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Abstract. We develop a stochastic process with two coupled variables where the absolute values of each
variable exhibit long-range power-law autocorrelations and are also long-range cross-correlated. We inves-
tigate how the scaling exponents characterizing power-law autocorrelation and long-range cross-correlation
behavior in the absolute values of the generated variables depend on the two parameters in our model. In
particular, if the autocorrelation is stronger, the cross-correlation is also stronger. We test the utility of our
approach by comparing the autocorrelation and cross-correlation properties of the time series generated
by our model with data on daily returns over ten years for two major financial indices, the Dow Jones and
the S&P500, and on daily returns of two well-known company stocks, IBM and Microsoft, over five years.

PACS. 89.90.+n Other topic in areas of applied and interdisciplinary physics – 05.45.Tp Time series
analysis – 05.40.Fb Random walks and Levy flights

1 Introduction

The signal output of many physical and financial systems
is often characterized by variables which can be both au-
tocorrelated and cross-correlated [1–5]. For example, in
finance, the time series of the number of transactions
of a company stock and the absolute value of the stock
price returns per unit time are autocorrelated, and at the
same time these two variables exhibit significant cross-
correlations [6–8]. Further, the values of a given variable
can exhibit different autocorrelations compared to the ab-
solute values of the same variable — e.g., the price returns
of a company stock are often not correlated, while the ab-
solute price returns can be positively correlated [9–13]. It
is not well understood how the strength of the autocorre-
lations in the absolute values of given variables affects the
degree of cross-correlation between the absolute values of
these variables.

Here we ask if long-range power-law autocorrelations
in the absolute values of given variables would lead to
long-range cross-correlations between the absolute values
of the variables. Specifically, we ask how the degree of
cross-correlation depends on the scaling exponents char-
acterizing the strength of the autocorrelations in the ab-
solute values of the variables.

a e-mail: dffu@bu.edu
b e-mail: plamen@buphy.bu.edu

To address this question we investigate the autocor-
relations and cross-correlations between two well-known
financial indices, the Dow Jones industrial and the
S&P500 index, and we develop a stochastic process which
generates both long-range power-law autocorrelations in
the absolute values of the variables, as well as long-range
cross-correlations between them.

2 Data and empirical results

We first consider the daily closing values of the Dow Jones
and S&P500 financial indices over the period from 1 Au-
gust 1993 to 1 July 2003. From the original data we obtain
the time series of the returns by taking differences of loga-
rithm of the subsequent index values. In Figures 1a and 1b
we show the return time series xt and yt, and the abso-
lute return time series |xt| and |yt| for the Dow Jones and
S&P500 financial indices respectively. Figure 1a indicates
almost a parallel movement of the values of the returns of
these indices.

For both indices we find that the autocorrelation func-
tion of xt and yt practically vanishes except for the first
three time lags (Fig. 1c). The cross-correlation function
between xt and yt is defined by C(xt, yt−τ ) ≡ E[(xt −
µx)(yt−τ − µy)]/σxt σyt , where τ is the time lag (or time
scale), µ is the mean value and σ is the standard devi-
ation. Although the profiles of the two time series ap-
parently follow each other, we do not find long-range
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Fig. 1. (a) Daily returns and (b) absolute daily returns of
the Dow Jones and S&P500 indices over the period 1 August
1993 till 1 July 2003. For clarity, data for the Dow Jones in-
dex is vertically shifted. Data for both indices exhibit parallel
movement suggesting possible cross-correlation. (c) Autocor-
relation function for Dow Jones and S&P500 returns and their
cross-correlation function are practically zero indicating that
the returns of these indices are not correlated and are not cross-
correlated. (d) Autocorrelation functions for Dow Jones and
S&P500 absolute returns and their cross-correlation function
almost overlap, are different than zero, and exhibit long-range
behavior. Note, that after Fourier phase randomization, the
cross-correlation between Dow Jones and S&P500 absolute re-
turns disappears. (e) DFA scaling curves for Dow Jones and
S&P500 absolute returns. The scaling exponent α > 0.5 at
large time scales n indicates presence of long-range power-law
correlations, which are lost after Fourier phase randomization
of the data. The crossover behavior in the scaling curves for
the absolute returns could be modeled as suggested in [36].
Processes exhibiting different scaling behavior in the returns
and in the absolute returns have been modeled in [37].

