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We propose and test a model that describes the morphology of cities, the scaling of the urban perimeter of
individual cities, and the area distribution of systems of cities. The model is also consistent with observable
urban growth dynamics, our results agreeing both qualitatively and quantitatively with urban data. The result-
ing growth morphology can be understood from interactions among the constituent units forming an urban
region, and can be modeled using a correlated percolation model in the presence of a gradient.
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I. INTRODUCTION

Traditional approaches to urban science as exemplified in
the work of Christaller @1#, Zipf @2#, Stewart and Warntz @3#,
Beckmann @4#, and Krugman @5# are based on the assump-
tion that cities grow homogeneously in a manner that sug-
gests that their morphology can be described using conven-
tional Euclidean geometry. However, recent studies have
proposed @6# that the complex spatial phenomena associated
with actual urban systems is rather better described using
fractal geometry consistent with growth dynamics in disor-
dered media @7–9#.

Predicting urban growth dynamics also presents a chal-
lenge to theoretical frameworks for cluster dynamics, in that
different mechanisms clearly drive urban growth from those
which have been embodied in existing physical models. In
this paper, we develop a mathematical model that relates the
physical form of a city and the system within which it exists,
to the locational decisions of its population, thus illustrating
how paradigms from physical and chemical science can help
explain a uniquely different set of natural phenomena—the
physical arrangement, configuration, and size distribution of
towns and cities. Specifically, we argue that the basic ideas
of percolation theory when modified to include the fact that
the elements forming clusters are not statistically indepen-
dent of one another but are correlated, can give rise to mor-
phologies that bear both qualitative and quantitative resem-
blance to the form of individual cities and systems of cities.
Some of these results were briefly described in Ref. @10#.

We consider the application of statistical physics to urban
growth phenomena to be extremely promising, yielding a
variety of valuable information concerning the way cities
grow and change, and more importantly, the way they might
be planned and managed. Such information includes ~but is
not limited to! the following: ~i! the size distributions of
towns, in terms of their populations and areas; ~ii! the fractal
dimensions associated with individual cities and entire sys-
tems of cities; ~iii! interactions or correlations between cities
which provide insights into their interdependence; and ~iv!
the relevance and effectiveness of local planning policies,
particularly those which aim to manage and contain growth.

The size distribution of cities has been a fundamental
question in the theory of urban location since its inception in
the late 19th century. In the introduction to his pioneering
book published over 60 years ago, Christaller @1# posed a key
question: ‘‘Are there laws which determine the number, size,
and distribution of towns?’’ This question has not been prop-
erly answered since the publication of Christaller’s book,
notwithstanding the fact that Christaller’s theory of central
places @1#, and its elaboration through theories such the
rank-size rule for cities @2–4# embody one of the corner-
stones of human geography.

Our approach produces scaling laws that quantify such
distributions. These laws arise naturally from our model, and
they are consistent with the observed morphologies of indi-
vidual cities and systems of cities which can be characterized
by a number of fractal dimensions and percolation expo-
nents. In turn, these dimensions are consistent with the den-
sity of location around the core of any city, and thus the
theory we propose succeeds in tying together both intraurban
and interurban location theories which have developed in
parallel over the last 50 years. Furthermore, the striking fact
that cities develop a power law distribution without the tun-
ing of any external parameter might be associated with the
ability of systems of cities to ‘‘self-organize’’ @5#.

II. DLA MODEL

Cities grow in a way that might be expected to resemble
the growth of two-dimensional aggregates of particles, and
this has led recent attempts @6,11,12# to model urban growth
using ideas from the statistical physics of clusters. In particu-
lar, the model of diffusion limited aggregation ~DLA!
@13,14# has been applied to describe urban growth @6#, and
results in treelike dendritic structures which have a core or
‘‘central business district’’ ~CBD!. The DLA model is a
physical model used to describe aggregation phenomena, and
is related to problems from the field of oil recovery in which
‘‘viscous fingering’’ occurs when a low viscosity fluid is
pushed under pressure into a fluid with a larger viscosity ~as
occurs when an oil field is flooded with water in an attempt
to ‘‘push out the oil’’!.
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The DLA model predicts that there exists only one large
fractal cluster that is almost perfectly screened from incom-
ing ‘‘development units’’ ~people, capital, resources, etc.!, so
that almost all the cluster growth occurs in the extreme pe-
ripheral tips. However, quantitative data do not support all
the properties of the DLA model. For instance, the DLA
model predicts that the urban population density r(r) de-
creases from the city center as a power law

r~r !;rD22, ~1!

