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Two growth mechanisms of considerable recent interest are related to a single statistical mechanical model. Tip splitting
without interfacial tension occurs when a fluid pushes into another miscible fluid of higher viscosity. Dendritic growth occurs
when anisotropic molecules aggregate—a common example is the snowflake. We find that both structures are fractal objects,
and can be obtained from a single statistical mechanical model, implying that there is a relation between the underlying

physical processes involved.

GROWING structures have fascinated mankind for centuries,
and today the field of growth phenonena elicits interest from
many disciplines, ranging from medicine and biology to fluid
mechanics. Two growth forms that have attracted recent interest
are the following:

(1) Dendritic growth'®. No two snowflakes are identical,
each is assembled by the random aggregation of water molecules.
Yet every child can distinguish a snowflake from other growth
forms. The key scientific question is by what mechanism the
anisotropy of a water molecule becomes amplified from its weak
‘local’ effect at the molecular level to its pronounced ‘global’
effect at the macroscopic level of the snowflake.

(2) Tip splitting'®-?°. A classic experiment in fluid mechanics
concerns the splitting of a low-viscosity body of fluid which
results when it is forced under pressure into a high-viscosity
fluid. If the two fluids are immiscible, then the interfacial tension
between them serves to establish a length scale at which tip
splitting occurs. When the two fluids are miscible there is no
interfacial tension, yet tip splitting nonetheless occurs. Thus an
important question concerns the physical mechanism which
determines the point at which the finger splits.

The scientific questions in (1) and (2) have been the object
of research for many years, in part because our present state of
understanding is so incomplete®' that even a little progress would
be valuable. The two categories of growth mechanism (1) and
(2) have been considered to be quite different, in the sense that
the physical basis for one has no relation to that of the other.
Here we develop a statistical mechanical model which incorpor-
ates both dendritic growth and tip-splitting, thereby relating two
disparate fields of enquiry.

Relation between noise and tip splitting

The model is most clearly explained if we begin with the dielec-
tric breakdown model (DBM) of Niemeyer et al?® on, for
example, a triangular lattice. We first place a seed particle at
the origin of a large circular domain of radius R. If we think
of this seed particle as being the source of a fluid of
infinitesimally small viscosity, which is being forced under pres-
sure to displace a fluid with much higher viscosity**-*, then the
interface must move according to Darcy’s law:

v,=-n-VP )]

Here v, is the velocity component normal to the interface, i is
the normal unit vector and P is the pressure field. P is constant
in the less viscous fluid and, because V - v=0, P satisfies the
Laplace equation

ViP=0 2)

in the more viscous fluid. Hence the relevant boundary condi-
tions are P(r, ) =1 anywhere in the low-viscosity body of fluid,
and P(R, ) =0 along a circle of radius R.

In a perfect medium with radial symmetry and no pressure
fluctuations, the interface will spread out in concentric circles.
However, because there is always some noise in the system, a
fluid-dynamical instability*® will occur and irregularities in the
interface will grow. This noise phenomenon is reproduced in
the DBM, which includes fluctuations by means of the following
algorithm. First, VP is calculated at every perimeter site of the
cluster; this is done by solving equation (2) with an overrelaxa-
tion technique. At step 1 there is a single seed on a triangular
lattice with six perimeter sites. As all sites have equal values of
VP, the first perimeter site is mapped to the numerical interval
[0, 1] the second to [Z, Z], the third to [Z,2] and so forth. Next,
a random number generator is used to choose a number in the
interval [0, 1]. Suppose that this random number is 0.2603238:
the second perimeter site is then occupied, and the procedure
iterated. For this two-site cluster, VP is calculated at the eight
perimeter sites, the values are normalized to unity, a new random
number is chosen, and one of the eight sites occupied. Such a
DBM cluster is characterized by a high degree of noise: as each
growth step is determined by only one random number, it is
always possibie that the random number chosen corresponds to
a perimeter site with an extremely small value of VP, which by
equation (1) should almost never grow. Thus the DBM violates
the fundamental Darcy law due to the noise inherent in the
algorithm.