cross-correlations between xt and yt. This is not sur-
prising, since for both indices there are no long-range
autocorrelations. In contrast, the absolute values of the
returns for both indices exhibit long-range autocorrela-
tions (Fig. 1d). In Figure 1e we also show the result of
our scaling analysis using the detrended fluctuation anal-
ysis (DFA) method [14–19]. The DFA scaling curves cal-
culated for both indices |xt| and |yt| practically overlap
with the same DFA scaling exponent α. Further, we find
very strong cross-correlations between |xt| and |yt| as in-
dicated by nonvanishing C(|xt|, |yt−τ |) in Figure 1d. A
similar behavior we observe also for the absolute returns
of two company stocks over 5 year shown in Figure 2.

Commonly in practice, the Fourier phase randomiza-
tion procedure is employed to demonstrate existence of
nonlinearity in the data [20–22]. The procedure creates
a surrogate data with the same correlation properties as
the original signal. Following the procedure, one performs
a Fourier transform on the original time series, preserv-
ing the Fourier amplitudes but randomizing the Fourier
phases. Finally, one performs an inverse Fourier transform
to create surrogate data. In Figure 1d we show that the
cross-correlations between two indices |xt| and |yt| com-
pletely vanish after Fourier phase randomization.

3 Modeling long-range correlations
in absolute values of variables

Since 1950 long memory models have played a significant
role in the physical sciences as diverse as hydrology, cli-
matology and finance [23–31]. Since empirical time series
may exhibit different correlations for the variables and for
their absolute values, as observed for the two financial
indices in Figure 1, processes characterized by correla-
tions in the absolute values were proposed [32–34]. Specif-
ically, to obtain power-law decaying autocorrelations in
the absolute values the Fractionally Integrated autoregres-
sive conditional heteroscedastic (FIARCH) process was
proposed [11,35].

xt = σtηt, (1a)

σt =
∞∑

τ=1

ρ Γ (τ − ρ)
Γ (1 − ρ)Γ (τ + 1)

|xt−τ |
µ

, (1b)

where the parameter ρ is in the range 0<ρ<0.5 and it con-
trols the scaling behavior of the autocorrelation function
of |xt| [11], ηt is an i.i.d. Gaussian variable with mean value
〈ηt〉 = 0 and unit variance 〈η2

t 〉 = 1, and µ is the mean
value of |xt|. The sum of the weights in equation (1b) satis-
fies the condition

∑∞
τ=1 ρ Γ (τ−ρ)/(Γ (1−ρ)Γ (τ +1)) = 1,

which yields the expected value of the volatility σt to be
E(σt) = 1. The FIARCH process is characterized by an
autocorrelation function C(xt, xt−τ ) = 0 for all τ , whereas
C(|xt|, |xt−τ |) = Γ (1 − ρ)Γ (τ + ρ)/(Γ (ρ)Γ (τ + 1 − ρ))
converges for asymptotically large τ as C(|xt|, |xt−τ |) ∼
τ−1+2ρ.