where r is the radial distance from the core, and D.1.7 is
the fractal dimension of DLA. However, urban data have
been more commonly fit to an exponential decay @15#. In the
DLA model only one large central place or cluster is gener-
ated, while a real urban area is formed by a system of central
places that are spatially distributed in a hierarchy of cities.
Still another concern regarding the morphology of the DLA
model is that DLA is a simply connected cluster. Cities grow
in a more compact way, with a well-defined urban boundary
or external perimeter not accounted for by the dendritic frac-
tal growth of DLA.

Here we show that an alternative model, in which devel-
opment units are correlated rather than being added to the
cluster at random, is better able to reproduce the observed
morphology of cities and the area distribution of subclusters
~‘‘towns’’! in an urban system, and can also describe urban
growth dynamics. Our ‘‘physical’’ model @10#, which corre-
sponds to the correlated percolation model @16–20# in the
presence of a density gradient @21–23#, is motivated by the
fact that in urban areas development attracts further develop-
ment. The model offers the possibility of predicting the glo-
bal properties ~such as scaling behavior! of urban morpholo-
gies.

III. CORRELATED PERCOLATION MODEL

In the model we now develop, we take into account two
points.

~i! First, data on population density r(r) of actual urban
systems are known to conform to the relation @15#

r~r !5r0e2lr, ~2!

where r is the radial distance from the CBD situated at the
core, and l is the density gradient. The density gradient
quantifies the extent of the urban spread around the central
core. The probability that a unit occupies a given spot de-
creases gradually as the distance from a central, compact
core increases.

~ii! Second, in actual urban systems, the development
units are not positioned at random. Rather, there exist corre-
lations arising from the fact that when a development unit is
located in a given place, the probability of adjacent develop-
ment units increases naturally; each site is not independently
occupied by a development unit, but is occupied with a prob-
ability that depends on the occupancy of the neighborhood.
In urban settings, development units do not attach them-
selves randomly to an existing cluster. Their placement is
strongly influenced by the presence of other units. When a
unit occupies a certain location, the probability of additional
development is highest in its vicinity, and this probability

decreases at a certain rate as the distance from the unit in-
creases. Thus the rules of placement are affected by long-
range ‘‘interactions’’ that influence how clusters form and
grow. What happens at a given site depends on the state of
many other sites. These correlations reflect the tendency of
people to locate next to one another, as articulated in tradi-
tional urban science as economies of urban agglomeration.

In order to quantify these ideas, we consider the corre-
lated percolation model @16–20# in the presence of a concen-
tration gradient @21–23#. We start by describing the uncor-
related site percolation problem, which corresponds to the
limit where correlations are so small as to be negligible @7–
9#. We first define a random number u(r), called the occu-
pancy variable, at every site r5(i , j) in a square lattice of L2

sites. The numbers u(r) are uncorrelated numbers with a
uniform probability distribution between @0,1# . A site in the
lattice is occupied if the occupancy variable u(r) is smaller
than the occupation probability p, which is a quantity fixed
for every site in the lattice. A cluster is a set of sites con-
nected via nearest neighbor sites. When p is small only iso-
lated clusters exist. At a critical value of the concentration
called pc an ‘‘incipient infinite cluster’’ forms which, for a
finite system, connects two sides of the system.

