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• We consider a delayed nonlinear model of the dynamics of the immune system against a viral attack which undergoes mutation.
• A finite time response of the immune system was considered.
• The delays induce sustained oscillatory behavior and also chaotic behavior.
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a b s t r a c t

We consider a delayed nonlinear model of the dynamics of the immune system against a
viral infection that contains awild-type virus and amutant.We consider the finite response
time of the immune system and find sustained oscillatory behavior as well as chaotic
behavior triggered by the presence of delays. We present a numeric analysis and some
analytical results.

© 2017 Published by Elsevier B.V.

1. Introduction

We consider a nonlinear set of delay differential equations (DDEs) tomodel the interaction of the immune systemwith an
external pathogen, e.g., a viral infection. Ourmodel follows one presented in Ref. [1] in which a time delay takes into account
the non-instantaneous immune response caused by a sequence of events (e.g., activation of antigenic response or production
of immune cells) that occurs within a finite time period. In addition, the presence of sustained aperiodic oscillations and
chaotic trajectories observed in real data [2–4] indicates that time delays are needed to allow bifurcations that cause chaotic
behavior even in models that are one- and two-dimensional [5]. In ordinary differential equations (ODEs) a minimum set of
three coupled equations is required.

Because the fundamental underlying mechanisms are non-instantaneous, several biological models have recently been
modeled using delay differential equations. Among these are a predator preymodelwith delays [6], amodel for the dynamics
of the hormonal control of the menstrual cycle [7], a model for human respiration [8], a model for dioxide carbon levels in
the blood [9,10], and a number of models for viral dynamics [1,2,5,11–21].
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In previous research [2] we analyzed the cellular immune response and found that stationary solutions bifurcate to an
unstable fixed point when delays are longer than a critical immune response time τc . We found that increasing the time
delay causes the system to suffer a series of bifurcations that can evolve into a chaotic regime.We used two coupled delayed
equations to model the interaction of the immune system with a target population [5]. We used some analytical tools to
analyze delayed systems [11], and we published new results for the model originally presented in Ref. [2]. Here we consider
a three-dimensional version of a model that previously appeared in the literature [1,22] for the dynamics of the population
of virus y(t) and of immune cells z(t), and also a mutant population of virus ym(t).

Delay differential equations require both the initial conditions and the history of the dynamic variable values of t < τ .
Because we are using models with discrete delays, τ is constant. This is in contrast to a system with distributed delays in
which

∫ t
t−r k(t − s)x(s)ds =

∫ r
0 k(z)x(t − z)dz, where 0 ≤ r ≤ ∞ is the distributed delay and the kernel k is normalized,

and thus
∫

∞

−∞
k(y)dy = 1. For an identically null k(u), ∀u > umax the delay can be represented by integrals of type∫ t

−∞
M1(s)k(t − s)ds =

∫
∞

0 M1(t − u)k(u)du. These are ‘‘bounded delays’’ because they represent the values of M1 at a
past time (t − umax, t). A discrete delay is a particular kind of bounded delay. More complicated forms are also possible,
e.g., delays of type x(t − r[x(t)]) distributed over space.

Introducing delays allows us to model richer behavior, e.g., the well-known logistic equation governing the dynamics of
a population density N(t): Ṅ(t) = N(t)

(
1 −

N(t)
K

)
, with r the growth rate and K the carrying capacity. Note that for every

initial conditionN(0) the system ultimately reaches the stable equilibriumN(t) → K . A delayed version of this model can be
used for a species population that gathers and stores food, i.e., when resources vanish, the species population starves within
finite time τ . Ref. [23] assumes this and analyzes the delayed system Ṅ(t) = N(t)r

(
1 −

N(t−τ )
K

)
. This delayed version of the

logistic equation canmodel chaotic behavior that instantaneous one dimensional models cannot because ODE systems need
at least a three-dimensional state space to model chaos, as demonstrated in Lorenz’s seminal work [24]. Here the number
of initial conditions is equal to the number of degrees of freedom. In delayed systems the number of degrees of freedom is
infinity and chaos occurs in even one dimensional systems, as in the case for one-dimensional non-invertible maps.

