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Porous media, such as sedimentary rocks, have complex permeability fluctuations arising from the physical
processes that formed them. These permeability fluctuations significantly affect the flow of fluids through the
rocks. We analyze data on two sandstone samples from different environments, and find that the permeability
fluctuations display long-range power-law correlations characterized by an exponent H>1/2. For both
samples, we find similar values of H, H~0.82—0.90, suggesting that the permeability in porous sandstone is
not spatially uncorrelated as is generally assumed. [S1063-651X(96)11310-6]

PACS number(s): 64.60.Ak

I. INTRODUCTION

Granular materials are the objects of increasing interest
for the physics community [1,2]. In particular, statistical
physics has been a source of ideas, models, and techniques
for studying static and dynamic properties of disordered and
heterogeneous structures. Problems such as oil recovery and
flow originating from the geophysical sciences [3] appear to
be related to fluid flow in disordered media [4,5], percolation
[6,7], fractals and lattice models [8], processes of diffusion
[9], interfaces [10], scaling, self-affinity, and self-similarity
of properties of porous media [11].

Permeability variations in disordered media such as sedi-
mentary rocks are extremely important in predicting fluid
flow in porous media. Permeability can change by many or-
ders of magnitude over very short distances. Not only are
there large fluctuations in permeability, but the permeability
can exhibit strong spatial anisotropy. Deriving a mathemati-
cal representation to describe these spatial fluctuations in
permeable rocks is a major challenge, and is also technologi-
cally important as efficient oil recovery depends on the abil-
ity to describe and predict flow through porous rock.

Hewett [12] has shown the existence of long-range spatial
correlations in porosity values. Porosity is a measure of the
volume fraction of the void space, while permeability is a
transport coefficient relating flux to pressure gradient. For
well-sorted, clean sands, porosity is independent of grain
size while the permeability is proportional to the square of
the particle radius. However, for poorly sorted nonclean
sands, permeability is not a function of porosity alone [4,13].
Hence, it is not possible to predict permeability based on
simple empirical correlations with porosity, since permeabil-
ity may vary by several orders of magnitude for a given
porosity [13]. Here, we study permeability values rather than
porosity, because permeability directly affects fluid flow, and
therefore it is more relevant than porosity when studying
fluid flow in porous media.

Only recently, the effects of correlations on the structure
and dynamical properties of the media have been considered
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in models of fluid flow in porous media [14] such as invasion
percolation [15], and diffusion limited aggregation [16] in
lattices whose occupied sites are correlated [17], and in per-
colation models [18,19]. Permeability fluctuations are tradi-
tionally modeled assuming correlations of finite range [20].
Long-range spatial correlations in permeability would affect
the large-scale flow in a porous medium, so it is of practical
as well as theoretical importance to distinguish between
long-range and short-range correlations [21]. Here we ana-
lyze detailed permeability maps, and present experimental
evidence for the existence of long-range correlations, which
is relevant to some of these theoretical models.

Specifically, we investigate two different sedimentary
rock samples. One (denoted Ho) is fluvial sandstone from
Hollington near Stafford in the East Midlands of England
[13]. The second sample (denoted Lo) is aeolian sandstone
from Locharbriggs near Dumfries, Scotland. Although the
geological process is different for both samples, in both
cases size segregation of particles occurs by avalanches—
modified by fluid flow in the Ho case. We find the exponents
characterizing the long-range correlations in the permeability
values are the same, within errors bars, for both types of
sandstone (fluvial and aeolian).

II. THE SAMPLES

Sample Ho, shown in Fig. 1, results from the migration of
““sand bars’’ (accumulations of sand) along a river bed [3].
The current progressively moves sand from the upstream
side of the sand accumulation to the downstream. On reach-
ing the downstream side, the sand will roll down this face
once a critical angle is exceeded. There is a degree of turbu-
lence or eddying at the downstream face. This results from a
higher flow rate at the top of the face and a lower rate at the
base. Hence, grains toward the top of the downstream slope
are better sorted, and so have lower packing. Those at the
base are more poorly sorted, resulting from a mixture of
larger grains rolling down the face and finer material drop-
ping out of suspension. The degree of permeability contrast