Our basic model is a percolation model modified to intro-
duce correlations among the units, and the fact that the con-
centration p is not constant for all the points in the lattice but
presents the gradient shown in Eq. ~2!. In our model we
consider ‘‘development units’’ representing buildings,
people, and resources which are added to the cluster in simi-
lar fashion as in percolation. Since these units are added in a
correlated fashion, we next consider a modification of the
percolation problem to incorporate correlations among the
occupancy variables u(r).

To introduce correlations among the variables we use a
method proposed in Ref. @20# which is a modification of the
Fourier filtering method ~Ffm! @24–26,18# suitable for large
systems. Consider a stationary sequence of L2 uncorrelated
random numbers $u(r)%, r5(i , j),i , j51, . . . ,L . The corre-
lation function is ^u(r) u(r8)&;dr ,r8 , with dr ,r8 the Kro-
necker delta, and the brackets denote an average with respect
to a Gaussian distribution. We use the sequence $u(r)% to
generate a new sequence $h(r)%, with a long-range power-
law correlation function C(l ) of the form @20#

C~ l ![^u~r ! u~r8!&5~11l
2!2a/2, ~3!

where l 5ur2r8u, a is the correlation exponent, and the
long-range correlations are relevant for 0,a,d52, where
d is the dimension of the substrate—a>2 corresponds to the
uncorrelated problem, and a→0 to the strongly correlated
problem.

The spectral density S(q), defined as the Fourier trans-
form of C(l ), has the form

S~q !5

2p

G~b211 !
S q

2 D b2

Kb2
~q !, ~4!

where q5uqW u, q i52pm i /L , 2L/2<m i<L/2, i51 and 2,
and b25(a22)/2. $h(q)% are the Fourier transform coeffi-
cients of $h(r)%, and satisfy
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h~q !5„S~q !…1/2u~q !, ~5!

where $u(q)% are the Fourier transform coefficients of
$u(r)%.

The actual numerical algorithm for F f m consists of the
following steps: ~i! Generate a two-dimensional sequence
$u(r)% of uncorrelated random numbers with a Gaussian dis-
tribution, and calculate the Fourier transform coefficients
$u(q)%. ~ii! Obtain $h(q)% using Eqs. ~4! and ~5!. ~iii! Cal-
culate the inverse Fourier transform of $h(q)% to obtain
$h(r)%, the sequence in real space with the desired power-
law correlation function which asymptotically behaves as

C~ l !;l
2a. ~6!

The assumption of power-law interactions is motivated by
the fact that the ‘‘decision’’ for a development unit to be
placed in a given location decays gradually with the distance
from an occupied neighborhood.

Finally we consider that the development units are posi-
tioned with a probability which behaves in the same fashion
as known for cities @Eq. ~2!#. Therefore, we relax the as-
sumption that the concentration p is constant for all the
points in the lattice, and we consider that the development
units are positioned with an occupancy probability

p~r ![r~r !/r0 , ~7!

that behaves in the same fashion as is known in observations
of real cities. This last modification corresponds to the per-
colation problem in the presence of a concentration gradient
proposed in Refs. @21–23#.

In order to apply the above procedure to the percolation
problem, we study the probability distribution P(h) of the
correlated sequence h(r). We find that when the uncorre-
lated variables u(r) are taken from a Gaussian distribution,
h(r) also has a Gaussian distribution. We next discretize the
variables generating a sequence m(i , j), according to
m(i , j)5Q„u2h(r)… where u is chosen to satisfy p(r)
5*

2`
u P(h)dh , with p(r) the occupancy probability and Q

is the Heaviside step function.
Notice that we have defined two different properties of

the system. First we introduced long range correlations
among the variables by modifying the occupancy variables
h(r). These correlations are isotropic, i.e., all the points in
space are connected by interactions quantified by a power
law. The fact that we consider a slowly decaying power-law
scale-free function is due to the fact that any other correla-
tion function will display a cutoff after which correlations
are negligible. Since we are looking at properties of actual
cities at large length scales, a coarse grain will transform a
finite range correlated system into an uncorrelated system,
i.e., a system with a finite cutoff in the correlations becomes
uncorrelated at large scales. This situation does not occur
when we consider power law correlations of the form ~6!,
since it is a scale-free function. Thus correlations are ex-
pected to be relevant at all length scales. One must distin-
guish the type of correlation introduced by Eq. ~6! from the
correlations arising at the critical concentration pc . In this
case, the connectedness length of the system is said to be
infinite, since two occupied sites separated by an arbitrary
distance may be connected by the infinite cluster, and thus