To account for empirical observations, where two
stochastic processes are characterized by long-range
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Fig. 2. (a) Absolute daily returns of the Microsoft and IBM
stocks over the period 30 Oct. 1998 till 7 Aug. 2003. For clar-
ity, data for the IBM stock is vertically shifted. (b) Autocor-
relation functions for Microsoft and IBM absolute returns and
their cross-correlation function are different than zero over
large time scales. (c) DFA scaling curves for Microsoft and
IBM absolute returns. The scaling exponent α > 0.5 at large
time scales n indicates presence of long-range power-law cor-
relations.

power-law autocorrelations in the absolute values of the
generated variables and at the same time exhibit long-
range cross-correlations between the absolute values of the
variables, as observed for the Dow Jones and S&P500 in-
dices (Fig. 1), we introduce a two-component FIARCH
model. This model is characterized by coupling between
the output variables xt and yt of two stochastic processes

defined as:

xt = [W1σxt + (1 − W1)σyt]ηxt, (2a)
yt = [(1 − W2)σxt + W2σyt]ηyt, (2b)

σxt =
1
µx

∞∑

τ=1

ρ1 Γ (τ − ρ1)
Γ (1 − ρ1)Γ (τ + 1)

|xt−τ |, (2c)

σyt =
1
µy

∞∑

τ=1

ρ2 Γ (τ − ρ2)
Γ (1 − ρ2)Γ (τ + 1)

|yt−τ |, (2d)

where ηxt and ηyt are two Gaussian i.i.d. variables, µx =
E(|xt|) and µy = E(|yt|) are the mean values of |xt| and
|yt|, and the mean value of the volatility of each process
is E(σxt) = 1 and E(σyt) = 1. In our model the scaling
parameters ρ1 and ρ2 (ρ1,2 ∈ (0, 0.5)) control the power-
law scaling behavior of the autocorrelation function of |xt|
and |yt| in the asymptotic regime of large time scale τ .
To model cross-correlations between |xt| and |yt| we in-
troduce coupling between the variables xt and yt, which
is controlled by the two parameters W1 and W2, where
W1,2 ∈ [0, 1]. In addition, as we show below, the scal-
ing parameters ρ1 and ρ2 also determine the degree of
cross-correlation between |xt| and |yt|. Further, we note,
that the coupling introduced by the parameters W1 and
W2 does not lead to cross-correlation in the variables xt

and yt. We also note, that the proposed in equations (2a–
2d) model does generate processes xt and yt which are
not correlated (αxt = αyt = 0.5). While this is different
compared to the empirical observation of close to a ran-
dom behavior with α ≈ 0.45 for Dow Jones and S&P500,
our objective is to propose a more general approach to
model long-range cross-correlations between coupled pro-
cesses which are not autocorrelated, and the empirical ob-
servations in this case are only a general motivation for
our model.

In our two-component FIARCH model each process xt

and yt is characterized by a composite volatility that is a
combination of two independent FIARCH volatilities σxt

and σyt (Eq. (1)). Since the expectation values of both
processes are E(σxt) = 1 and E(σyt) = 1, our choice of
a composite volatility of the form W1σxt + (1 − W1)σyt

for xt (Eq. (2a)) and of the form (1 − W2)σxt + W2σyt

for yt (Eq. (2b)) guarantees stability of the processes xt

and yt. In general, by choosing W1 �= W2 we can simulate
two processes which depend differently on each other, e.g.,
for W1 = 1 and W2 = 0.5 the process yt depends on xt

(Eq. (2b)), while xt does not depend on yt (Eq. (2a)). In
the following we consider only the case of W1 = W2.

We next examine the autocorrelation and cross-
correlation characteristics of the processes generalized by
our model, and how these characteristics depend on the
parameters in equation (2). First, we consider the case
when W1 = W2 = 1. With this choice for the process in
equation (2), we see that the composite volatilities in equa-
tions (2a) and (2b) are reduced to the conditional volatil-
ities σxt and σyt which depend only on the past values of
|xt| and |yt| respectively. Thus, when W1 = W2 = 1, each
of the two processes xt and yt is generated by the inde-
pendent FIARCH process in equation (1). In this case, |xt|
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Fig. 3. (a) |xt| and (b) |yt| generated using the process defined
in equations (2a–2d) with coupling parameters W1 = W2 = 1
and scaling parameters ρ1 = 0.4, ρ2 = 0.1. For this choice of
values for W1 and W2 the two processes in (a) and (b) are de-
coupled, and the signals do not exhibit parallel movement in
time. (c) DFA scaling curves for |xt| and |yt|. The scaling expo-
nents α|xt| >0.5 and α|yt| >0.5 indicate long-range power-law
autocorrelations in |xt| and |yt|. (d) Cross-correlation function
between |xt| and |yt|. Since for W1 = W2 = 1, |xt| and |yt|
are decoupled (independent) processes, and thus there is no
cross-correlation between |xt| and |yt|.

