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Abstract. We investigate the statistical properties of the cross-correlation matrix between individual stocks
traded in the Korean stock market using the random matrix theory (RMT) and observe how these affect the
portfolio weights in the Markowitz portfolio theory. We find that the distribution of the cross-correlation
matrix is positively skewed and changes over time. We find that the eigenvalue distribution of original
cross-correlation matrix deviates from the eigenvalues predicted by the RMT, and the largest eigenvalue
is 52 times larger than the maximum value among the eigenvalues predicted by the RMT. The β473

coefficient, which reflect the largest eigenvalue property, is 0.8, while one of the eigenvalues in the RMT
is approximately zero. Notably, we show that the entropy function E(σ) with the portfolio risk σ for the
original and filtered cross-correlation matrices are consistent with a power-law function, E(σ) ∼ σ−γ , with
the exponent γ ∼ 2.92 and those for Asian currency crisis decreases significantly.

1 Introduction

Financial markets have been known as representative com-
plex systems, which are organized by various unexpected
phenomenon according to non-trivial interactions among
heterogeneous agents [1,2]. The study of complex eco-
nomic systems is not easy because we do not know the
control parameters that govern economic systems and can
not easily apply the parameters we do know to economic
systems. However, much research has been conducted to
understand the statistical properties of financial time se-
ries [3–11]. In particular, the analysis of financial data by
various methods developed in statistical physics has be-
come a very interesting research area for physicists and
economists [12,13]. There is practical [14–16] as well as
scientifically important value in analyzing the correlation
coefficient between stock return time series because this
contains a significant amout of information on the nonlin-
ear interactions in the financial market and is a parame-
ter in terms of the Markowitz portfolio theory. The cross-
correlation matrix between stocks, which has unexpected
properties due to complex behaviors, such as temporal
non-equilibrium, mispricing, bubbles, market crashes and
so on, is an important parameter to understand the in-
teractions in the financial market [17]. To analyze the
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cross-correlation matrix, previous studies presented vari-
ous statistical methods, such as principal component anal-
ysis (PCA) [18], singular value decomposition (SVD) [19]
and factor analysis (FA) [20]. Here, to analyze the actual
cross-correlation matrix, we employ the random matrix
theory (RMT), which was introduced by Wigner, Dyson
and Metha [21–28]. It can explain the statistical prop-
erties of energy levels in complex nuclei well. The RMT
method is a useful method for eliminating the random-
ness in the actual cross-correlation matrix [29–34]. Re-
cently, Laloux et al. [35] and Plerou et al. [36] analyzed
the cross-correlation matrix of financial time series by the
RMT method. The authors found that 94% of the eigen-
values of cross-correlation matrix can be predicted by the
RMT, while the other 6% of the eigenvalues deviated from
the RMT. In addition, Plerou et al. [37] applied the RMT
method to a United States stock market and observed that
the cross-correlation matrix of stock markets consists of
random and non-random parts, which read carry useful
information in the financial market. The eigenvector de-
viations from the RMT show a very stable state over an
entire period. We investigate the various statistical prop-
erties of the cross-correlation matrix of 473 daily stock re-
turn time series traded in the Korean stock market from
1 January 1993 to 31 May 2003. We find that the distri-
bution of the cross-correlation matrix is positively skewed
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and changes over the entire time. Using the RMT method,
we show that the cross-correlation matrix contains mean-
ingful information as well as random property. Notably,
we show that for both the original, Coriginal, and filtered
correlation, Cfilter , matrices the entropy function, E(σ),
with the portfolio risk, σ, is consistent with a power-law
function, E(σ) ∼ σ−γ , with an exponent γ ∼ 2.92. In
the following section, we describe the data and methods
used in this paper. In Section 3, we present the verification
results. Finally, we end with a conclusion.