they are correlated in space. However, the correlations intro-
duced by Eq. ~6! go beyond this type of connection between
sites. Due to correlation of type ~6!, even sites which belong
to different clusters are correlated.

Second, we consider that the probability of occupancy of
the sites decays exponentially, with the center point always
occupied. This property of the system is independent of the
type of correlation chosen. The correlation exponent a and
the density gradient l are the only parameters of the model
to be determined by empirical observations.

IV. STATICS

We first discuss the influence of the correlations on the
morphology of a system of cities generated in the present
model. Therefore we fix the value of the concentration gra-
dient l in Eq. ~7!, and in Fig. 1 we show our simulations of
urban systems for different degrees of correlation. We see
that the larger the degree of correlations the more compact
the clusters are. The correlations have the effect of agglom-
erating the units around an urban area. In the simulated sys-
tems the largest city is situated in the core ~which acts as the
‘‘attractive’’ center of the city!, and this is surrounded by
small clusters or ‘‘towns.’’ The correlated clusters are fairly
compact near their respective centers and become less com-
pact near their boundaries, in qualitative agreement with em-
pirical data on actual large cities such as Berlin, Paris, and
London. ~see, i.e., Refs. @6,27#!. The strongly correlated case
of Fig. 1~a! (a→0) results in a system of cities looking
more realistic than the uncorrelated case @Fig. 1~c!#. The un-
correlated case results in a system of very small cities spread
around a central city, while the cities in the correlated case
look more compact and more realistic.

The urban boundary of the largest city is defined to be the
external perimeter of the cluster connected to the CBD.
Since p(r) decreases as one moves away from the core, the
probability that the largest cluster remains connected de-
creases with r. The mean distance of the perimeter from the
center r f is determined by the value of r for which p(r)
equals the percolation threshold—i.e., p(r f)5pc , so @21–
23#

r f5l21ln~1/pc!. ~8!

For distances smaller than r f , there is a high concentra-
tion of sites since p(r).pc , and the cluster thus generated
plays the role of the infinite cluster. For distance larger than
r f , we have p(r),pc , so that only isolated clusters exist,
which form the system of small cities surrounding the large
city situated in the core.

The geometrical properties of the external perimeter of
the largest city correspond to the properties of the external
perimeter of the infinite cluster of the percolation problem in
the absence of a gradient @21#. The critical properties of the
clusters can be analyzed in terms of the percolation proper-
ties. Percolation clusters formed below pc are characterized
by a finite connectedness length which is the typical distance
at which two sites are expected to be connected via nearest
neighbor sites „do not confuse with the correlations intro-
duced via Eq. ~6!…. This connectedness length diverges when
the infinite cluster forms at pc , i.e., j;up2pcu

2n, where n
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is the connectedness length exponent. In the case of gradient
percolation the clusters formed below pc for r.r f are char-
acterized by this length, which is now a function of the dis-
tance r:

j~r !;up~r !2pcu
2n. ~9!

Moreover, due to the existence of long range correlation
among the variables the exponent n is not universal, but
changes continuously with the degree of correlation given by
a @18#. We will see that several critical properties of the
percolation clusters change with the correlations.

The width s f of the external perimeter of the largest city
is defined as

s f[^~r2r f !
2&1/2, ~10!

where r f[^r&, and r belongs to the external perimeter of the
central cluster. The width of the external perimeter is a func-
tion of the concentration gradient l and it is known to scale
as @21#

s f;l2n/~11n !. ~11!