and |yt| are long-range power-law autocorrelated but are
not cross-correlated (Fig. 3), and the scaling exponents
α1 and α2 characterizing the power-law behavior of the
autocorrelations in |xt| and |yt| will depend on the scal-
ing parameters ρ1 and ρ2 respectively as α1,2 ≈ 0.5 + ρ1,2

(Fig. 3c).
Next, we test how different values for the coupling pa-

rameters W1 = W2 and for the scaling parameters ρ1

and ρ2 affect the long-range correlations in |xt| and |yt| as
well as the cross-correlation between |xt| and |yt| (Fig. 4).
To quantify the scaling behavior of the autocorrelations in
|xt| and |yt| we apply the DFA method [14–19]. We find
that for fixed value of the coupling parameters W1 = W2,
the DFA scaling exponent α increases with increasing
value of the scaling parameters ρ1 = ρ2 (Fig. 5a), sug-
gesting that larger values of ρ1 and ρ2 lead to stronger
autocorrelations in |xt| and |yt|. Next, we keep the val-
ues of the parameters ρ1 = ρ2 fixed, and we find that the
DFA scaling exponent α calculated for |xt| and |yt| does
not depend on the coupling parameters W1 and W2, as
we show in Figure 5b. We note, that even for ρ1 �= ρ2

the curves shown in Figure 5b do not depend on the val-
ues of W1 and W2. Thus α depends only on the value of
the scaling parameters ρ1 and ρ2, and we find the rela-
tionship α1,2 ≈ 0.5 + ρ1,2, as expected for the traditional
FIARCH process [37]. Further, we find that |xt| and |yt|
are long-range cross-correlated and that with increasing
values of ρ1 = ρ2 the degree of cross-correlation between
|xt| and |yt| also increases (Fig. 5c). We also observe that
the cross-correlation between |xt| and |yt| depends on the
coupling between the two processes xt and yt — the largest
values for the cross-correlation function C(|xt|, |yt−τ |) are
observed for W1 = W2 = 0.5 when the coupling is the
strongest (Fig. 5d).

4 Conclusion

The model we introduce can generate two processes xt

and yt characterized by (i) power-law autocorrelations in
the absolute values of the variables |xt| and |yt|, which
depend only on the scaling parameters ρ1 and ρ2, and (ii)
long-range cross-correlations between |xt| and |yt|, which
depend both on the values of the scaling parameters ρ1

and ρ2, and on the coupling parameters W1 and W2. We
note, that after Fourier phase randomization [20] of the
processes xt and yt (Fig. 5) both the long-range power-law
autocorrelations in |xt| and |yt| [21,22] and the long-range
cross-correlation function between |xt| and |yt| vanish.

In summary, we develop a stochastic model — a
two-component FIARCH model — to generate stochas-
tic processes with long-range power-law autocorrelations
in the absolute values of the variables, as well as long-
range cross-correlations between their absolute values.
We demonstrate how the degree of autocorrelations in
the processes we generate relates to the strength of the
cross-correlations: if the autocorrelation is stronger, the
cross-correlation is also stronger. We find that the process
generated by our model exhibit scaling characteristics sim-
ilar to those observed in empirical data derived from two
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Fig. 4. (a) |xt| and (b) |yt| generated using the process defined in equations (2a–2d) with coupling parameters W1 = W2 = 0.5
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