3129 © 1996 The American Physical Society



3130

200.0 400.0

x [mm]

C

2000 4000 6000
(b) permeability [mD]

FIG. 1. (a) Photograph of one of the slabs for the sample Ho.
The complete sample consists of two slabs, measuring 474 mm by
276 mm and 10 mm thick. Three faces at heights z=0, z= 10, and
z=20 mm were used to study the permeability pattern (the z=0
face is shown in this figure). Unfortunately the measurements of
one face were corrupted by instrumentation error and so only three
faces could be used. (b) Permeability map of (a). The permeability
was measured every 10 mm in the x direction and every 4 mm in
the y direction, so a grid of n,=48 by n,=69 permeability values
was obtained.

between the top and base of the bed depends on a combina-
tion of stream velocity, turbulence, and available grain sizes.

In Fig. 1 can be seen a sharp boundary between three
regions. These represent where one sand bar has been over-
ridden by another, partially eroding the top of the lower unit.
This has occurred twice, as we can notice from the figure.
Two of the zones are similar in character and have higher
permeability, whereas the third has consistently lower per-
meability. We therefore treat the sample as having two zones
of “*high’’ and one zone of ‘‘low’’ permeability.

Sample Lo is shown in Fig. 2. The sedimentary rock was
formed by windblown sand [22]. The wind transports the
sand to the crest of the dune, and when the sand exceeds a
critical angle it avalanches. In these avalanches the fine and
coarse grains systematically segregate [23]. The resulting
layers are clearly seen in Fig. 2. In this case the eddying fluid
(air) on the downstream face has insufficient energy to influ-
ence the avalanching process, resulting in the face being pla-
nar rather than convex as in the fluvia sample. In this sys-
tem, grain size range and permeability are relatively constant
parald to the laminations. Again, merging of dunes gives
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FIG. 2. (a) Photograph of the face z=0 of the sample Lo. The
complete sample consists of two slabs of 448 mm by 246 mm and
10 mm thick, and again only three faces were used in this study. (b)
Permeability map of (a). The permeability was measured every 12
mm and 4 mm in the x and y directions, respectively, so that a grid
of n,=38 by n,=61 was obtained. Notice the strong anisotropy of
this sample manifested by the crests elongated along the y’ direc-
tion.

rise to sharp transitions in permeability, so there are two
zones. We notice also a strong spatial anisotropy in the high
permeability zone of this sample.

I1l. CORRELATIONS

The minipermeameter is a tube through which a gas (air
in laboratory measurements such as ours) is blown into the
rock sample at a fixed pressure [24]. We use this technique to
measure the permeability on the small scale of both rock
samples. The flow rate of the gas into the rock sample is
measured. The permeability k is then the ratio of the flow
rate @ to the pressure drop AP (which is applied pressure
minus atmospheric pressure) multiplied by the viscosity of
the gas w,

k=—-—. (1)

Corrections must be made for the compressibility of the
gas and the flow geometry, which is hemispherical from the
injection point. The end of the permeameter in contact with
the rock is made of a flexible plastic ring to ensure a good
seal. The probe comes in a variety of sizes to measure per-
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FIG. 3. Normalized permeability distributions for the sample Ho
corresponding to (a) low permeability zone, and (b) high permeabil-
ity zone. In both figures we plot the distributions corresponding to
three different faces of the sample. The distributions are fitted by
Gaussian functions. We notice the large difference in the mean
value of the permeability between the low and high permeability
ZOnes.

meability fluctuations on different length scales; for our mea-
surements the probe had a 1 cm diameter.

The permeability maps so obtained are shown in Figs.
1(b) and 2(b). By inspection, we see that local permeability
varies significantly within a very short length scale, suggest-
ing that the permeability may not be an independent random
process.

We plot the permeability histograms for the sample Ho in
Fig. 3. The high permeability zone has a typical permeability
of 3300 mD, while the low permeability zone has a typical
permeability of 30 mD. Local permeability is proportional to
the square of the grain radius for uncompacted, well-sorted,
clean, quartzite sandstone. The high permeability zone con-
sists of interbedded fine and coarse grain material and hence
has a much higher variability. The low permesbility zone is
more homogeneous, consisting of more exclusively fine
grained material.