We now describe a procedure whereby this noise can be
systematically reduced in a controllable fashion. Clearly we
need an algorithm such that perimeter sites with extremely small
values of V P are extremely unlikely to be chosen. This is accom-
plished by advancing to a new perimeter site only after it has
been chosen s times, where s is a parameter which can be tuned.
Each perimeter site has a counter which registers how many
times that particular site has been chosen. As s - o0, the growth
of the interface will approach Darcy-law growth, in which any
point of the interface grows according to the true local pressure
gradient. In the Darcy ‘zero-fluctuation’ or ‘mean-field’ limit*®
(s - ), the interface would be a perfect circle if there were no
underlying lattice.

Figure 1a-c shows the results of calculations for successive
values of s. We find that Fig. 1b and ¢ resemble tip splitting as
observed in the viscous fingering of both newtonian (refs 19,
27, J. D. Chen, personal communication; R. Lenormand, per-
sonal communication) and non-newtonian'®!>!® fluids. When
s =2 (Fig. 1a), the structure resembles the DBM both qualita-
tively (although the branches look thicker) and quantitatively
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Fig. 2 A typical fractal structure on a square lattice with s =50
and a microscopic anisotropy (defined by equations (6), (7)) of
k—1=10. The colour coding is the same as in Fig. 1.

(d;=1.7). Here d; is the fractal dimension obtained, for example,
from the slope of a log-log plot of the mass against the caliper
diameter. For large s (for example, s = 20; Fig. 1), the qualita-
tive appearance appears to differ: the system appears at first
sight to cross over to a new ‘universality class’, with a larger
value of d;. However, when we extrapolate the apparent fractal
dimension to large cluster sizes we find that d; = 1.7 for all values
of s; that is, the growth forms are quantitatively identical,
independent of the degree of noise reduction.

Note that tip splitting always occurs by the same mechanism.
First a cluster grows ‘smoothly’, without tip splitting. However,
as the radius of curvature increases, the interface becomes
‘rough’, with both positive (outward) and negative (inward)
fluctuations. The positive fluctuations are not significant, as they
are soon damped out; however, the negative fluctuations persist
(Fig. 3). This is because, for a charged fractal object, the electric
field inside a single notch is very small, and the equation relating
the electric field to the gradient of the potential is formally
identical to the Darcy law relating growth velocity to the gradient
of the pressure. Hence, the tiny notch is not likely to be filled
in so quickly as one would expect if interfacial tension were
present (Fig. 3d). The tiny protrusions on both sides of the notch
see a much larger field than does the notch, so they attract mass.
The tiny notch thus becomes the terminus of a long fjord
(Fig. 3e). A fjord is almost perfectly screened, and so is almost
never filled in. In Fig. 3, s =50. If s> 50 (less noise), then the
same tip-splitting mechanism will apply but a negative fluctu-
ation (notch) will decay more efficiently: the system is less
susceptible to negative fluctuations and a fjord is formed only
when the cluster has reached a larger radius of curvature.

Although the asymptotic fractal dimension d; is independent
of s, the finger thickness W; clearly increases with s. Moreover,
our model explains the existence of a well-defined W;: the less
the noise, the thicker the finger (see Fig. 1). We find the quantita-
tive law:

W;=4.5logs+2 (3)

Fig. 1 Examples of fractal structures generated when the anisotropy parameter k is held fixed at unity, but the noise parameter 1/s is decreased.

In a, b and ¢, s=2,20 and 200, respectively. For all finite values of s, we find that the fractal dimension is equal to the DBM value, d;=1.7,

