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Abstract

We analyze the European transition economics and show that many time series of major indices exhibit (i) power-law

correlations in their values, (ii) power-law correlations in their magnitudes and (iii) an asymmetric probability distribution.

Applying the phase randomization procedure to these time series, we show that magnitude correlations completely vanish.

We propose a stochastic model that can generate time series with features (i), (ii) and (iii), and we show by means of

numerical simulations that this model is capable of reproducing these three features found in the empirical data.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The weak form of the law of market efficiency states that the present price of a stock impounds all of the
information about past prices, and this implies that stock prices at any future time cannot be predicted. If the
weak form of the law of market efficiency were not true, market analysts could make profit by interpreting
charts of the past history of stock prices. Numerous studies of financial time series have supported the
hypothesis of the weak form of the law of market efficiency for various stock markets [1–4] by demonstrating
that the serial dependence in stock price changes is negligibly small and, hence, not sufficient for formulating
trading rules that allow a profitable investment timing.

However, some studies have found evidence that there is a statistically significant long memory in time series
of some of the individual US stocks listed on NYSE [5]. In contrast to the predominant behavior of financial
time series of developed markets to exhibit only very short serial auto-correlations, financial time series of
emerging markets exhibit a different behavior [6]. For example, a significantly long memory was found for
weekly returns of a large number of Greek stocks [7] and for daily index returns recorded for six transition
economies in east and central Europe [8].
e front matter r 2005 Elsevier B.V. All rights reserved.
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2. Data analysis

We investigate financial time series of index returns of 10 European transition economies. We show that all
time series exhibit (i) an asymmetric probability distribution, (ii) serial long-range auto-correlations [8], and
(iii) serial long-range magnitude auto-correlations in agreement with financial time series commonly found in
developed markets [9,10]. Finally, we show by means of numerical simulations that these properties can be
encompassed by the stochastic processes recently proposed in Ref. [11].

We analyze the following 10 stock market indices PX50, BUX, WIG20, RTS, SAX, SBI, CROEMI, VILSE,
TALSE and RICI corresponding to the following 10 transition economies of central and east Europe Czech
Republic, Hungary, Poland, Russia, Slovakia, Slovenia, Croatia, Lithuania, Estonia and Latvia. All data are
recorded daily, and we define the relative price changes of the logarithmized indices SðtÞ by

Rt ¼ logSðtþ DtÞ � logSðtÞ, (1)

where Dt ¼ 1 corresponds to a time lag of one day. Basic statistics for the resulting time series RðtÞ are
presented in Table 1.

The skewness hðx� mÞ3i=s3 is a measure of asymmetry, where m is the expectation value of index x and s is
the standard deviation of index x. Table 1 shows that none of the index time series has a vanishing skewness,
i.e., all of them have an asymmetric probability distribution. The five time series PX50, SBI, CROEMI,
TALSE and RICI show a positive skewness, i.e., their probability distributions have a pronounced right tail,
whereas the other five time series show a negative skewness, i.e., their probability distributions have a
pronounced left tail. In Fig. 1, we show the probability distribution of the index returns of PX50, which
exhibits a positive skewness.

In order to investigate to which degree the probability distributions are peaked (leptokurtic), we calculate
the kurtosis defined as hðx� mÞ4i=s4. For a Gaussian probability distribution, the kurtosis is equal to 3, for a
probability distribution with more weight in the center and less weight in the tails, the kurtosis is smaller/
greater than 3, and for a probability distribution with less weight in the center and more weight in the tails, the
kurtosis is smaller/greater than 3. Table 1 shows that for none of the 10 index time series, the observed
probability distribution are Gaussian. In order to test the null hypothesis that the observed probability
distributions are Gaussian, we perform the Jarque–Bera test (chi-square with df ¼ 2). The reported p value is
the probability that the Jarque–Bera statistic exceeds the observed value, and a small p value leads to the
rejection of the null hypothesis that the observed probability distributions are Gaussian. Table 1 shows that
we must reject the null hypothesis that the observed probability distributions are Gaussian for all of the 10
time series.

We employ the detrended fluctuation analysis (DFA) method [12] to analyze temporal auto-correlations.
Following the DFA method, a given time series xi of total length N is first mapped to the random walk
Table 1

Basic statistics of financial data

Country Rus Hun Pol Slovak Sloven Czech Lit Lat Est Cro

Index RTS BUX WIG20 SAX SBI PX50 VILSE RICI TALSE CROEMI

St. dev. 0.031 0.017 0.022 0.014 0.014 0.014 0.007 0.010 0.019 0.014

Skewness �0.344 �0.865 �0.446 �0.409 0.416 1.342 �1.065 1.240 2.944 0.731

Kurtosis 7.96 17.69 11.97 9.48 25.34 17.18 26.89 22.46 47.80 12.51

Jarque–Bera 2342 30775 8476 3928 60087 22270 43803 167391 29459 5887

Probability 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

aRt
0.60 0.59 0.52 0.53 0.62 0.63 0.63 0.58 0.70 0.58

ajRt j 0.79 0.80 0.84 0.66 0.74 0.86 0.69 0.65 0.80 0.70

a ~Rt
0.59 0.58 0.52 0.51 0.58 0.67 0.63 0.56 0.69 0.57

aj ~Rt j
0.51 0.50 0.45 0.53 0.51 0.47 0.54 0.55 0.53 0.52

Data points 2232 3373 2530 2204 2884 2567 1829 2025 183 1522

Besides skewness and kurtosis, which are the measures for asymmetry and ‘‘fatness’’ in the tails, also shown is Jarque–Bera test of