Next we measure the spatial correlations in permeability.
We study the correlations of the permeability field k(i,j)
(i,j=1,...,ny,ny) along the x and y directions [see Fig.
1(b)]. To this end, we first integrate the permeability vari-
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ables along both directions separately, by calculating the
“net displacements” x;(/) and y;(~),

/
x,—(/)zgl[k(i,j)—ﬁ] (=1,...

ny), (29
and
/ —_—
yi(/)Ej;[k(i,j)—k(i)] (i=1...,n), (2b)
where  k(j)=(Un)=™ k(i,j) ad  k(i)=(1n,)

xE?ilk(i,j). The spatia average over a window of size
/ is denoted by the overbar, and the disorder average over
different displacements (x; and y;) is denoted by the angular
brackets.

Next we calculate the variance

V() =(x(/2=X(/) )12 (39

and
VU= =y(7) )2 (30)

as a function of the lag /. The scaling behavior of the vari-
ance

V() =M, ()~ (4)
can distinguish between short- and long-range correlations
since for uncorrelated permeability variables, H=1/2, while
1/2<H<1 implies persistent long-range correlations among
the variables. The correlation exponent H describes the
“‘roughness of the permeability landscape’’ [11], and is usu-
aly called the Hurst exponent for the associated fractional
Brownian motion (fBm) [25] x;(/) and y;(/) defined by
Eg. (2). However, we note that the original permesbility
k(i,j) is fractional Gaussian noise (fGn) [25,26]. Therefore,
in anumerical study of the effect of long-range correlations
in porous media, one must generate the permeability values
from a fGn [19] and not from a fBm [14]. A method to
generate long-range correlated variables for large systems is
described in [27].

The method described so far is caled rms fluctuation
analysis which, however, is known to fail if (i) the signal is
nonstationary [28], or (ii) the signal is highly correlated
H=1 [29]. In case (i), the rms method detects spurious cor-
relations due to the patchiness of the signal [28], while in
case (ii) the rms method gives smaller effective exponents
(in particular when small samples are used) because the vari-
ance has an upper bound V(/) </ and therefore the method
cannot detect fluctuations with exponent H=1 [29]. In our
case we find that, apart from possible nonstationarities, the
permeability values are strongly correlated.

To overcome the limitations of the rms method, we will
analyze the spatial correlations of the permesability by using
detrended fluctuation analysis (DFA) [28] and wavelet analy-
sis [30]. The DFA method [28] consists of subtracting the
local trend (defined as the ordinate of a linear least-squares
fit to the permeability values) in each window of size /
defined in (2).
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FIG. 4. Log-log plot of the normalized variances of the perme-
ability calculated using the DFA method. (a) Variances V,(/) and
V(7)) dong the x and y directions, respectively, averaged over the
three different faces of the sample, and averaged over the high and
low permeability zones together for V,(/), and over the high per-
mesbility zone for V(). The power-law relationship between the
variance and the separation distance / is characterized by expo-
nents H,=0.89+ 0.06 and H,=0.90+ 0.06. The exponents are the
same within error bars indicating the isotropy of the correlations in
the xy plane. (b) Variance V,(/) caculated along the x direction
for the high and low permeability zones, separately. Data are aver-
aged over the three different faces of the sample. Both sets of data
are consistent with a power law H,=0.89, showing that the spatial
correlations are the same in both zones.

The wavelet transform (WT) of a given function f(x) is
defined as

X—Xg

dx, (5)

1 (=~
Tutxo@)=2 [ 100w

where ¥ is the analyzing wavelet, x, the translation param-
eter, and a the scale parameter. After performing the WT
with a wavelet analyzer given by the first derivative of the
Gaussian function, we can determine the values x;(a) at
which Ty haslocal extrema. The sum of the absolute values
of the local extrema raised to the power g exhibits power-
law dependence on the scale a,
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FIG. 5. Log-log plot of the normalized variance calculated along
they’ for the high permeability zone of sample Lo, averaged over
the three different faces of the sample. Along the y’ direction, a
correlation exponent of H=0.85=0.06 is found. However, along
the x” direction, a periodic pattern is observed. Thus the anisotropy
in this sample is manifested in a change of behavior from long-
range correlation scaling along y' to periodic morphology along

’

X",

Z(a,q>z{2} Ty (x(a),8)|9~a™?, (6)

xi(a)

defining the exponent 7(q).

