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We give fifst order perturbation results for the critical point exponents at order O critical points with anisotropic

propagators. |
are given for 0 = 2.

Recently, Horhreich, Luban and Shtrikman have
used renormalization group techniques to discuss the
onset of helical order in magnetic systems [1,2]. In
particular, the existence of new types of critical be-
havior has been postulated for the “Lifshitz’* point
where the transition from a uniformly ordered to a
helically ordered state occurs. At such a point, the
propagator differs from the usual Wilson form, G !
=k2 +r. Refs. [1-2] consider propagators of the
form G-1 =k? + k4 +r wherek; is a d-dimensional
wave vector, and dy +dy=d, the d1mens1on of the
lattice.

Here we consider critical propagators (7 = 0) of the
form

J
G-1 =_Z)1 k)%, )
l=

where each k; is a d;-dimensional vector, so that

2" 1 d;=d. The .0; are termed “propagator exponents”’.

Renormahzatlon igroup techniques are applied to sys-
tems described by (1) in a manner parallel to earlier
work [3—4].

For an isotropic n-vector Wilson model at an Oth
order [5] critical point the borderline dimension dy,
(above which mean field behavior holds) is determined
by
J

}_::)1 d,fo;=0f(0 - 1). 2)

Catastrophic infrared divergences set in at dimensions
below d,;,, at which
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e exponent 7 is calculated to second order for isotropic propagators, and all O; 1/n expansion results

J

Z djfo; = 3)

For 0; = 2 these conditions reduce to those given pre-
viously [5, 6]. In some cases (such as isotropic propa-
gators [1-3]) dy,;, may be larger than three. A more
interesting physical case is obtained if only one com-
ponent of k enters G ~1 as k2L and the remaining
components have k2 dependence. Eqgs. (2)—(3) then
gived, =(30 - 1)/(0 - 1)— 1/Land dpy;, =3 — 1/L.
Thus, we have dy, 23 >d;;, forall O <2L +1.

For anisotropic systems, the critical point expo-
nents {n;} are defined by examining the behavior of
the critical two-point function for a wave-vector lying
entirely in one of the d;-dimensional subspaces:

Ty (k) o 1k )%™, Q)

There will also be different values of the correlation
length exponent v; in each of the subspaces. The fol-
lowing relationships between the exponents hold gen-
erally

J
- =E= p Y= (0 77;)1’,,

&)
J

= i
2. dii(o; —m) -
Denoting the largest of the propagator exponents as

o, , we define the unperturbed or Gaussian eigenvalues
A, (corresponding to 522, cf [3])

J .
= [,2;{ di°>/°i] (1 —p) +pos. ©)
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The expansion parameter for d <dy, is €y = \y. The
corrected eigenvalues ?\"D for this general anisotropic
case are found to be

Ay =N, — 26040, P; P, /{0, 0;0),, (72)
where [3, 7]
[02/2] p\(p+5n-1\(2p -2}
(0, p; p), = . 2t )( - ) 7b
P: Py i=0 (])( i 0-12j (70)

The calculation of the {n;} is more difficult except
for the somewhat unphysical isotropic case (if G ~1
= k%, then d,;;, = 0). We find that for ¢ # 2L, there
is no shift in the propagator exponent, i.e.n=0to
O(eg). For ¢ = 2L (the generalized Lifshitz point [3]),
we find at an Oth order critical point [8]

_4=DP (012 (3dn))C,

770— 3 (83.)
20\3 1 1
Ly ) TGdy-L)T(Gdp+L)
with
. 20-1 .
= ———————~<0’0’0>2] | J AL (8b)
n=140,0;00,-1) j=1 2GF1°

Here, db = 2L0/(0 - 1) and €= (db - d)(O - 1).
For the ordinary critical point (O = 2), we write sim-
ply €, =€ =4L — d. Eq. (8) reduces to

pe CDFII2QD 0 +2) &

+0(e?). ©)
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For this case we have also calculated the leading term
in the 1/n expansion for all L (ref. [2] considered the
L =2 case). The result is

(=DEHlesinme/2 I'(d - 2L)IQ2L) 1
m(2L) =7 12 TEd+L)T&d-L)yn
(10
+0(1/n?).

In eq. (10), € is not restricted to be small. Agreement
between (9) and (10) is obtained for e €1 and n > 1.
Work is in progress on the general anisotropic case.
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