normality. Also shown are DFA exponents for time series of indices and their magnitudes together with the corresponding values obtained

after phase randomization.
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Fig. 1. Probability distribution of the daily rate of return Rt, PðRtÞ, calculated for the PX50 index and Gaussian distribution with the same

standard deviation as found for the PX50 index. Due to the visual differences in the tails of these two distributions, the kurtosis of PðRtÞ

for the PX50 index is 17, which is much greater than 3, the kurtosis of PðRtÞ for the Gaussian probability distribution. Also, PðRtÞ for the

PX50 index is positively skewed, in contrast to PðRtÞ for the Gaussian probability distribution which is symmetric.
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yðkÞ ¼
Pk

i¼1ðxi � hxiiÞ, where hxii is the average of xi. Second, the random walk yðkÞ is divided into boxes of
equal length n, and the local trend of yðkÞ is calculated in each box by a least-square fit. Third, the random
walk yðkÞ is detrended by subtracting the local trend ynðkÞ in each box. And fourth, for a given box size n, the
root-mean-square deviation is calculated by

F ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1

½yðkÞ � ynðkÞ�
2

s
. (2)

The detrended fluctuation function F ðnÞ follows a scaling law F ðnÞ / na if the time series xi is power-law
auto-correlated. A scaling exponent a40:5 corresponds to time series with power-law correlations, ao0:5
corresponds to time series with power-law anti-correlations, and a ¼ 0:5 corresponds to time series with no or
only short-range auto-correlations.

Table 1 shows the DFA scaling exponents a for the 10 time series Rt. The results indicate that there are at
least two groups of markets. The first group is characterized by strong and medium long-range auto-
correlations and includes indices of Estonia ða ¼ 0:7Þ, Lithuania ða ¼ 0:63Þ, Czech Republic ða ¼ 0:63Þ,
Slovenia ða ¼ 0:62Þ, Russia ða ¼ 0:6Þ, Hungary ða ¼ 0:59Þ, Latvia ða ¼ 0:58Þ, and Croatia ða ¼ 0:58Þ. The
second group is characterized by weak long-range auto-correlations and includes Poland ða ¼ 0:56Þ and
Slovakia ða ¼ 0:53Þ.

Next, we calculate the DFA scaling exponents for the time series of jRtj. From Table 1 we see that for each
time series (i) jRtj shows long-range auto-correlations, as found for almost all well-known market indices, and
(ii) the DFA scaling exponent of jRtj is greater than the DFA scaling exponent of Rt.

In order to investigate to which degree the 10 time series exhibit linear and nonlinear properties [13,14], we
apply a phase-randomization of the original time series, which changes (does not change) magnitude auto-
correlations for a nonlinear (linear) process [15]. The phase-randomization procedure works as follows. First,
one performs a Fourier transform of the original time series. Second, one randomizes the Fourier phases but
keeps the Fourier amplitudes unchanged. Third, one performs an inverse Fourier transform and obtains the
surrogate time series ~Rt.

Fig. 2 shows the detrended fluctuation functions F ðnÞ of the time series Rt and their magnitudes jRtj for the
Russian index together with the phase-randomized surrogate time series ~Rt and their magnitudes j ~Rtj. As
expected, ~Rt exhibits the same F ðnÞ curve as the original time series Rt [13]. In contrast, the magnitudes of the
surrogate time series j ~Rtj are uncorrelated ðaj ~Rj ¼ 0:5Þ, whereas the magnitudes of the original time series are
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Fig. 2. DFA curves, F ðnÞ, calculated for four time series of rate of return of Russian RTS index: times series Rt, time series obtained after

phase randomization procedure ~Rt, and two magnitudes time series, jRtj and j ~Rtj. DFA exponents are aR ¼ 0:6, ajRj ¼ 0:79, and a ~R ¼ 0:6,
and aj ~Rj ¼ 0:5. Note that after phase randomization time series j ~Rtj exhibits no auto-correlations.
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power-law auto-correlated ðajRj ¼ 0:79Þ. We find the same behavior for all of the other 10 indices, i.e., auto-
correlations in j ~Rtj vanish by a phase randomization of the original time series Rt.
3. Model and simulation

To model time series Rt with an asymmetric probability distributions PðRtÞ and power-law auto-correlations
in Rt and jRtj, we employ the stochastic process defined in Ref. [11]:

Ri ¼
X1
n¼1

anðr1Þ½Ri�n � ljRi�nj� þ siZi, (3)

si ¼
X1
n¼1

anðr2Þ
jRi�nj

hjRiji
, (4)

anðrÞ ¼ r
Gðn� rÞ

Gð1� rÞGð1þ nÞ
. (5)

Apart of introduced asymmetry, the process is defined as a combination of two processes proposed in Refs.
[16–18]. l and r1;2 in ð0; 0:5Þ are asymmetric and scaling free parameters, respectively. G denotes the Gamma
function, and Zi denotes independently and identically distributed Gaussian variables with expectation value
hZii ¼ 0 and variance hZ2

i i ¼ 1. The weights anðrÞ satisfy the constraint
P1

n¼1 anðrÞ ¼ 1 [18], and by using the
Stirling formula it can be shown that the weights scale as anðrÞ / n1�r for asymptotically large values of n.

