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Abstract. The detailed topological or ‘connectivity’ properties of the clusters formed in 
diffusion limited aggregation (DLA) and cluster-cluster aggregation (CCA) are considered 
for spatial dimensions d = 2,3 and 4. Specifically, for both aggregation phenomena we 
calculate the fractal dimension d,,, = i-’ defined by e -  R d m l n  where e is the shortest path 
between two points separated by a Pythagorean distance R For CCA, we find that dmin 
increases monotonically with d, presumably tending toward a limiting value dmi, = 2 at 
the upper critical gimensionality d, as found previously for lattice animals and percolation. 
For DLA, on the other hand, we find that dmin = 1 within the accuracy of our calculations 
for d = 2, 3 and 4; suggesting the absence of an upper critical dimension. We also discuss 
some of the subtle features encountered in calculating dmin for DLA. 

Considerable recent attention has focussed on models of aggregation, in large part 
due to their potential promise in providing tractable models for a range of flocculation 
phenomena. The diffusion limited aggregation (DLA) model of Witten and Sander 
(1981) is the prototype of modern models of aggregation: a seed particle is placed at 
the origin and a random walker is released from a large circle encompassing the origin. 
This particle is assumed to undergo a random walk until it sticks to the seed particle. 
Another random walker is then released, and this process is continued until typically 
a large aggregate containing N = O( lo4) particles has been formed. DLA describes a 
range of natural phenomena in which identifiable ‘seed sites’ exist, but for the floccula- 
tion of particles ranging from soot to colloids no such stationary seed exists. Accord- 
ingly, the cluster-cluster aggregation (CCA) model (Meakin 1983d, Kolb et a1 1983) 
assumes that a large number of particles randomly diffuse at the same time: when they 
touch one another they stick, forming clusters, which themselves diffuse randomly 
touching other particles or clusters until at a large time a ramified fractal aggregate 
has been formed. 

Both DLA and CCA clusters qualitatively resemble aggregates found in nature, and 
have been the subject of intensive recent study. However, there is thus far only a single 
quantitative parameter that has been used to characterise these aggregates. This is the 
fractal dimension df that is a direct measure of how the density approaches zero as 
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the length scale over which it is measured increases. If M (  R )  is the cluster mass within 
a Pythagorean distance R of a cluster point, and p (  R )  = M (  R ) /  R d  is the density, then 
one writes 

M (  R )  - ~~f p ( R ) -  Rdf-d.  ( 1 )  
The fractal dimension concept has permitted extensive comparisons between large-scale 
computer simulations (e.g. Meakin 1983a, b, c, e) and several mean-field type theories 
(e.g. Muthukumar 1983, Tokuyama and Kawasaki 1984, Hentschel 1984, Hentschel 
and Deutch 1984). More recently, it has become possible to actually measure df for 
naturally-occurring aggregates and to compare the experimental values with results 
from simulations and from theory (see e.g. Forrest and Witten 1979, Nittmann et a1 
1984, Weitz and Oliveira 1984, Niemeyer et a1 1984, Schaefer et a1 1984, Schaefer and 
Keefer 1984, Bale and Schmidt 1984, Laibowitz and Gefen 1984, Matsushita et a1 1984). 

Although df has proved extremely useful as a quantitative parameter with which 
to characterise clusters, it is by no means sufficient. For example, in d = 3 both DLA 

and percolation clusters have df 2.5, yet even the most casual visual inspection reveals 
that they are quire different (see e.g. figure 4 of Stanley et a1 (1984a)). Accordingly, 
one motivation for the present study is to investigate the utility of a second parameter 
in the quantitative characterisation of DLA and CCA. This is the exponent dmin that 
governs the dependence of the minimum path length between two points, e, on the 
Pythagorean distance R between them, 

(2a)  e - ~ d , , ,  

(see Middlemiss et a1 1980, Pike and Stanley 1981, Hong and Stanley 1983a,b, 
Herrmann et a1 1984). Equivalently, one may write 

R -8; (2b) 
with v’= l /dmin (Havlin and Nossal 1984, Vannismenus et a1 1984). Since the minimum 
path in the cluster should not be shorter than the Pythagorean distance nor longer than 
a completely random walk between the two points, we expect 

1 s d m i n s 2  (is ;< 1). (3) 
Here dmin = ; - I =  2 (as for Gaussian chains) for d above the critical dimension d,. 

