nodes easily adopt behavior 2, especially

FIG. 1. Graphical analysis of h2 and the final adoption size of behavior 2 versus k2 with the inhibition effect (i.e., a ¼ 0:5) of first behavior on ER networks.
(Top panel) The root of Eq. (12) versus k2. As shown in (a) and (b), h2 ¼ 1 is the trivial solution of Eq. (12), therein, the solid lines represent the stable roots
and the dotted lines represent the unstable roots. The parameters in (a) are k1 ¼ 0:2; s1 ¼ s2 ¼ 0:4, and in (b) are k1 ¼ 0:8; s1 ¼ s2 ¼ 0:4. (Bottom panel)
The final adoption fraction R2 (left coordinate) and the corresponding relative variance vðR2Þ (right coordinate) versus k2. The parameters in (c) and (d), respec-
tively, correspond to the parameters in (a) and (b). Therein, the black circles are the simulation results and the solid lines are the theoretical predictions. In (a),
there is only one stable root for Eq. (12), thus R2 increases with k2 continuously, as shown in (c). In Fig. 1(b) there is a region k2, as shown in the rectangle,
there are two stable roots for Eq. (12), but only the higher stable root is physically meaningful. When varying k2 crosses this region, it will make the physically
meaningful root jumping to another smaller root. Thus, R2 increases with k2 discontinuously, as shown in (d).
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when they have two or three pieces of information 2, i.e.,
when they experience the social enforcement effect.47 A sub-
critical system state46 for these susceptible nodes occurs when
one node newly receiving a piece of information and adopting
the behavior leads to an avalanche of behavior adoption.
Suppose node u adopts behavior 2, transmits the information
to neighbor v, and neighbor v adopts behavior 2 and with an
independent probability k2 further transmits the information to
its neighbors. This causes the nodes with two or three pieces of
information 2 to also adopt behavior 2. This can lead to an
abrupt behavioral adoption. Because there is a large fraction of
nodes with two or three pieces of information 2, even a slight
increase in the transmission suddenly and discontinuously
increases R2 with k2, as shown in Fig. 1(d).

When k1 ¼ 0:2, there is no outbreak of behavior 1, and
its inhibition effect can be ignored. The fraction of subcriti-
cal susceptible nodes in the system is small since 40%
[wðk; 1; SÞ ¼ 0:4] of the nodes with one piece of information
2 will adopt behavior 2 and only 12% [ð1$ wðk; 1; SÞÞ
ð1$ wðk; 2; SÞÞ ¼ 0:12] nodes with two pieces of

information 2 are still susceptible. Thus, R2 increases with k2

continuously, when there is no outbreak of behavior 1 (i.e.,
k1 ¼ 0:2). The phase transition of R2 on k2 is analyzed by
the bifurcation theory52 [see Figs. 1(a) and 1(b)]. In addition,
the inhibition effect causes the outbreak of behavior 1 to
enlarge the critical information transition rate (i.e., kI

2c and
kII

2c) of behavior 2. Figures 1(c) and 1(d) show that the theo-
retical predictions agree well with the simulation results.

In the above analysis, the spread of behavior 1 strongly
impacts the adoption of behavior 2 and affects the type of
phase transition, kII

2c and kI
2c. In the following, we examine

how k1 and k2 affect R2 for the inhibition effect of behavior
1. Figure 2 (top panel) shows that R2 discontinuously
increases with k2 and becomes more abrupt when k1 is
increased above kI

1c. Note that an additional bifurcation
analysis of Eq. (8) indicates that R1 discontinuously
increases with k1 when s1 ¼ 0:3, where kI

1c is the discontin-
uous critical information transmission rate of behavior 1.
There is no outbreak of behavior 1, and R2 discontinuously
increases with k2 when s2 ¼ 0:3, which is proved by the