We present the model in the next section. In Section 3 we present some analytical and numeric results, and in Section 4
we present our conclusions.

2. Model

Our model is based on research described in Refs. [1,22] that uses a two-dimensional model for the dynamics of the
population of virus y(t) and of immune cells z(t). We use time-lagged response for the immune system, following previous
research demonstrating its importance in the appearance of the Hopf bifurcations [3], chaotic trajectories [2], and sustained
oscillatory behavior rarely seen in the instantaneous version of the model [4]. Here we extend the model to a spreading
population of mutant virus ym(t),

ẏ = r(1 − α)y(t)
(
1 −

y(t)
K

)
− ay(t) − py(t)z(t) (1)

ẏm = αmrmym(t)
(
1 −

ym(t)
Km

)
− amym(t) − pmym(t)z(t)

ż =
cy(t − τ1)z(t − τ1)
1 + dy(t − τ1)

+
cmym(t − τ2)z(t − τ2)
1 + dmym(t − τ2)

− qy(t)z(t) − qmym(t)z(t) − bz(t),

where r(1 − α) is the growth rate of the viral population for y ≈ 0. This rate decreases and reaches zero when the virus
population equals K . The virus population decays with a. We then have a net rate of r(1 − α) − a and a carrying capacity
of K (r(1−α)−a)

r(1−α) . The viruses are eliminated by cells of the immune system according a rate p. The term ym represents the
concentration of the mutant viruses. Its net growth rate and carrying capacity are, respectively, rmαm − am and Km(rαm−a)

rαm
.

They are eliminated at a rate pm. The immune cell concentration z grows proportionally to the virus population according to
a saturation term. The τ2 value is the delay in the immune response to the viral infection. The delay τ1 refers to the processes
used by the organism to prepare the cells to fight the virus. Immune cells are attacked and destroyed by the original viruses
and their mutant version with rates q and qm, respectively. The terms 1/(1 + dy(t − τ1)) and 1/[1 + dmym(t − τ2)] shows
that the immune response is proportional to the product of the virus (either y or ym) and the population of immune cells z,
but saturates when the virus population is higher. Numerical estimations of the parameters are provided in Ref. [22].

r = 6 day−1, K = 3 virus mm−3, p = 1 mm3 cells−1 day−1,
a = 3 day−1 , c = 4 mm3 virus−1 day−1, d = 0.5 mm−3 virus−1,
b = 1 day−1, q = 1 mm−3 virus−1 day−1.

Identical numeric values are assumed for Km, rm, am, cm, dm, and qm. The pm = 0.9 < p value is an exception because
here it is more difficult for the immune system to eliminate cells infected by the mutant virus. We also assume α = 1 and
αm = 0.05, which indicates that the mutation is a residual portion of the replication mechanisms.
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3. Results

Ref. [1] presents several analytical results for the two-dimensional version presented in (1), which does not take into
account the mutant population ym. Because our model is three-dimensional it is cumbersome to analyze, and we focus on
numeric results. Similar to the procedure used in the logistic map, we focus on the emergence of bifurcations and chaos as
time-delay values increase. The system in (1) has a total of 11 equilibrium points. Six are facial points (with at least one null
component). Those with simple algebraic expressions are

y = 0, ym = 0, z = 0;

y = 0, ym =
Km(rm − am)

rm
, z = 0;

y =
K (αr + a − r)
r(−1 + α)

, ym = 0, z = 0.

(2)

The others present cumbersome algebraic expressions, which we omit here for sake of simplicity.
Note that the stability of the fixed points of a n-dimensional systemwith k delays can be analyzed using the usual Jacobian

evaluated at the equilibrium point [11]. Each ẋi, i = 1, . . . , n be written

ẋi =

k∑
j=1

F i
j

(
x1(t − τj), x2(t − τj), . . .

)
.