The value of n corresponding to the uncorrelated perco-
lation problem is n5

4
3 . However the presence of long range

correlations of type ~6! drastically affects the value of the
connectedness exponent, which is now a function of a ,n(a)
as observed in previous studies of long range correlated per-
colation @17,18#. We have simulated the correlated percola-
tion problem with a gradient, and using Eq. ~11! we find a
drastic increase of n(a) with the increase of the long range
correlations (a→0) @Figs. 3~a! and 3~b!#. In particular n(a)
seems to increase very drastically for a system of strong
correlations a→0. In fact for such a system, we expect a
mean field situation where all sites in the lattice are con-
nected to the rest of the sites. In this case the percolation
threshold for the site percolation problem should be pc
50.5, and the connectedness length should be zero below pc
and infinite above pc .

The scaling of the length of the urban boundary of the
largest city within a region of size l ,

L~ l !;l
De, ~12!

defines the fractal dimension De , which we calculate to have
values De.1.33 for the uncorrelated case, and De.1.4 for
strong correlations (a→0) @Fig. 3~c!#. The small variation
of the fractal dimension of the external perimeter does not
rule out the fact that it may be independent of the correla-
tions. These values are consistent with actual urban data, for
which values of De between 1.2 and 1.4 are measured @6#.

Near the frontier and on length scales smaller than the
width of the frontier s f , the largest cluster has fractal di-
mension d f.1.89, as defined by the ‘‘mass-radius’’ relation

M ~r !;rd f , ~13!

where M (r) is the mass of the cluster inside a region of
radius r. The value d f.1.89 corresponds to the fractal di-
mension of the uncorrelated percolation clusters, and we find
that it is valid independent of the correlations @18#. However,
as a→0 we expect a compact cluster with dimension d f

FIG. 1. Simulations of urban systems for different degrees of
correlation. Here the urban areas are black. In all the figures, we fix
the value of the density gradient to be l50.009. ~a! and ~b! Two
different examples of interactive systems of cities for correlation
exponents a50.6 and 1.4, respectively. The development units are
positioned with a probability that decays exponentially with the
distance from the core. The units are located not randomly as in
percolation, but rather in a correlated fashion depending on the
neighboring occupied areas. The correlations are parametrized by
the exponent a . The strongly correlated case corresponds to small
a (a→0). When a.d , where d is the spatial dimension of the
substrate lattice (d52 in our case!, we recover the uncorrelated
case. Notice the tendency to more compact clusters as we increase
the degree of correlations (a→0). ~c! As a zeroth order approxi-
mation, one might imagine the morphology predicted in the extreme
limit whereby development units are positioned at random, rather
than in the correlated way of ~a! and ~b!. The results for this crude
approximation of a noninteractive ~uncorrelated! system of cities
clearly display a drastically different morphology than found from
data on real cities @such as shown in Fig. 2~a!#. The noninteractive
limit looks unrealistic in comparison with real cities, for the lack of
interactions creates an urban area characterized by many small
towns spread loosely around the core.
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52. The fact that we are unable to see this limit might be due
to numerical limitations near the mean field point a50.

The number of sites of the frontier N f also scales with the
concentration gradient @21#

N f;l2n~d f 21 !/~11n !. ~14!

This relation provides another way of calculating the fractal
dimension d f and the exponent n , which we used to verify
our calculations.

It is important to stress that under the present percolation
picture cities are fractal structures only near the external pe-
rimeter of the largest city, and on length scales smaller than
the width of the frontier defined by Eq. ~10!. The width is a
function of the concentration gradient l @Eq. ~11!#, so that
the larger the spread of the city the larger the region where
the city is fractal. However, at distances close to the center of
the largest city, the cluster is clearly nonfractal since p(r)
.pc , and the cluster becomes compact. On the other side for
larger distances p(r),pc , only small isolated clusters exist
with a definite connectedness length associated with them
@Eq. ~9!#, so that they are not fractal either.