providing we take care to extrapolate the apparent mass dependence of d; to its asymptotic limit. The colour coding is as follows: the first one-sixth
of the sites are white, the next sixth are blue, followed by magenta, yellow, green and red.
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Fig. 3 Schematic illustration of the difference between an outward (‘positive’) and an
inward (‘negative’) interface fluctuation. A positive fluctuation tends to be damped out
rather quickly, as mass quickly attaches to the side of the extra site that is added. On
the other hand, a negative fluctuation grows, in the sense that mass accumulates on
both sides of the tiny notch. The notch itself has a lower and lower probability of being
filled in, as it becomes the end of a longer and longer fjord. This is the underlying
mechanism for the tip-splitting phenomenon when no interfacial tension is present. a
shows the advancing front (row a) of a cluster with s =50. The heavy line separates
the cluster sites (all of which were chosen 50 times) from the perimeter sites (all of
which have counters registering less than 50). In a, no fluctuations in the counters of
these three sites have occurred yet, and all three perimeter counters register 49. b shows
a negative fluctuation, in which the central perimeter site is chosen slightly less frequently
than the two on either side; the latter now register 50, and so they become cluster sites
in row B. The perimeter site left in the notch between these two new cluster sites grows
much less quickly because it is shielded by the two new cluster sites. For the sake of
concreteness, let us assume it is chosen 10 times less frequently. Hence by the time the
notch site is chosen one more time, the two perimeter sites at the tips have been chosen
10 times (c). The interface is once again smooth (row ), as it was before, except that
the counters on the three perimeter sites differ. After 40 new counts per counter, the
situation in d arises. Now we have a notch whose counter lags behind by 10, instead
of by 1 as in b. Thus the original fluctuation has been amplified, due to the tremendous
shielding of a single notch. Note that no new fluctuations were assumed: the original
fluctuation of 1 in the counter number is amplified to 10 solely by electrostatic screening.
This amplification of a negative ‘notch fluctuation’ has the effect that the tiny notch
soon becomes the end of a long fjord. To see this, note that e shows the same situation
after 50 more counts have been added to each of the two tip counters, and hence (by
the 10:1 rule) 5 new counts to the notch counter. The tip counters therefore become
part of the cluster, but the notch counter has not yet reached 50 and remains a perimeter
site. The notch has become an incipient fjord of length 2, and the potential at the end
of this fjord is now exceedingly low. Indeed it is quite possible that the counter will
never pass from 45 to 50 in the lifetime of the cluster. In our simulations we can see
tiny notch fluctuations become the ends of long fjords, and all of the above remarks

on the time-dependent dynamics of tip splitting are confirmed quantitatively.

We also find that W; is independent of the magnitude of the
pressure field. To see this, we varied the global pressure gradient
by changing the size of our computational grid from 200 to 25
units and found no variation of the finger thickness. This dis-
covery is explained if one considers that the ratio of the local
pressure gradient between a site at a finger tip and a site within
a fjord does not change if the global pressure gradient is
changed: this in turn is a direct consequence of the fact that
the pressure field satisfies a Laplace equation.

Previous work on tip-splitting phenomena has focused on
explaining the non-zero value of the finger thickness W; as
arising from the presence of interfacial tension o (ref. 28; see
also ref. 29). However this explanation cannot be applied to
miscible fluids, such as those used in recent experi-
ments'®!#1327:28 pbecause in this case, by definition, o =0. In
our model interfacial tension does not exist (that is, o acts only
on the length scale of a single fluid element or ‘pixel’); our
observed finger thickness is thus related solely to the concept
of noise.

Before proceeding further we note that in the limiting case
s =1the DBM is equivalent to diffusion-limited aggregation®*-3?
(DLA). The diffusion analogue of the DBM for s>1 is a
DLA-type model in which growth occurs only after a perimeter
site has been hit by s random walkers. If all the counters are
reset to zero after each growth step, then we have the Meakin
model®® or the Kertész-Vicsek model®, in which growth of the
positive fluctuations (the tips) is amplified because a tip of size
1 pixel is more likely to experience the next growth event—so
the apparent value of d; decreases toward unity as the cluster
grows. The DLA-type analogue of our DBM-type model in
which the counters are not reset to zero after each growth event
is the Tang model®®, for which it is not the positive fluctuations
(the tips) that display amplified growth but the negative fluctu-
ations (the notches). Amplified growth of negative fluctuations
is the characteristic feature of DLA, explaining our result that
d; has its DLA value for all finite values of s.

Thus we conclude that noise reduction—arising from sup-

pression of fluctuations—does not change the overall ‘univer-
sality class’, but does introduce a characteristic finger thickness.

Local anisotropy and dendritic growth

Real growth phenomena are never perfectly isotropic. In fact,
anisotropy appears to dominate dendritic crystal growth; thus,
for example, a snowflake is recognized by its six-fold anisotropy,
although the noise is also reflected in the variability from one
snowflake to another’. No two are alike, although the eye
immediately recognizes the pattern of a snowflake.