2 Data and method

In this paper, we investigate the statistical properties of
the cross-correlation matrix of the 473 daily stock returns
traded on the Korean stock market from 3 January 1993
to 31 May 2003. The data obtained from the Korea Stock
Exchanges cover 2845 days. To understand the non-trivial
interactions, we calculated the cross-correlation matrix be-
tween stocks for the whole period as well as sub-periods
by shifting 21 days with 250 data points. We propose a
verification process to analyze the statistical properties of
the correlation matrix between stock returns. First, we es-
timated the statistical properties of the cross-correlation
matrices using the RMT method. Second, we calculate the
entropy of the portfolio weights using the Markowitz port-
folio theory. Before demonstrating the verification process,
we introduce the RMT, which was proposed by Wigner,
Dyson, and Metha et al. and Markowitz portfolio theory
(MPT) [38] introduced by Markowitz in 1952. We created
N (number of company) data sets with L data points fol-
lowing iid(0, 1). Let the created data be denoted by the
symbol G. Here, the G is a matrix (N×L) with the random
elements and the cross-correlation matrix is defined by

Crandom =
1
L

GGT , (1)

where GT is the transpose of G, and the correlation be-
tween elements is approximately zero. If N → ∞ and
L → ∞, the eigenvalue spectrum of RMT is calculated by
using

Prandom(λ) =
Q

2π

√
(λ+ − λ)(λ − λ−)

λ
, (2)

where the eigenvalues λ lie within λ− ≤ λ ≤ λ+, Q ≡
L
N , and the maximum and minimum eigenvalue of RMT,
Crandom, are given by

λ± ≡ 1 +
1
Q

± 2
√

1
Q

. (3)

If L and N have a finite length, then the eigenvalue spec-
trum shows gradual decrease from the theoretical values
of the largest eigenvalue predicted by the RMT.

We next extend the MPT to select the optimal portfo-
lio sets among all stocks. The MPT method introduced by
Markowitz in 1952 is known as the mean-variance theory.

The purpose of MPT is to minimize the portfolio risk in
a given portfolio return, which can be quantified by the
variance and defined as follows.

Ω =
N∑

i=1

N∑

j=1

ωiωjCijσiσj , (4)

where ωi is the portfolio weight of stock i, which can be
calculated using two Lagrange multipliers, σi is the stan-
dard deviation of stock i, and Cij is the correlation coef-
ficient between stock i and stock j. In this work, we use
the no short-selling constraint for portfolio weights [12,13],
i.e. we assume that all the weights are non negative num-
bers (ωi > 0, ∀ i = 1,. . . , N). We also normalize portfolio
weights in such a way that

∑N
i=1 ωi = 1. The portfolio

return, µ, also is calculated by

µ =
N∑

i=1

ωiµi, (5)

where µi is the mean value of stock i. We next considered
the portfolio weights because these could determine the
portfolio efficiency frontier lines. We used Shannon’s en-
tropy method to quantify the statistical properties of the
portfolio weights since

∑N
i=1 ωi = 1, defined by

E =
N∑

i=1

−Pi ln(Pi), (6)

where Pi is the portfolio weight wi.
Using the eigenvalue distribution predicted by equa-

tion (2), we estimated a random part from the original
cross-correlation matrix and as the previous paper [37],
divided it two parts as follows.

Coriginal = Crandom + Cfilter . (7)

Based on how many random elements existed in the
cross-correlation matrix, we analyzed the non-trivial in-
teractions between stocks. In addition, to estimate the
eigenvalue properties, we created the data sets by using
each eigenvector element.

R(t) ≡
N∑

i=1

Viri(t), (8)

where ri(t) is the ith stock return at time t, and Vi is
the ith eigenvector. To observe the eigenvalue proper-
ties divided by the RMT method, we created the data
sets, RRandom(t) and RLargest(t), reflecting the eigenvalue
properties of both Crandom and Cfilter , respectively, and,
by the one-factor model, widely acknowledged in the fi-
nancial literature as a pricing model, we calculated the
relationship between the created time series and the mar-
ket factor, which influences all stocks in the market and
is defined by

ri(t) = αi + βiRMarket(t) + εi(t), (9)

where RMarket is the KOSPI market index, αi and βi are
the regression coefficients of stock i and we use the β co-
efficient as the measurement to quantify the relationship
between created data sets and market index.
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Fig. 1. (Color online) (a) and (b) show the distri-
bution of the cross-correlation coefficients between
stocks of 473 companies of taken from the Korean
stock market and random data, respectively. (c) dis-
plays the distribution of the cross-correlation ma-
trices of the sub-periods by shifting 21 days with
251 data points and (d) shows the average values of
each cross-correlation matrix in (c).
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Fig. 2. (Color online) The distribution of the
eigenvalues for cross-correlation matrix esti-
mated using the 473 companies listed on the
Korean stock market, random data following
the iid(0, 1) process, and that predicted by
the RMT method. The red circles, blue cir-
cles, and pink solid-line indicate the original
time series, random data, and theoretical lines,
respectively.