FIG. 2. The inhibition effect of behavior 1 on the spread of behavior 2 on ER networks. (a) The simulation results and (b) the theoretical predictions of the
final adoption fraction R2 on the plane (k1, k2) when the parameters are defined as a ¼ 0:5; s1 ¼ 0:3; s2 ¼ 0:3. (c) The phase diagram of the system. Region
I represents no behaviors adopted and two behaviors are widely adopted in region III. Regions II and IV, respectively, represent only behavior 1 and only
behavior 2, widely adopted. The blue vertical dotted line in (c) represents the discontinuous critical information transmission rate kI

1c of behavior 1 obtained
by Eqs. (8) and (10). [It should be noted that the additional bifurcation analysis of Eq. (8) shows that R1 increases with k1 discontinuously when s1 ¼ 0:3.]
The red dashed line in (c) represents the critical information transmission rate kI

2c of behavior 2 [obtained by Eqs. (8), (12), and (14)]. The red circle is com-
puted by Eqs. (8), (12), (14), and (15). Subfigures (d) and (f) are with the same meaning as subfigures (a)-(c), just with parameters
a ¼ 0:5; s1 ¼ 0:4; s2 ¼ 0:4. The blue vertical solid line in (f) represents the continuous critical information transmission rate kII

1c of behavior 1 obtained by
Eqs. (8) and (10). The red solid line and the red dashed line in (f) are, respectively, the kII

2c and kI
2c of behavior 2. The dotted and dashed lines in (c) and (f)

represent crossing where R2 (R1) increases with k2 (k1) discontinuously. The solid lines in subfigures (c) and (f) represent crossing where R2 (R1) increases
with k2 (k1) continuously.
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bifurcation theory. When there is an outbreak of behavior
1, the unit adopting the probability of nodes that have
adopted behavior 1 for each information 2 decreases; sus-
ceptible nodes need more pieces of information 2 to adopt
the behavior, and so more nodes stay in the subcritical state.
Thus, increasing k1 above kI

1c makes R2 increase with k2

more abruptly and enlarges the outbreak information
threshold kI

2c of behavior 2 [see the red dashed line in Fig.
2(c)]. There are four regions—I, II, III, and IV—in the
plane (k1, k2) shown in Fig. 2(c). Region I is where there is
no outbreak of either behavior when k1 < kI

1c and k2 < kI
2c.

Regions II and IV are where there is an outbreak of only
behavior 2 and only behavior 1, respectively. Region III is
the co-existence region in which there is an outbreak of
both behaviors k1 > kI

1c and k2 > kI
2c. It indicates that

increasing k1 requires an increase in k2 to ensure that both
behaviors coexist.

Figure 2 (bottom panel) shows that, when s2 ¼ 0:4, R2

continuously increases with k2 when k1 < kII
1c. Note that an

additional bifurcation analysis of Eq. (8) finds that R1

increases with k1 continuously when s1 ¼ 0:4, and kII
1c is

the continuous critical information transmission rate of
behavior 1. The phase transition becomes discontinuous
when there is an outbreak of behavior 1 (i.e., when

k1 > kII
1c), which is confirmed using bifurcation theory. As

shown in Fig. 2(c), there are four regions in Fig. 2(f).
In contrast to s2 ¼ 0:3 in Fig. 2(c), increasing s2 enlarges
the co-existence region. The theoretical predictions agree
well with the simulation results [see Figs. 2(a), 2(b), 2(e),
and 2(f)].

B. Synergistic effect of the first behavior on ER
networks

We study the synergy effect of behavior 1 on adopting
behavior 2 in the following part. When the unit adopting
probabilities for each information about both behaviors are
set to 0.3 (i.e., s1 ¼ 0:3 and s2 ¼ 0:3), there is no outbreak
of behavior 1 for k1 ¼ 0:2. Thus the spread of behavior 1 has
little impact on behavior 2. Nodes must receive more pieces
of information 2 to adopt behavior 2 than when s2 ¼ 0:4.
There are sufficient subcritical susceptible nodes in the sys-
tem that increasing k2 slightly causes abrupt behavioral
adoption. Figure 3(c) shows that R2 increases with k2 discon-
tinuously for k1 ¼ 0:2. When there is an outbreak of behav-
ior 1, i.e., k1 ¼ 0:8, the synergy effect of behavior 1 causes
the sa