The problem of understanding the growth of a snowflake has
arich history. A large class of models has focused on introducing
anisotropy in a ‘global’ or macroscopic fashion by introducing
angular variables and assuming that the growth depends sensi-
tively upon these variables’™ . Although the resulting patterns
have, by virtue of their rules of construction, the requisite
six-fold symmetry, their resemblance to real snowflakes is not
striking. Moreover, they lack the random variations that seem
to characterize real snowflakes and also fractal objects.

A snowflake grows by successive landings of water molecules,
and we have therefore focused our attention on how microscopic
irregularities in the landing surface can be translated into the
macroscopic structure of the snowflake. To reflect the presence
of these microscopic irregularities, we must incorporate into our
model the essential fact that the landing sites seen by an incom-
ing molecule are not all equivalent. Hence we replace equation
(1) by

v,=—-n"(kVP) 4)

where the conservation of mass condition V - v=0 implies that
equation (2) is replaced by

V- (kVP)=0 (5)

with the same boundary conditions as for k=1. Here the
anisotropy parameter k = k(x, y) would be the permeability in
a fluid problem.
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Consider a square lattice. One simple choice for k(x, y) is
(see Fig. 2)

kix,y)=1 (6)
for x or y even,
k(x, y)=k>1 (N

otherwise equations (6) and (7) express mathematically the fact
that the surface affinity for incoming water molecules depends
on the spatial coordinate: the incoming particles do not see a
perfectly smooth and homogeneous ‘landing surface’.
Moreover, our anisotropy is fundamentally different from that
considered in, for example, refs 4 and 11. Schematically, in
these models the interface is moved according to the rule

u=f(k)=f(0)u, (8)

where u is the growth velocity, f(«) is an interfacial tension
term and u, is essentially the local pressure (or temperature, or
concentration) gradient at the interface. The function f(9) indi-
cates the extent to which the growth is enhanced along directions
separated by an angle 6. In marked contrast, our model assumes
that the anisotropy is present on a molecular level at the inter-
face. We assume that along the interface, the affinity for an
incoming water molecule alternates from site to site:

u=—f(x,y)u, )

We believe that our model is more realistic, as an incoming
water molecule in snowflake formation cannot possibly sense
the angle 6 = arc tan(y/ x), but does see a ‘landing surface’ whose
‘attraction’ fluctuates from point to point.

Next we consider the effect of tuning the anisotropy parameter
k. Figure 5a-d shows structures grown with a succession of
increasing values of k, ranging from 1.1 to 11. We hold s fixed
at the value s = 50; if s were too small, then noise effects would
complicate visualization of the effect of anisotropy. Figure 5 is
for a triangular lattice, for which equations (6) and (7) are
replaced by a different rule: we set k> 1 for every fifth row of
the three principal directions of the lattice (E-W, NE-SW,
NW-SE). We see from Fig.5 that as k increases there is a
pronounced change from the isotropic case k = 1, and the result-
ing growth (see, for example, Fig. 5d) resembles a ‘snowflake’
for reasons more subtle than merely the characteristic 6-fold
axis of rotation®. Using standard methods (for example, all
three methods of ref. 18), we measured d; for this ‘snowflake’
and found values that decrease with the number of particles
used in the calculation. Extrapolating to infinite size, we find**~®
di=1.5+0.1.

Although the structure at first sight appears to be somewhat
ordered, we realize that this is a trick played by the 6-fold
axis. In fact, an individual branch is quite disordered, with side
branches of all sizes extending from it. The reason d;> 1 is that
the side branches occur with many different length scales. This
is especially apparent from Fig. 5d, where we see from the colour
coding that the latest particle to arrive can attach to the side
branches as well as to the tip. Figure Se shows real snowflakes
with side branches, which show a striking resemblance to the
anisotropic simulations of Fig. 5d. The differences between Fig.
5d and e are the subject of current investigation.