V. AREA DISTRIBUTION OF URBAN SETTLEMENTS

So far, we have argued how correlations between occu-
pancy probabilities can account for the irregular morphology
of towns in a urban system. As can be seen in Fig. 2~a!, the
towns surrounding a large city like Berlin are characterized

by a wide range of sizes. We are interested in the laws that
quantify the town size distribution N(A), where A is the area
occupied by a given town or ‘‘mass’’ of the agglomeration.

We have analyzed the distribution of areas of actual cities,
such as the system of cities surrounding London and Berlin
for different years @Fig. 2~a!#, and we also analyzed the area

FIG. 2. Qualitative comparison between the actual urban data
and the proposed model. ~a! Three steps of the growth with time of
Berlin and surrounding towns. Data are shown for the years 1875,
1920, and 1945 ~from top to bottom!. ~b! Dynamical urban simula-
tions of the proposed model. We fix the value of the correlation
exponent to be a50.05 ~strongly correlated case!, and choose the
occupancy probability p(r) to correspond to the density profiles
shown in Fig. 7. We use the same seed for the random number
generator in all figures.

FIG. 3. ~a! Width of the external perimeter as a function of the
density gradient, s f(l), for several degrees of correlations. ~b!

Connectedness length exponent n(a) as a function of the correla-
tion exponent a calculated from ~a! using Eq. ~11!. The value n

5
4
3 corresponds to the uncorrelated percolation problem (a52).

~c! Fractal dimension of the external perimeter of the largest cluster
as a function of the degree of correlation, De(a).
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distribution of urban systems at larger scales by using the
data of all settlements of Great Britain for the years 1981 and
1991 ~Fig. 4! @28#. In the case of the towns around Berlin
and London, we first digitize the empirical data of Fig. 4.1 of
Ref. @27# @Berlin 1920 and 1945, shown in the last two pan-
els of Fig. 2~a!#, and Fig. 10.8 of Ref. @6# corresponding to
London 1981. Then we count the number of towns that are
covered by A sites, putting the result in logarithmically
spaced bins ~of size 1.2k, with k51,2, . . . ), and averaging
over the size of the bin.

We calculate the actual distribution of the areas of the
urban settlements around Berlin and London, and find @Fig.
6~a!# that for both cities, N(A) follows a power law with an
exponent close to 2:

N~A !;A21.98 ~Berlin, 1920, 1945!, ~15!

N~A !;A21.96 ~London, 1981!. ~16!

Figure 6~b! shows the distribution of all urban areas in Great
Britain for the years 1981 and 1991. We find a power law
with an exponent consistent with the data of London and
Berlin at smaller scales

N~A !;A22.03 ~Great Britain, 1981, 1991!. ~17!

Other studies recently confirmed the validity of these results
for larger length scales, and also for the population distribu-
tions which is known to scale as the occupied area @29#.

These results can be understood in the context of our
model. Insight into this distribution can be developed by first
noting that the small clusters surrounding the largest cluster
are all situated at distances r from the CBD such that p(r)
,pc or r.r f . Therefore, we find N(A), the cumulative area
distribution of clusters of area A, to be

N~A !5E
0

pc
n~A ,p !dp;A2~t11/d fn !. ~18!

Here

n~A ,p !;A2tg~A/A0! ~19!

is defined to be the average number of clusters containing A
sites for a given p at a fixed distance r, and t5112/d f .
Here

A0~r !;j~r !d f;up~r !2pcu
2d fn ~20!

corresponds to the maximum typical area occupied by a clus-
ter situated at a distance r from the CBD, while g(A/A0) is a
scaling function that decays rapidly ~exponentially! for A
.A0 .

In our numerical simulations we find a drastic increase
of n(a) with the increase of the long-range correlations
(a→0) @Fig. 3~b!#. The connectedness exponent n(a) af-

FIG. 4. Urban settlements of all of Great Britain for the year
1981. Every point corresponds to an occupied area of 200
3200 m2. Clusters of occupied areas are defined as the points
connected via nearest neighbors.