Performing a series expansion around the equilibrium point x∗
= (x∗

1, . . . , x
∗
n), we obtain for each xi, i = 1, . . . , n

ẋi ≈

k∑
j=1

(
F 1
j (x1, . . .)|x∗ +

∂F i
j

∂x1
|x∗ (x1(t − τj) − x∗

1) +
∂F i

j

∂x2
|x∗ (x2(t − τj) − x∗

2) + · · ·

)
.

We then have a linear system of variables x̃i ≡ xi − x∗

i with k Jacobian matrices that take the form

Jj =

⎡⎢⎢⎢⎢⎢⎣
∂F 1

j

∂x1

∂F 1
j

∂x2
· · ·

...
...

...
∂F n

j

∂x1

∂F n
j

∂x2
· · ·

⎤⎥⎥⎥⎥⎥⎦ ; (3)

evaluated at the fixed points. The stability of a particular fixed point is determined by the eigenvalues of its corresponding
Jacobian. Bifurcations occur whenever one eigenvalue crosses the imaginary axis as one or more parameters, including the
delays, change. Typical bifurcations involve a turning point when the eigenvalue is initially null, and a Hopf bifurcationwhen
a pair of complex eigenvalues crosses the imaginary axis [11].

The general expression for the Jacobian is

J =

⎡⎢⎢⎢⎢⎢⎣
r(1 − α)(1 −

2y∗

K
) − a − pz∗ 0 −py∗

0 αmrm(1 −
2ym
Km

) − am − pmz∗
−pmy∗

m(
cz∗

(1 + dy∗)2
− qz∗

)
e−λτ1

(
cmz∗

(1 + dmym)2
− qmz∗

)
e−λτ2

cy∗

(1 + dy∗)
+

cmy∗
m

(dmy∗
m + 1)

− qy∗
− qmy∗

m − b

⎤⎥⎥⎥⎥⎥⎦
(4)

The Jacobian for the origin is thus

J̃ =

[r(1 − α) − a 0 0
0 rm − am 0
0 0 −b

]
, (5)

which holds for all values of τ1, τ2. The eigenvalues are−αr−a+r , rm−am, and−b. Stability (with only negative eigenvalues)
can be achieved for smaller r and rm (the viral growth rate), and larger a, am (the natural population decay of the virus). Here
ultimately the system loses all of its viruses and has no immune cells irrespective of the delay. For the set of parameters
chosen here, however, the origin is unstable ∀τ1, τ2. Note that for the three fixed points in (2) the stability is unchanged
when there are non-null delays. This can be seen from (4) by substituting z = 0. Note that r − α, r − a, and −rm + am are
common eigenvalues, a condition that renders the origin unstable for all three.

For null delays and the chosen set of parameters, only two of the 11 equilibria are stable. Because y, ym and z are densities
and therefore positive quantities, one stable equilibrium is physically irrelevant: y = 5.568989996, ym = 5.046486447, and
z = −7.88108099. The other stable equilibrium is the spiral focus (SF): y = 0.06265629108, ym = 0.3385711289, and
z = 2.580953047. For the parameters used, the remaining equilibria are all unstable and comprise six facial equilibria and
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Fig. 1. Phase portraits for the case τ1 = τ2 = τ . In (a) we have τ = 0. In (b) τ = 0.2, τ = 5 in (c) and (τ = 15) in (d).

two physically-irrelevant equilibria that have at least y < 0 or ym < 0 or z < 0. Here we focus on how increasing the value
of the time delay alters the stability of the stable SF solution.

A theorem presented in Ref. [25] describes the conditions for switches in stability when there are delays and finds a
critical τ ∗ > 0 above which the equilibrium point is always unstable. The theorem states:

Theorem 1. Let a characteristic equation of a given fixed point be written R(λ)+S(λ) exp(−λτ ) = 0. R(λ) and S(λ) are analytical
in the right half plane and ℜλ > −δ, δ > 0. When the following properties hold:

(i) R(λ) and S(λ) have no common zero;
(ii) R(−Is) = R(Is), S(−Is) = R(Is), where the bar indicates the conjugate and I =

√
( − 1);

(iii) R(0) + S(0) = 0;
(iv) The half right plane possesses at most a finite number of roots of R(λ) + S(λ) exp(−λτ ) = 0 when τ = 0; and
(v) F (y) = |R(Iy)|2 − |S(Iy)|2 when real y has at most a finite number of zeros.

