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A b s t r a c t  - We propose an algorithm to generate a sequence of numbers with long-range 
power-law correlations which is well-suited for large systems. Starting with a set of  random 
uncorrelated variables, we modify its Fourier transform to get a new sequence with long- 
range correlations. By mapping the variables to a one dimensional random walk problem we 
find analytical and numerical evidence of the existence of correlations in the whole system. 
We exemplify the method by applying it to a generalized percolation problem where the oc- 
cupancy variables are generated from a long-range correlated sequence. 

1 In troduct ion  

Disorder in various real systems in nature is found to be usually long-range correlated. Numerical studies of 
such systems rely on the numerical methods used to generate the correlated noise. Recently [1] an algorithm 
to generate correlated noise has been proposed. Due to the finiteness of the system, and the discreteness of the 
lattice, the correlations were found to be valid only up to a certain range (usually one percent of the system size). 
Here we present a new algorithm that better takes into account the finite size conditions and discreteness of the 
lattice. 

2 The Method 

Consider a sequence of N uncorrelated random numbers {u s }S=L.,N defined in a one-dimensional lattice, with 
the correlation function given by 

(U s 'U'j+n) ---~ ~n,O" (1) 

Our goal is to modify this sequence of numbers to generate a new one, {9S }j=l,..,N, with long-range power-law 
correlations given by 

C .  = (gs 9s+~,) ~ n - ~ .  (2) 
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Fig. 1. A log-log plot of the average correlation (gjgj+n) as a function of the distance n between the sites for N = 4096. 
Averages are taken over 500 realizations. Shown are results for different values of 7 = 0.2, 0.4, 0.6, and 0.8 (from top to 
bottom). The slopes of the linear fits are 0.19, 0.37, 0.57 and 0.75 respectively. 

We introduce a "response" function, Cj, that relates both sequences 

N 

a3 = ~ Cj-k Uk. (3) 
k = l  

By Fourier analyzing Eqs. (2) and (3) we find 

/ laql, (4) 

where 4q, G and G are the Fourier transforms of  Cj, Cn and uj, respectively. 
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(5) 

The numerical algorithm we use to construct the correlated sequence, {9j }, consists of  the following steps: 

- Generate the sequence, {uj}, of uncorrelated random numbers and calculate its Fourier transform,/~q. 
- Calculate the Fourier transform, Cq, of the desired correlation function Cn. 
- Using Eq. (4) calculate the Fourier transform, @q, of the "response" function and calculate the inverse Fourier 

transform to obtain Cj in the real space. 
- Substitute in Eq. (3) to get the correlated sequence, {95 }. 

In order to perform these steps numerically we take into consideration the corresponding periodic boundary con- 
ditions required by the discrete convolution theorem used to derive Eq. (4), and use the discrete Fourier transform: 

1 N - 1  2 ' 

10 8 

By calculating the correlation function (gj gj+,,) averaging over the system, one can verify that long-range cor- 
relations have been constructed in the system (see Fig. 1). 
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3 The algorithm 
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Fig. 2. Log-log plot of the mean square displacement for the same system of Figure 1, for 7 = 0.2, 0.4, 0.6 and 0.8 (from 
top to the bottom). The slopes for the linear fits are 1.81, 1.64, 1.46 and 1.31 respectively, in agreement with Eq. (7). 
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4 Generating Fractional Brownian Motion 

The sequence of correlated numbers, {gj}i can be mapped to the sequence of  steps of  a random walk. We define 
the position of the walker at step n by 

Xn = ~ gj . (6) 
j=l 

Each configuration {gj}j=l ..... n <_ N / 2 ,  corresponds to ~ n-step random walk. When {9j} are correlated by 
a function given by Eq. (2), it can be shown that the dominant contribution to the mean square displacement, 

2 > i s  X n 

(x~) -~ { n2-7 i f ' r  < 1 
n if 7 -> 1. (7) 

Thus the long-range correlations lead to a power law behavior (x~) -,, n 2H for -), < 1 with H = 1 - 3'/2 being 
the Hurst exponent. Therefore this procedure serves as a technique to generate fractional Brownian motion. On 
the other hand, the case 7 > 1 corresponds to weak correlations and one recovers the uncorrelated random walk 

2 > , ,  n. Figure 2 shows the numerical results that confirm our calculations. result, < x n 

5 The correlated percolation problem 

The properties of long-range correlated site percolation in the square lattice have been recently studied [2]. How- 
ever, these studies were restricted to systems no larger than 104 x 104 sites. The method we present here allows 
us to study the correlated percolation problem for large systems. 

The algorithm can be easily generalized to higher dimensions. In the two dimensional case the desired correlation 

function takes the form 

f ( n ,  m )  ~ (n  2 + m2) -'r/2, (8) 

and the correlated variables are defned in a square lattice {9k,j} with k, j = 1, . . .N. 

In order to apply this procedure to the percolation problem we study the probability distribution P(g)  of the corre- 
lated sequence {gk,j }. We find that when the uncorrelated variables {Uk,j } are taken from a Gaussian distribution, 

{gk,j } has also a Gaussian distribution. We next discretize the variables generating a sequence #k,j, according to 
#k,3 = 0 ( 0  - 9k,j) where 0 is chosen to satisfy p = f°_oo P(g)dg,  with p the occupancy probability. 

Figure 3 illustrates the results obtained for site percolation on a square lattice of  512 x 512 sites. Figures 3a 
and 3b show the case of  correlated occupancy variables (below and at the percolation threshold, respectively). 
Figures 3c and 3d show the case of uncorrelated occupancy variables (below and at the percolation threshold, 
respectively). We see that the introduction of  long-range correlations among the occupancy variables strongly 
affects the morphology of the system. In the correlated case the clusters look more compact than in the uncorre- 
lated case. The lack of correlations in the uncorrelated case is seen from the presence of  many small black holes 
inside the large clusters (Fig. 3d). Also, at small concentrations there are only small clusters (Fig. 3c) while for 
the correlated case, large clusters are present even at such low concentration (Fig. 3a). 

This work is part of the Ph.D. Thesis of H. Makse. We wish to thank E Jensen for help with the color graphics. 
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Fig. a 

Fig. 3. Percolation in the square lattice of 512 × 512 sites for different degree of correlations and concentrations. Figures 
a and b correspond to the correlated case with "y = 0.4 and concentration p = 0.2 and Pc respectively. Figures c and 
d correspond to the uncorrelated case with p = 0.2 and Pc respectively. Unoccupied sites are in black. Different colors 
represent different clusters. The spanning cluster at the critical concentration is in red. 
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Fig. b 
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Fig. c 
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Fig. d 
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