2 of nodes that have adopted behavior 1 for each infor-
mation 2 to increase to as2 ¼ 0:45, which means that

FIG. 3. Graphical analysis of h2 and the final adoption size of behavior 2 versus k2 with the synergy effect (i.e., a ¼ 1:5) of first behavior on ER networks.
(Top panel) The root of Eq. (12) versus k2. As shown in (a) and (b), h2 ¼ 1 is the trivial solution of Eq. (12), therein, the solid lines represent the stable roots
and the dotted lines represent the unstable roots. The parameters in (a) are k1 ¼ 0:2; s1 ¼ s2 ¼ 0:3, and in (b) are k1 ¼ 0:8, s1 ¼ s2 ¼ 0:3. kII

2c and kI
2c, respec-

tively, represent the continuous and discontinuous critical information transmission rates of behavior 2 for R2 on k2. (Bottom panel) The final adoption fraction
R2 (left coordinate) and the corresponding relative variance vðR2Þ (right coordinate) versus k2. The parameters in (c) and (d), respectively, correspond to
parameters in (a) and (b). Therein, the black circles are the simulation results and the solid lines are the theoretical predictions. In Fig. 3(a), there is a region of
k2, as shown in the rectangle, there are two stable roots for Eq. (12), but only the higher stable root is physical meaningful. When varying k2 crosses this region,
it will make the physically meaningful root jumping to another smaller root. Thus, R2 increases with k2 discontinuously, as shown in (c). In (b), there is only
one stable root for Eq. (12); thus, R2 increases with k2 continuously, as shown in (d).
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approximately half of the nodes with one piece of informa-
tion will adopt the behavior, and only the ½1$ wðk; 1;RÞ'
½1$ wðk; 2;RÞ' ¼ 0:055 fraction of these nodes is still in the
susceptible state when they have received two pieces of
information 2. The subcritical susceptible nodes (nodes with
more than one piece of information 2) is very small. Thus,
R2 increases with k2 continuously when there is an outbreak
of behavior 1, as shown in Fig. 3(d). Figures 3(a) and 3(b)
show that the phase transition is proven by bifurcation the-
ory. In addition, the synergy effect causes the outbreak of
behavior 1 to decrease the critical transmission information
rates (i.e., kII

2c and kI
2c) of behavior 2. Here, theoretical pre-

dictions also match the simulation results.
For the synergistic effect of behavior 1, we study the

impact of k1 and k2 on the final adoption of behavior 2. For
s2 ¼ 0:3, R2 discontinuously increases with k2 when
k1 < kI

1c, and becomes continuous when there is an out-
break of behavior 1 (i.e., when k1 > kI

1c), as shown in the
top panel of Fig. 4. It shows a detailed analysis of the
phase transition of R2 on k2, such as when k1 ¼ 0:2 in
Fig. 3(a) and when k2 ¼ 0:8 in Fig. 3(b). There are also

four regions in Fig. 4(c). Region I is where there is no out-
break of either behaviors when k1 < kI

1c and k2 < kI
2c.

Regions II and IV are where there is an outbreak of only
behavior 2 and only behavior 1, respectively. Region III is
the co-existence region where there is an outbreak of
both behaviors when k1 > kI

1c and k2 > kII
2c. Compared

with the inhibition effect of behavior 1, the synergy effect
of behavior 1 makes the adoption of behavior 2 easier and
enlarges the co-existence region of both behaviors [Fig.
4(c), region III].

When s2 ¼ 0:4, R2 continuously increases with k2 and
the synergy effect does not change the phase transition of R2

in k2. The unit adoption probability per information 2 for
nodes having adopted behavior 1 is increased, which makes
adopting behavior 2 easier. There are a few susceptible
nodes in the subcritical state with two and three pieces of
information 2. Thus, an outbreak of behavior 1 only
decreases the outbreak threshold kII

2c of information 2 [red
line in Fig. 4(f)]. At the same time, because of the synergy
effect increasing s2 enlarges the co-existence region of both
behaviors [region III in Fig. 4(f)].