The function Z(a,q) is directly related to the scaling
properties of the qth moment of the signal f(x). For certain
values of g, the exponents 7(q) have known meaning. In
particular 7(2) is related to the scaling exponent of the Fou-
rier power spectra: S(f)~f~# with B=2+ 7(2), and there-
fore

7(2)=2H-1. (7)

Thus 7(2)>0 indicates the presence of long-range correla-
tions (H>1/2), and 7(2)=0 (H=1/2) indicate the absence
of correlations. The wavelet method is free from restrictions
related to nonstationarities and to the presence of large cor-
relations [30]. The elimination of nonstationarities from the
signal — accomplished by the wavelet transform — is im-
portant since the observation of an exponent H>1/2 might
be an artifact of a systematic smooth variation, or linear
trend (H=1) in the data plus the effects of random fluctua-
tions (H=1/2). In this case a nonstationarity in the signal
might be confused with the existence of long-range correla
tions.

The results for the permesbility correlations for the
sample Ho are shown in Fig. 4. In Fig. 4(a), we show the
correlations for both high and low permeability zones, mea
sured in the x and y directions. In this case, before calculat-
ing the variance, the permesbility is normalized by dividing
by the standard deviation calculated independently for each
direction. The data are consistent with power-law correla
tions; using the DFA method, we find

H,=0.89=x0.06,

H,=090+0.06 (Ho:DFA). (8a)
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Results for the correlations along the x direction are
shown separately for the high and low permeability zones in
Fig. 4(b). The correlations are satisfactorily modeled by a
power law with H,=0.89, independent of the magnitude of
the overall permeability. These values are confirmed, within
the error bars, using the wavelet analysis. We find that

Hx=0.82*0.06, H,=0.84+0.06 (Ho: Wavelet). (8b)

As seen in Fig. 2, the high permeability zone of sample Lo
presents strong anisotropy with anisotropic axes (x’,y’) not
coincident with the coordinate frame (x,y) [see Fig. 2(b)].
We calculate the variance along the y’ direction (paralel to
the direction of the crests) and find (Fig. 5) using the DFA
method

Hy,,=0.85+0.06 (Lo:DFA) (9a)

avalue that is consistent with our findings for the sample Ho.
Using wavelet analysis, we find

Hy=0.84+0.06 (Lo: Wavelet). (9b)
Along the x’ direction a periodic morphology is observed
with a wavelength of about 60 mm. This introduces a char-
acteristic length scale so that no scale invariance power-law
correlations are expected along this direction. The existence
of this laminar periodic structure is consistent with a depo-
sitional model of sand dune dynamics [23].

Thus for both methods we find that H> 1/2, thereby dem-
onstrating the presence of long-range correlations in the Ho
and Lo samples. The fact that we find no upper cutoff in the
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variances plotted in Figs. 4 and 5 indicates that the correla-
tions might extend beyond the length of the samples used in
this study. However, it should be noted that at larger length
scales the nature of the correlations might be modified by the
stratified structure of the rock [31].

IV. DISCUSSION

Spatial fluctuationsin rock permeability exist, and require
quantitative methods to describe them. We have shown that
permeability correlations in two different rock samples are
scale invariant and can be well described using a power-law.
Further, the exponent is quite similar for the two samples
studied, Ho and Lo. The essential physical feature in the
formation of these two samples is avalanching of the sand
grains, which gives rise to segregation and aternation in the
fine and coarse material [23]. It is possible that this mecha-
nism may explain the apparent universality in the power-law
correlations for these rock types. These spatia fluctuations
have significant consequences for prediction of, e.g., il re-
covery in reservoir rocks. For example, the fact that there
exist long-range correlations implies that the spread in con-
taminant transport could be much faster (‘‘enhanced diffu-
sion’’ [32]) than would be predicted from a short-range cor-
relation model.
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