3 Results

In this section, we analyze the various statistical features
of the cross-correlation matrix of 473 daily stock returns
listed on the Korean stock markets from 3 January 1993
to 31 May 2003 using the random matrix theory and
Markowitz portfolio theory. We present the results on the
statistical properties of the cross-correlation matrix, such
as its distribution, eigenvalue spectrum and entropy of
portfolio weights calculated by MPT. Figures 1a and 1b
show the distribution of the cross-correlation matrices of
the original and random data sets. Figure 1c shows the dis-
tribution of cross-correlation matrices calculated by shift-
ing 21 days with 250 data points. Figure 1d displays the
average value of cross-correlation matrices of Figure 1c.
In Figure 1a, we find that the distribution of the cross-
correlation matrix between stocks for a whole period is

positively skewed and shows a significant difference from
that for the random interaction in Figure 1b. In Figure 1c,
we show that the distribution of the cross-correlation
matrix changes considerably over the whole time. Espe-
cially, in Figure 1d, during the Asian currency crisis, the
mean values of the correlation coefficients significantly in-
creased. In other words, the dynamically changes were
caused by the complex behavior of the market crash, un-
like the case of random interactions. Our findings confirm
that all the possible interactions in the Korean stock mar-
ket deviated from those for the random interaction.

We next decompose the original cross-correlation ma-
trix into the random Crandom and filter Cfilter parts us-
ing the RMT method to extract the meaningful informa-
tion from the original cross-correlation matrix. Figure 2
shows the eigenvalue distribution of the cross-correlation
matrix in the Korean stock market. In Figure 2, the
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Fig. 3. (Color online) (a) and (b) show the distribu-
tion of both eigenvectors corresponding to λ100 and
λ473, respectively. (c) and (d) display the β coeffi-
cients between the normalized market index and the
time series created by equation (9) for the eigenvalues
λ100 and λ473. The value of both β100 and β473 are
zero and 0.8, respectively.

solid-line (orange) is the eigenvalue spectrum predicted
by the RMT, and the red circles and blue circles indi-
cate the eigenvalue distributions of the original time series
and random data sets, respectively. In Figure 2, we find
that the eigenvalue distribution of the RMT method is
very similar to one from the random data, while that for
the real time series significantly shows different behavior.
Moreover, the largest eigenvalue is 52 times larger than
the largest eigenvalue of the RMT. The large values are
greater than 25 times those in the United States stock
market [37].

To characterize the statistical properties of each eigen-
values, we created the return time series using equation (8)
and calculated the slopes β between those and the KOSPI
market index using equation (9). Figures 3a and 3b shows
the distribution of the eigenvector elements corresponding
to both the largest eigenvalue, λ473 and λ100, one of eigen-
values of the RMT, respectively. Figures 3c and 3d show
the β coefficient between the KOSPI market index and
the time series created. We find that the β473 between
the market index and time series is 0.8, while one from
the time series created using the eigenvector elements pre-
dicted by the RMT is approximately zero. We argue that
the largest eigenvalue can explain the market properties
well, but one from the ranges predicted by the RMT is un-
correlated to the market index. We also decomposed the
original cross-correlation matrix according to each eigen-
value divided by the RMT method. Figure 4 shows the
distribution of various cross-correlation matrices. The red
circles, blue diamonds, black squares and pink triangles
indicate the cross-correlation matrices of the original, ran-
dom, filter and largest eigenvalues, respectively. Through
the above findings, we can expect that the distribution
of the random cross-correlation matrix Crandom follows a
Gaussian distribution, while the cross-correlation matrix
Cfilter estimated after removing the random components
from the original cross-correlation matrix by the RMT
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Fig. 4. (Color online) The distribution of the original cross-
correlation matrix, Coriginal, and those created by the random
matrix theory, Crandom, Cfilter, and Clargest, respectively. The
red circles, blue diamonds, black squares and pink triangles in-
dicate the cross-correlation matrices corresponding to the orig-
inal, random, filter and largest eigenvalue, respectively.

method has a similar distribution as the original time se-
ries. We found that the cross-correlation matrix reflecting
the largest eigenvalue property has an obvious difference
from that of the original time series.