FIG. 4. The synergetic effect of behavior 1 on the spread of behavior 2 on ER networks. (a) The simulation results and (b) the theoretical predictions of the
final adoption fraction R2 on the plane (k1, k2) when the parameters are defined as a ¼ 1:5; s1 ¼ 0:3; s2 ¼ 0:3. (c) The two-dimensional plane through the
phase diagram of the system. Region I represents no behaviors adopted, and two behaviors are widely adopted in region III. Regions II and IV, respectively,
represent only behavior 1 and only behavior 2, widely adopted. The blue vertical dotted line in (c) represents the critical information transmission rate kI

1c of
behavior 1 obtained by Eqs. (8) and (10). The red dashed line and the red solid line in (c), respectively, represent kI

2c and kII
2c of behavior 2 [obtained by Eqs.

(8), (12), and (14)]. The red circle is computed by Eqs. (8), (12), (14), and (15). Subfigures (d) and (f) are with the same meaning as subfigures (a)–(c), just
with parameters a ¼ 1:5; s1 ¼ 0:4; s2 ¼ 0:4. The blue solid line and the red solid line in (f), respectively, represent the critical information transmission rate
kII

1c and kII
2c of behavior 1 and behavior 2. The dotted and dashed lines in (c) and (f) represent crossing, where R2 (R1) increases with k2 (k1) discontinuously.

The solid lines in subfigures (c) and (f) represent crossing, where R2 (R1) increases with k2 (k1) continuously.
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C. Two interacting behaviors spreading on scale-free
networks

We also study the two behaviors sequentially spreading
on scale-free networks,57 constructed according to the stan-
dard configuration model.55 The degree distribution is
PðkÞ ¼ Ck$c, where c is the degree exponent and C ¼ 1=Pkmax

kmin
k$c is the coefficient with kmin¼ 3 minimum degree,

kmax * N1=ðc$1Þ maximum degree, and c ¼ 3:0. The network
size and the mean degree of the network are set to N
¼ 5( 104 and hki ¼ 10, respectively. Figure 5 shows that
when s1 ¼ 0:3 and s2 ¼ 0:3, R2 smoothly increases with k2

when k1 ¼ 0:1 (i.e., there is no outbreak of behavior 1). This
continuous phase transition becomes discontinuous when it
is inhibited by behavior 1 when it breaks out (e.g., when
k1 ¼ 0:9). When s1 ¼ 0:08 and s2 ¼ 0:08, the synergy effect
of behavior 1 discontinuously increases R2 with k2 when
k1 ¼ 0:1 (i.e., when there is no outbreak of behavior 1) and
becomes a continuous phase transition when k1 ¼ 0:9 (i.e.,
when there is an outbreak of behavior 1). The theoretical pre-
dictions match well with the simulation results.

V. CONCLUSIONS

We have studied two interactive behaviors sequentially
spreading on an ER network. We find that with the outbreak of
the first behavior, the inhibiting effect can cause the continuous
phase transition of R2 on k2 to become discontinuous. It can
also enlarge spreading thresholds kII

2c and kI
2c of the second

behavior and decrease the co-existence region of both behav-
iors. The synergistic effect of the first behavior can make the
discontinuous phase transition of the second behavior continu-
ous. In addition, the threshold of information transmission rate
for behavior 2 decreases and the synergistic effect of behavior
1 enlarges the co-existence region. Increasing the unit adopting
probability of both information 1 and information 2 allows
both the inhibition and synergy effects to make adoption of 2
easier and decreases kII

2c and kI
2c. We also develop an edge-

based compartment method to describe how adopting the first
behavior affects the spread of the second behavior. The theo-
retical predictions match the simulation results.