The dimension dmin is extrinsic, in the terminology of Toulouse (see the discussion 
in Vannimenus (1984) and Stanley (1984)): it measures the dependence of a ‘mass’ 
(the number of sites in the minimum path) on a Pythagorean distance ( R ) .  One can 
equivalently study an intrinsic dimension de, which measures the dependence on 8 of 
the mass of sites that lie within a path length e of the origin, 

M - e d e .  (4) 
This was first introduced (with the symbol t,hl3) by Pike and Stanley (1981); a much 
more complete discussion is given by Havlin and Nossal (1984). Since M - Rdf ,  we 
can combine (4) and (2) to obtain (Havlin and Nossal 1984) 

de = df/ dmin = idfi ( 5 )  
Since (4) relates two masses, (5) takes the form of the ratio of two extrinsic dimensions 
and de is termed an intrinsic dimension. Although de and dmin contain similar 
information, the actual calculations of these two quantities are quite different and 
hence study of both provides a useful check on accuracy and systematic errors. 
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In this work we calculate dmin and d, for both CCA and DLA in d = 2,3 and 4 (table 
1). We find that the d-dependence of these quantities is quite different for the two 
sorts of aggregation models. For CCA, we find the same general trends as noticed 
already for lattice animals and percolation (see e.g. figure 4 of Havlin et al  1984a): as 
d increases, dmin increases toward a limiting value of dmin = 2 as d + d,. Now for CCA 
the numerical value of d, is not known, but our results for d = 2,3,4 lie consistently 
and significantly below the corresponding lattice animal (LA) points, which tends to 
suggest the possibility that d, may be larger than the LA value d, = 8. For DLA, on the 
other hand, we find a striking result: dmin takes on its one-dimensional value, dmin = 1, 
for all values of d studied (figure 1). Accordingly, we interpret our results as providing 
support for the possibility (Witten and Sander 1983) that for DLA there is no upper 
critical dimension. 

Table I. Summary of the results of the present work: see equations (212) and (4) for 
definitions of dmi, and dt .  

d = 2  1.0 f 0.02 1.69 * 0.05 1.15 * 0.04 1.22 * 0.02 
d = 3  1.02rt0.03 2.3 0.2 1.25 * 0.05 1.42 0.02 
d = 4  1 .OO f 0.04 3.3 f 0.2 I .35 f 0.05 1.55 * 0.05 

Figure 1. Dependence on lattice dimension d of the fractal dimension dmin of the minimum 
path. The data on DLA and CCA are from the present work; the data on lattice animals 
and percolation clusters are from Havlin and Nossal (1984), Havlin er a1 (1984a), and 
Herrmann er a/ (1984) (confirmed by calculations of Hemnann and Stanley (1984)). Note 
that dm,,, appears to ‘stick’ at the value two for all models above their respective critical 
dimensions d,. The only exception is DLA, for which dmi, = 1, within the limits of accuracy, 
suggesting that there is no critical dimension for DLA. 

The DLA clusters were generated using methods which have been discussed pre- 
viously (Meakin 1983a, b, c). All of the 2~ and 3~ DLA aggregates contain 25 000 sites 
and the 4~ clusters contained either 20 000 or 25 000 sites. We first choose a ‘local 
origin’ somewhere on the cluster. We then measure the radius of gyration of all the 
points within a path length 8 of the local origin; this quantity scales with 8 according 
to (2b). We also measure the total cluster mass M ( 8 )  of all sites within a path length 
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8 ;  this quantity scales with 8 according to (4)t. Our results for dmin and de are shown 
in figure 2. 

In C I n  P 
Figure 2. Dependence of R ( 8 )  and M ( e )  on the minimum path length e for DLA with ( a )  
d = 2 and ( b )  d = 3 .  The slopes give the fractal dimensions dmi, (equation ( 2 b ) )  and dp 
(equation (4)) respectively. ( a ) :  x refer to left axis and 0 refer to right axis, ( b )  0 refer 
to left axis and 0 refer to right axis. 

The cluster-cluster aggregates were generated on finite hypercubic lattices with 
non-zero (but small) particle concentrations using periodic boundary conditions. For 
the ZD, 3~ and 4~ simulations the lattice sizes were 8002, 1333 and 644 respectively and 
the particle densities ( p )  were 0.0158, 0.0034 and 0.00072 particles per lattice site. At 
these densities the correlation length (wiihin which the clusters have a fractal structure) 
is approximately equal to the lattice size. Results were obtained from six 4 ~ ,  eight 3~ 

and ten ZD aggregates. A local origin site was randomly selected from among all of 
the lattice sites occupied by the aggregates and the mass M ( f )  measured from the 
local origin site was determined. Results were averaged over a number of such randomly 
chosen local origin sites in order to obtain an accurate estimate for dmin (the number 
of local origin sites per cluster was 1000 for d = 2, 500 for d = 3 and 1000 for d = 4). 
Typical results for ZD and 4~ CCA are shown io figures 3 and 3( a ) .  Table 1 gives the 
final values of dmin and d for both models. The DLA results for d = 4 were obtained 
by extrapolating the successive slopes obtained by joining successive points of a log-log 
plot. 