To apply the RMT method to a portfolio optimiza-
tion problem, we analyzed the portfolio weights estimated
by the MPT through various cross-correlation matrices.
The important parameters are the return, µi, standard
deviation, σ and cross-correlation matrix, Cij , of the orig-
inal stock returns, which are needed to calculate the
portfolio weights of each stock. To calculate the effects
of the cross-correlation matrix among the input param-
eters, we apply the cross-correlation matrices, Cfilter ,
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Fig. 5. (Color online) (a) shows the efficient portfolio frontier
lines for the original, Coriginal, random, Crandom, and filter
cross-correlation matrix, Cfilter, respectively. (b) displays the
relationship between the entropy of the portfolio weights and
the portfolio risk.

and Crandom divided by the RMT method. Figure 5a
shows the efficient portfolio lines created using the vari-
ous cross-correlation matrices, such as Coriginal, Crandom,
and Cfilter . In Figure 5a, we found that the efficient fron-
tier lines calculated with both the original Coriginal and
filtered cross-correlation matrices Cfilter show very sim-
ilar behavior, while that of the random cross-correlation
matrix Crandom shows significant difference from the orig-
inal correlation. In addition, the efficient portfolio frontier
line of the random cross-correlation matrix Crandom at a
given portfolio risk σ overestimates the portfolio return,
µ, by a greater amount than one of the original cross-
correlation matrix. We next calculated the entropy of the
portfolio weights with each cross-correlation matrix, such
as Coriginal, Cfilter and Crandom. Figure 5b shows the
relationship between the portfolio risk, σ, and the en-
tropy of the portfolio weights for three types of cross-
correlation matrices according to a log-log plot. We found
that the entropy(σ) for both the original and filtered
cross-correlation matrices was approximately consistent
with a power-law function, E(σ) ∼ σ−γ with the expo-
nent γ ∼ 2.92, while there is no the power-law function
in the relationship between the entropy and the portfolio
return, µ and presented in Figure 5b. We also calculated
the exponents for each sub-periods by shifting 20 days
with 500 data points to verify the stability over time the
result observed in Figure 5. We find that while the re-
lationship between entropy of each portfolio weight and
portfolio risk follow a power-law function, the exponent
values, γ, calculated from each sub-periods changes over
time and lie within 1.19 ≤ γ ≤ 3.23. Especially, the γ
value calculated during the Asian currency crisis decreases
significantly (Fig. 6).
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Fig. 6. (Color online) The exponent of power-law function,
E(σ) ∼ σγ estimated by the relationship between the portfolio
risks, σ, and the entropy of portfolio weights.

4 Conclusions

We investigated the statistical properties of the
cross-correlation matrix between the return time series
of individual stocks traded in the Korean stock market
using the RMT method and observed the effect of the
cross-correlation matrix applied to the Markowitz port-
folio theory. We found that the distribution of the cross-
correlation matrix between stocks showed a positive skew
and dynamically changed over time. We found that the
eigenvalue distribution of the cross-correlation matrix de-
viated from those of the RMT, and the largest eigenvalue
was 52 times larger than the eigenvalues predicted by the
RMT. The slopes β between market index and the time se-
ries corresponding to the largest eigenvalue were 0.8, while
those for the RMT were approximately zero. Notably, we
found that the entropy function E(σ) of portfolio weights
with the portfolio risk σ was consistent with a power-law
function, E(σ) ∼ σ−γ , with the exponent γ ∼ 2.92, while
the relationship between the entropy and portfolio return
µ is not a power-law function. We find that while for all
sub-periods the exponents calculated from the relation-
ship between entropy of each portfolio weight and portfo-
lio risk follow a power-law function, those for sub-periods
changed over time and lie within 1.19 ≤ γ ≤ 3.23. Espe-
cially, the exponent γ decreases significantly during Asian
currency crisis. In the next step, we must rigorously study
the portfolio weights of other stock markets because these
play an important role in terms of the portfolio risk and
return.
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