For the process of Eqs. (3)–(5), we have shown in Ref. [15] that for the case l ¼ 0, r1 ¼ r2 ¼ r ðr1;240:5Þ,
the following two scaling relations aR ¼ 0:5þ r and ajRj ¼ 0:5þ r hold between two DFA exponents aR and
ajRj and scaling parameter r. To model different auto-correlations exponents found for empirical time series
and their magnitudes, we allow the parameters r1 and r2 in Eqs. (3)–(5) to be different. By numerical
simulations [19] for model time series Rt where l ¼ 0, we find that the scaling relation aR ¼ 0:5þ r1

approximately holds regardless of value for r2. l ¼ 0 we take due to small skewness in the empirical
distributions. Hence, parameter r2 does not affect auto-correlations in Rt. In contrast, for magnitude auto-
correlations jRtj we find two different cases: (a) For the case r1or2 it holds ajRj ¼ 0:5þ r2 (see Fig. 3), while
(b) forr14r2 we find no simple dependence, where both parameters r1 and r2 control auto-correlations in jRtj

depending on range of r1 (see Fig. 3).
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Fig. 3. DFA curves, F ðnÞ, calculated for four times series of the process Rt (lower set) and jRtj (upper set) with fixed r1 ¼ 0:2 and varying

r2. DFA exponent for Rt, aR, does not depend on parameter r2. DFA exponent for jRtj, ajRj, approximately satisfies ajRj ¼ 0:5þ r2. This

does not hold for larger values of r1 where ajRj mainly depends on r1.
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Fig. 4. DFA curves, F ðnÞ, calculated for times series Rt for the process with r1 ¼ 0:1, r2 ¼ 0:29 and l ¼ �0:1 arbitrary chosen to model

small skewness and corresponding time series ~Rt obtained after phase randomization procedure, and for two magnitudes time series jRtj

and j ~Rtj. DFA exponents are aR ¼ 0:6, ajRj ¼ 0:79 and a ~R ¼ 0:6, aj ~Rj ¼ 0:5. We find that after phase randomization time series j ~Rtj exhibits

no auto-correlations. (b) Comparison of the probability distribution of daily return, PðRtÞ, for the Russian index RTS and for the process.

For the sake of comparison, PðRtÞ for the process is rescaled. Note that the differences in the tails are due to different lengths of empirical

and model time scales.
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To model empirical data characterized by different auto-correlations in Rt and jRtj where ajRj4aR (see Table
1), we employ the process of Eqs. (3)–(5) where r1or2 (case (a)). For that case we simply take two parameters
r1 and r2 from scaling relations aR ¼ 0:5þ r1 and ajRj ¼ 0:5þ r2, respectively.

Now we model the Russian index RTS, a representative index among transient economics. For the two
parameters r1 ¼ 0:1 and r2 ¼ 0:29, set to model scaling exponent aR ¼ 0:6 aR ¼ 0:79 found in the data (see
Table 1), we perform numerical simulations and in Fig. 4 we show the scaling function F ðnÞ / na for both
model time series Rt and jRtj. We take l ¼ 0:1 a small value for l to account for small skewness in the
empirical distribution. For model time series we find (i) ajRj4aR where aR ¼ 0:6 and ajRj ¼ 0:79 as we
previously found in the empirical data; (ii) after performing the phase-randomization procedure, magnitude
auto-correlations j ~Rtj vanish, while auto-correlations in ~Rt virtually remain unchanged compared to the
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original time series Rt, that is a behavior characteristic for empirical data. In Table 1 we see that the same
scaling properties hold for all indices analyzed. We also find after rescale that the probability distribution
PðRtÞ for the process fits the probability distribution of RTS index.

4. Conclusions

In conclusion, we analyze the long-range dependence in the capital markets of 10 transition economies in
central and east Europe. Apart of Poland and Slovakia, all market indices analyzed exhibit (i) long-range
dependence of power-law form. As expected, all market indices also show (ii) long-range dependence on the
magnitudes. The probability distributions exhibit (iii) asymmetric behavior. These properties should be
included in modeling of trading systems. For that reason, we propose a stochastic process specified by three
parameters with properties as found in the empirical data. For data analyzed, model parameters are easily
related with scaling exponents of empirical time series. The process can also be useful in modeling the US
market since some US stocks exhibit long-range dependence [5].
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