Our result that dmin = 1 (dp  = df) for DLA for d = 2,3,4 has striking implications. 
The first of these was mentioned above: it provides numerical evidence in support of 
the idea (Witten and Sander 1983, Witten and Ball 1984) that there is no critical 
dimension. A second implication is the following: it has been recently shown (Havlin 
et a1 1984a) that if rings are irrelevant and if the clusters are finitely ramified (Havlin 

t For the M ( t )  calculation, we found the most convincing results if we chose the local origin to be the seed 
particle. If the local origin was, say, a path length 8, from the origin, then the results for est', were 
somewhat different from those for e > e,. 
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Figure 3. Dependence of the mass M ( P )  included within a minimum distance t' for 2D 
and 4~ cluster-cluster aggregates. In method 1 the origin site is considered to be a distance 
of 1 and the nearest-neighbour sites are considered to be at a distance P of 2. In method 
2 both the origin site and its nearest neighbours are included in the mass at distance 1 and 
the next-nearest-neighbour sites are included in the mass at distance 2. Part (a) shows the 
results obtained from the ZD CCA model using method 2 ( D (  M) - MO). Part ( b )  shows 
the results obtained from the 4D clusters using both methods. 

1984b), then the spectral dimension (see Stanley (1984) and references therein) is given 
by 

d s = 2 d p / ( d p +  1). ( 6 a )  

d, = 2df/(d,+ 1).  ( 6 b )  

If de = df, then for all values of df we have 

This result was also presented by Alexander (1983). Very recently, Aharony and 
Stauffer (1984) (AS) have argued, with one simple assumption, that (6b) should hold 
for any aggregate below the lower critical dimension d, .  AS choose d ,  to be the 
dimension below which all the growth sites (Leyvraz and Stanley 1983) cannot fit into 
a thin annulus, and find d ;  = 2 -a  result also obtained by Coniglio and Stanley (1984) 
using quite different methods (see also Sahimi 1984). Recent work has questioned the 
assumption underlying the AS argument (Stanley et a1 1984b, Havlin 1984a, Hong 
1984), but it does appear that (6b) holds for DLA for dr above d ,  (as well as below) 
for the reasons given in deriving (6b) :  that DLA aggregates are loopless and have the 
property that dmin = 1 (de  = df). It should be mentioned that a direct test of ( 6 6 )  is 
provided by extensive simulations (Meakin and Stanley 1983) of the probability of a 
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random walk on a DLA cluster returning to the origin after t steps, Po - t - * 5 ” ,  the mean 
number of sites covered (s) - t d 5 / ’ ,  and the mean-square displacement (1’) - t d s / d f .  

Averaging the estimates obtained by these three calculations, one obtains d,  = 1.25 * 0.10 
( d = 2 )  and d , =  1.35*0.12 ( d = 3 ) .  The d = 2  result agrees well with (66) (d,=5/4) 
while the d = 3 result is within the error bars ( d , =  10/7). 

In summary, we have obtained results for the behaviour of dmin and dp for DLA 

and CCA. By doing calculations for d = 2 ,3 ,4  we have found two striking results: (i) 
dmin = 1 for DLA, apparently independent of d, providing support for the conjecture 
that DLA has no critical dimension, and (ii) de = df for DLA, so that the conjecture (66) 
appears to be valid for DLA for d,> 2 as well as d f < 2  (table 2). 

Table 2. Comparison of different cluster models and their topological properties. ‘Aharony- 
Stauffer’ means the result that d,=2df/(d,+ I ) .  

? 
Model Rings irrelevant? dp =d, Aharony-Stauffer? 

D L A  yes ( ? I  Yes Yes 
C C A  yes (?) no no 
Percolation no no no 
Lattice animals Yes no no 

Treesb Yes no no 
SGA* yes (?I yes (?I  Yes 

a The screened growth aggregates (SGA) and their fractal properties are treated elsewhere 
(Meakin et a1 1984a. b). 
Trees (defined as a random fractal without loops) are studied in Havlin et a1 (1984b). 

We wish to thank D C Hong for helpful discussions and comments on the manuscript. 
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