FIG. 5. Log-log plot of the area distribution function N(A) cal-
culated for the present model for different degrees of correlation.
From top to bottom, a50.2, a50.8, a51.4, and the uncorrelated
case. The linear fits correspond to the predictions of Eq. ~18! using
the values of n(a) from Fig. 3~b!, and d f51.89.
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fects the area distribution of the small clusters around the
CBD ~Fig. 5!, as specified by Eq. ~18!, and can be used to
quantify the degree of interaction between the CBD and the
small surrounding towns. For instance, for a strongly corre-
lated system of cities characterized by small a , n(a) is
large so that the area A0(r), and the linear extension j(r) of
the towns will be large even for towns situated away from
the CBD. This effect is observed in the correlated systems of
cities of Fig. 1.

In Fig. 6~a! we plot the power law for the area distribution
predicted by Eq. ~18! along with the real data for Berlin and
London and all Great Britain. In particular, the slope pre-
dicted for the uncorrelated system is

N~A !;A22.45 ~uncorrelated model!, ~21!

while for the strongly correlated model it is

N~A !;A22.06 ~strongly correlated model,a→0 !.
~22!

Therefore, we find that the power laws of the area distribu-
tion of actual cities are consistent with the prediction @dashed
line, Fig. 6~a!# for the case of highly correlated systems.
These results quantify the qualitative agreement between the
morphology of actual urban areas and the strongly correlated
urban systems obtained in our simulations. Clearly, the ex-
ponent of the area distribution provides a stronger test of our
model against observations than does the fractal dimension
De of the perimeter.

VI. DYNAMICS

We now discuss a generalization of our static model to
describe the dynamics of urban growth. Empirical studies
@15# of the population density profile of cities show a re-
markable pattern of decentralization, which is quantified by
the decrease of l(t) with time ~see Table 4 in Ref. @30#, and
Fig. 7!. Therefore the dynamics in the model are quantified
by a decreasing l(t), as occurs in actual urban areas. In the
context of our model, this flattening pattern can be explained
as follows. The model of percolation in a gradient can be
related to a dynamical model of units ~analogous to the de-
velopment units in actual cities! diffusing from a central seed
or core @21–23#. In this dynamical system, the units are al-
lowed to diffuse on a two-dimensional lattice by hopping to
nearest neighbor positions. The density of units at the core

FIG. 6. ~a! Log-log plot of the area distribution N(A) of the
actual towns around Berlin and London. We first digitize the em-
pirical data of Fig. 4.1 of Ref. @27# @Berlin 1920 and 1945, shown in
the last two panels of Fig. 2~a!#, and Fig. 10.8 of Ref. @6# ~London
1981!. Then we count the number of towns that are covered by A
sites, putting the result in logarithmically spaced bins ~of size 1.2k,
with k51,2, . . . ), and averaging over the size of the bin. A power
law is observed for the area distributions of both urban systems.
The dotted line shows the predictions of our model for the uncor-
related case ~the slope is 2.45!, while the dashed line gives results
for the strongly correlated case ~the slope is 2.06!. Note that the
area distributions for both cities agree much better with the strongly
correlated case (a→0). ~b! Log-log plot of the area distribution of
all the urban areas in Great Britain in 1981 and 1991. The data fit to
a power law of exponent 2.03. Notice also the very small changes
of the urbanareas in a ten year period.

FIG. 7. Semilog plot of the density of occupied urban areas
rA(r)5e2lr for the three different stages in the growth of Berlin
shown in Fig. 2~a!. Least square fits yield the results l.0.030, l

.0.012, and l.0.009, respectively, showing the decrease of l

with time. We use these density profiles in the dynamical simula-
tions of Fig. 2~b!.
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remains constant: whenever a unit diffuses away from the
core, it is replaced by a new unit. The density of units can be
mapped to the density of occupied urban areas

rA~r !5e2lr, ~23!

which in turn is proportional to the population density r(r)
@6#. A well-defined diffusion front, defined as the boundary
of the cluster of units that is linked to the central core,
evolves in time. The diffusion front corresponds to the urban
boundary of the central city. The static properties of the dif-
fusion front of this system were found to be the same as
those predicted by the gradient percolation model @21–23#.
Moreover, the dynamical model can explain the decrease of
l(t) with time observed empirically. As the diffusion front
situated around r f moves away from the core, the city grows
and the density gradient decreases since l(t)}1/r f .