We simulate the spreading process on heterogeneous
scale-free networks and verify the results with theoretical
predictions. We find again that the continuous phase transi-
tion of R2 on k2 can become discontinuous due to the inhibit-
ing effect of the first behavior and that the synergistic effect
of the first behavior can also cause the discontinuous phase
transition of the second behavior to become continuous.

Our results indicate that prior behavioral adoption can
produce a new phase transition and change the nature of pre-
existing phase transitions in future behavioral adoption.
They also explain why some behaviors spread rapidly and
others very slowly. Further advances in the field could
address the concurrent spreading of two or more dynamical
processes and also how different transmitting paths differ in
different spreading processes.
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APPENDIX: DERIVATION OF h1ðtÞ

For behavior 1, the model indicates that the neighbor of
node u is in the susceptible, adopted, or recovered states, and
we divide the calculation of h1ðtÞ into three cases

h1ðtÞ ¼ nS
1ðtÞ þ nA

1 ðtÞ þ nR
1 ðtÞ; (A1)

where nS
1ðtÞ [nA

1 ðtÞ or nR
1 ðtÞ] indicates that the susceptible

(adopted or recovered) neighbor v of node u has not transmit-
ted information 1 to u by time t. If the neighbor node v does
not adopt behavior 1, it cannot transmit information 1. Thus,
nS

1 is equal to the probability that a random neighbor v of
node u is in the susceptible state at time t. When a random
neighbor v of degree k0 is initially susceptible, node u cannot
transmit information 1 to v, and v receives only information
1 from other k0 $ 1 neighbors. The probability that node v
has received m pieces of information 1 by time t is
Bk0$1;m½h1ðtÞ'. Similar to the derivation of Eq. (3), the proba-
bility that node v is in the susceptible state is

U1ðk0; h1ðtÞÞ ¼
Xk0$1

m¼0

Bk0$1;m h1ðtÞ½ '
Ym

i¼0

1$ pðk0; iÞ
$ %

: (A2)

FIG. 5. Two behaviors sequentially spread on SF networks. (a) R2 is versus
k2 for the inhibition effect of behavior 1. Therein, s1 ¼ 0:3 and s2 ¼ 0:3. (b)
R2 is versus k2 for the synergy effect of behavior 1. Therein, s1 ¼ 0:08 and
s2 ¼ 0:08. The lines with circles and squares are the simulation results and
the solid lines are the theoretical predictions.
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In an uncorrelated network, the probability that a ran-
dom neighbor will have a degree k is kPðkÞ=hki. Thus, the
probability that a random neighbor v of u is in the susceptible
state is

nS
1ðtÞ ¼

P
k0 k
0Pðk0ÞU1ðk0; h1ðtÞÞ
hki

: (A3)

Here, nA
1 ðtÞ means that the adopted neighbor v of u has not

transmitted information 1 to node u by time t. When node v
succeeds in transmitting information 1 to node u, it decreases
h1ðtÞ to

dh1ðtÞ
dt
¼ $k1n

A
1 ðtÞ: (A4)

When an adopted node recovers before it can transmit infor-
mation 1 to its neighbors, nR

1 ðtÞ increases to

dnR
1 ðtÞ
dt
¼ c1ð1$ k1ÞnA

1 ðtÞ: (A5)

Combining Eqs. (A4) and (A5), we obtain

nR
1 ðtÞ ¼

c1 1$ h1ðtÞ½ 'ð1$ k1Þ
k1

: (A6)

Inserting Eqs. (A3) and (A6) into Eq. (A1), we obtain

nA
1 ðtÞ ¼ h1ðtÞ $

P
k0 k
0Pðk0ÞUðk0; h1ðtÞÞ
hki

$ c1 1$ h1ðtÞ½ 'ð1$ k1Þ
k1

: (A7)

Substituting Eq. (A7) into Eq. (A4), we obtain the time evo-
lution of h1ðtÞ

dh1ðtÞ
dt
¼ $k1h1ðtÞ þ k1

P
k0 k
0Pðk0ÞU1ðk0; h1ðtÞÞ
hki

þc1 1$ h1ðtÞ½ 'ð1$ k1Þ:
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