We now address the actual structure of the fractal objects in
the presence of anisotropy. It is important to note that there are
distinct effects that cooperate to generate the final structure
obtained. The first effect is the fine structure of the side branches
(see Fig.2), consisting of a set of ‘trees’ of varying height, as
shown schematically in Fig. 4a. The trees are mainly without
branches, as the anisotropy favours growth only in even-
numbered rows or columns of the lattice. However the height
of a tree varies widely from one tree to the next, due to the
tendency of tall trees to screen shorter trees. An analogous
variation in the height of trees has been found by Meakin®’ in
his classic studies of DLA on a planar substrate: he found that
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Fig. 4 Schematic illustration to explain the characteristic shape
of the four arms of the ‘snowflake’ cluster in Fig. 2; a recalls the
fundamental structure of aggregation onto an equipotential sur-
face, first studied by Meakin>’. For simplicity, the ‘trees’ are drawn
as straight line segments, and the hierachical or fractal distribution
of tree height is indicated by a difference of a factor of 2 between
successive sizes, together with a spacing, A(M), which increases
as MY% where M is the total cluster mass. b shows the
modification expected from the fact that the regions of an arm
near the centre have more time to accumulate mass than the regions
near the tip. ¢ shows the effect of the fact that VP is much larger
near the tip; d shows the result of combining a-c¢, and resembles
the overall shape observed in Figs 2 and 5d.

the resulting fractal structure is a ‘forest’ of trees, with fewer
but taller trees surviving at large times due to their tendency to
shield the shorter trees.

The main difference between our work and the Meakin (planar
substrate) DLA simulations is our lattice anisotropy (parameter-
ized by k —1) and our noise reduction (parameterized by 1/s),
which have the effect of making the trees tall and straight instead
of ramified. Consider now the overall profile for the height of
the trees in the side branches. This profile can be understood
mathematically as arising from the product of two functions.
The first, a decreasing function from origin to tip, is related to
the fact that the regions of the branches that were formed at
early times tend to be larger than the regions of the branches
that were formed at late times (Fig. 4b). The second, an increas-
ing function, is related to ‘screening’; that is, to VP, which is
larger near the tips and smaller near the origin (Fig. 4¢). As
v VP, the growth rate is larger near the tips. The product of
the increasing and decreasing functions gives the characteristic
profile for the height of the trees in the side branches (Fig. 4d).

We also measured as a function of cluster mass: (1) the caliper
width of the side branches of Fig. 2, and (2) the caliper diameter
of the entire cluster. Both log-log plots are parallel, with slope
l/df.

Discussion

We have shown that two fundamental physical phenomena that
are not yet understood, dendritic growth and tip splitting in the
absence of interfacial tension, can be related in that both arise
from the same statistical mechanical model—a generalization
of the DBM?. This means that there are physical features
common to both phenomena: they differ only in parameter
values. In our model we can incorporate in a direct and system-
atic fashion the crucial role played by fluctuation phenomena
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Fig. § a-d, Examples of fractal structures formed when the noise
parameter s is held constant at s = 50, but the anisotropy parameter
k is chosen to be, respectively, k—1=0.1, 0.31622, 1.0 and 10.0
(0.31622 interpolates logarithmically between 0.1 and 1.0). The
limiting fractal dimension (as mass—> o) is d;= 1.5, independent
of k, for all k> 1. The colour coding is the same as in Fig. 1. e,
Examples of real snowflakes (reproduced with permission from
ref. 9) which show a striking resemblance to d.

and anisotropy. The physical picture that we have proposed is
embodied in two fundamental equations, (4) and (5) (or (1)
and (2) for k=1). The second equation describes the spatial
change of the pressure field which drives the instability; the first
represents the ‘growth law’, which relates the growth rate of the
interface to the pressure field. We have used a generalized
Darcy-type law, which enables us to selectively tune both noise
and anisotropy.

The overall physical picture that emerges is as follows: Tip-
splitting phenomena in the absence of interfacial tension are
triggered by microscopic fluctuations (that is, noise). Although
positive and negative fluctuations of the interface occur sym-
metrically, the stability (and hence the subsequent growth) of
positive and negative fluctuations are totally different: tip split-
ting is the direct consequence of this asymmetry in the stability
of positive and negative fluctuations. A small protrusion of size
1 pixel is much less long-lived than a small notch of the same
size; in fact, it is remarkably difficult to fill even the shallowest
notch. Zero noise (s=00) results in a compact (non-fractal)
circular object. A very low noise level (large s) has little effect
when a cluster is small, but its effect becomes much more
pronounced as the cluster grows larger. In the limit of infinite
cluster size, an arbitrarily small but non-zero amount of noise
is sufficient to make the cluster fractal. The measured fractal
dimension is identical to that of DBM and DLA, two models
designed to describe phenomena in the limit in which there is
a very high noise level.