Then the following statements are true:

(a) If F (y) = 0 has no positive real roots, and if the associated fixed point is stable (unstable) for null delays, it will remain stable
(unstable) for all delays.

(b) If F (y) = 0 has at least one positive root and all roots are simple, stability switches can occur with increasing τ . There exists
a τ ∗ > 0 above which the fixed point is unstable for all τ > τ ∗. As τ varies from zero to τ ∗ at most a finite number of
stability switches may occur.
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Fig. 2. The same model considered in [1], with the same set of parameters used in our model (1). Some windows of regular behavior are observed.
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Fig. 3. Bifurcation diagram in function of τ1 for τ2 = 0. Chaotic behavior is not observed.

Ref. [5] used this theorem to analyze their model. Here we consider equal delays τ1 = τ2 = τ . The Jacobian of the spiral
focus stable equilibrium (y = 0.06265629108, ym = 0.3385711289, z = 2.580953047) is

JSF = (−0.4825880248 − 1.960851071λ) exp(−λτ ) − 0.7961892098λ2
− λ3

− 0.08061172163λ + 8.0611722431̇0−11. (6)

This equation is clearly of type R(λ) + S(λ) exp(−λτ ). Thus F (Iy) = |R(Iy)|2 − |S(Iy)|2 yields

FSF = 0.4726938145y4 + y6 − 3.838438673y2 − 0.2328912017. (7)

The roots of this equation are ±1.330454624, ±0.2455259061I, ±1.477335558I , and thus the condition b of item v of the
theorem holds. Fig. 1 shows the expected stability switches. We plot z(t) versus y(t) for τ1 = τ2 = 0 (the stable case),
τ1 = τ2 = 0.2, τ1 = τ2 = 5, and τ1 = τ2 = 15. There is still stability for delay τ = τ1 = τ2 = 0.2, but this is lost in τ = 5 and
τ = 15. These results demonstrate how the introduction of delays can change the stability of a stable solution and promote
a richer dynamics for the system.

For the sake of comparison, we use the two-dimensional model proposed in Ref. [1] (which has no mutant virus) and
plug ym = 0 and Km, rmam, cm, dm, qm, τ2 = 0 into (1). Fig. 2 shows the maxima values of z(t) versus τ1. Note that there is a
series of bifurcations that switches between sustained oscillations and chaotic behavior, with windows of periodic behavior
(e.g., around τ1 = 14).

Whenwe use the term cmym(t)z(t)
1+dmym(t) with τ2 = 0 to introduce themutant component into ourmodel, it changes the dynamics

of (1). Fig. 3 shows that periodic orbits are present but not chaotic behavior. Although merely inserting a new equation into
the system does not enrich the dynamics, the situation changes completely when τ2 ̸= 0. Fig. 4 shows that this time delay
causes more complex patterns to emerge, including regions of chaotic behavior.
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Fig. 4. The maximum z(t) as function of τ1 for fixed τ2 . The presence of τ2 allows the emergence of chaotic behavior. In 4(a), τ2 = 5. In 4(b), τ2 = 10. In
4(c), τ2 = 20.

4. Conclusion

We have considered a nonlinear set of delay differential equations to model the interaction between an immune system
and an external pathogen, e.g., a viral infection.Weextend thepreviousmodel considered in [1] by introducing anewvariable
that takes into account mutant viruses. We find a series of bifurcations that lead to chaotic behavior, an outcome that agrees
with the results observed in real data [2–4] and that corroborates previous work indicating the need for the time delays that
generate richer behavior [1].
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