These considerations are tested in Fig. 2~b!, which shows
our dynamical urban simulations of a strongly interacting
system of cities characterized by a correlation exponent a
50.05 for three different values of l obtained from the data
of Berlin from Fig. 7. Qualitative agreement is observed be-
tween the morphology of the cities and towns of the actual
data of Fig. 2~a! and the simulations of Fig. 2~b!.

VII. DISCUSSION: URBAN PLANNING

Throughout this century, the dominant planning policy in
many western nations has been the containment of urban
growth. This has been effected using several instruments,
particularly through the siting of new settlements or new
towns at locations around the growing city which are consid-
ered to be beyond commuting distance, but also through the
imposition of local controls on urban growth, often coordi-
nated regionally as ‘‘green belts’’ @31#. One of the key ele-
ments in the growth models we have proposed here is the
characteristic length scale over which growth takes place. In
the case of the gradient percolation model, correlations occur
over all length scales, and the resulting distributions are frac-
tal, at least up to the percolation threshold.

In examining the changing development of Berlin in Fig.
2~a!, it appears that the fractal distribution remained quite
stable over a period of 70 years, and this implies that any
controls on growth that there might have been do not show
up in terms of the changing settlement pattern, implying that
the growth dynamics of the city are not influenced by such
control. A rather different test of such policies is provided in
the case of London, where a green belt policy was first es-
tablished in the 1930s and rigorously enforced since the
1950s. The question is whether this has been effective in
changing the form of the settlement pattern. First, it is not
clear that the siting of new towns beyond London’s commut-

ing field was ever beyond the percolation field, and thus it is
entirely possible that the planned new settlements in the
1950s and 1960s based on existing village and town cores
simply reinforced the existing fractal pattern.

In the same manner, the imposition of local controls on
growth in terms of preserving green field land from develop-
ment seems to have been based on reinforcing the kind of
spatial disorder consistent with morphologies generated
through correlated percolation. The regional green belt
policy was based on policies being defined locally and then
aggregated into the green belt itself, and this seems to sug-
gest that the morphology of nondevelopment that resulted
was fractal. This is borne out in a fractal analysis of devel-
opment in the London region which suggests that the policy
has little impact on the overall morphology of the area
@6,32#. Moreover, we note that the coincidence between the
settlement area distribution for different cities and different
years ~Berlin 1920 and 1945, and London 1981! suggests
that local planning policies such as the green belt may have
a relatively low impact on the distribution of towns. Our
model suggests that the area distribution is determined by the
degree of interactions among development units, and that its
scaling properties are independent of time. Current debates
on urban growth have now shifted to the development of
brownfield sites in cities, and it would be interesting to quan-
tify the extent to which such future developments might re-
inforce or counter the ‘‘natural’’ growth of the city as im-
plied in these kinds of models.

To develop more detailed and conclusive insights into the
impact of urban policies on growth, it is necessary to develop
the model further. This model implies that the area and size
distributions, the degree of interaction among dependent
units of development, and fractal dimension are independent
of time. The only time dependent parameter is the gradient
l , and it appears that we might predict future urban forms
simply by extrapolating the value of l in time. However, we
have yet to investigate the influence of topography and other
physical constraints on development, the influence of trans-
port routes and the presence of several ‘‘independent’’ cen-
tral cores or CBD’s in the urban region.

These models can also be further adapted to predict bond
as well as site percolation, and in future work we will ex-
plore the extent to which such interactions between sites and
cities might be modeled explicitly. Our interest in such ex-
amples is in the universality of the exponents that we have
demonstrated here, and which we wish to relate to the impact
of urban planning policies.
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