The tip-splitting phenomena that occur in the case of zero
anisotropy are generalized into a fractal hierachy of side
branches in the presence of anisotropy. In the limit of infinite
cluster size even a tiny degree of anisotropy changes the fractal
dimension from the DLA value of 1.7 to the value 1.5.

Thus, the complete phase diagram has 1/s on the abscissa
and (k—1) on the ordinate. Asymptotically we find that d; is
constant, at the DBM value of ~1.7, everywhere on the x-axis,
and d; is also constant, at the value 1.5, everywhere else in the
phase diagram except on the y-axis (zero noise), where d;=1.
Thus noise reduction is not a sufficient perturbation to change
d; from its DBM value, because the negative fluctuations persist
for all values of s, and these negative fluctuations control the
value of d;. On the other hand, anisotropy at the microscopic
level does change d;. Further details of this phase diagram
suggest an intriguing analogy to critical point phenomena, and
this will be the subject of future investigation.

Finally, we return to the question posed in the introduction,
of how a tiny anisotropy can become ‘amplified’ from its local
effect at the molecular level to a global effect at the macroscopic
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Fig. 6 a, Initial growth of an interface on a square lattice for the
case s = 500. Growth can occur in any of the four space directions
(four nearest neighbours). The interface is shown after 5, 21, 85,
200, 500 and 1,000 growth steps. b, As in a, except that here growth
can occur into eight directions (four nearest neighbours and four
next-nearest neighbours). The interface is shown after 9, 21, 85,
200, 500 and 1,000 steps. c, Viscous fingering structure for s = 50,
after 15,000 growth steps for eight-fold coordination on a square
lattice. The first four contour lines are drawn after 100, 300, 650
and 1,000 steps; subsequent lines are drawn at intervals of 1,000
steps.

level. Our model directly demonstrates this fact: we have shown
that in the presence of anisotropy, the resulting fractal dimension
is not the DBM value of 1.7, but rather tends asymptotically
toward 1.5, a new ‘universality class’. Our result is supported
by Meakin’s very recent calculations for DLA®® without any
local anisotropy, except for that arising from the square-lattice
substrate. For this classic and well-studied system, ‘pure DLA’,
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Meakin finds the same behaviour that we find in the presence
of anisotropy, but only after the cluster size reaches 5 million
sites—almost three orders of magnitude larger than the clusters
we study! Thus Meakin’s local anisotopy, arising solely from
the effect of the square lattice itself on the trajectories of random
walkers, can lead to a pronounced global effect, altering not
only the overall appearance of the cluster but also the fractal
dimension itself. As pure DLA is the limit of maximum noise
(s=1), we have to wait for an extremely large cluster to see its
effect. To support this idea, we systematically reduced s from
50 to 1 while keeping the local anisotropy fixed at the value
k=2. When s=350 it is easy to see the snowflake anisotropy
pattern, but as s decreases the snowflake vanishes.

To understand better the subtle role played by the anisotropy
of the square lattice, we show in Fig. 6a the initial growth events
for the case s = 500, k = 1. The early stage of growth is character-
ized by the competition of ‘lattice anisotropy’, which attempts
to pull the interface into the four principal directions of the
plane, and ‘interface smoothing’ (due to the decay of positive
and negative fluctuations), which initially prevents splitting. The
competition between these two contradicting tendencies leads
to an oscillation of the interface: the structure of the interface
alternates between a circle and a diamond-shaped cusp until,
eventually, the weak anisotropy of the lattice dominates. As in
real systems, no cusp singularities®® occur: the noise in our
systems smooths the sharp corners of the initial cusp as inter-
facial tension would do. A well-defined finger thickness has
developed. The larger the value of s, the smaller is the noise
and the larger is W;. To weaken the lattice anisotropy, which
results from the rule that growth is possible only in one of the
four space directions (nearest neighbours), we can also allow
growth into the four diagonal directions (next-nearest neigh-
bours). Figure 6b,c shows that such growth is initially almost
circular until it reaches a critical radius, after which negative
fluctuations are no longer filled in. This gives rise to the charac-
teristic fingering structure shown in Fig. 6¢. Thus this model
seems to represent both qualitatively and quantitatively the
viscous fingering phenomenon for the case of miscible fluids
(zero interfacial tension).
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