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Cascading failures in complex systems have been studied extensively using two different models: k-core
percolation and interdependent networks. We combine the two models into a general model, solve it analytically,
and validate our theoretical results through extensive simulations. We also study the complete phase diagram of
the percolation transition as we tune the average local k-core threshold and the coupling between networks. We
find that the phase diagram of the combined processes is very rich and includes novel features that do not appear in
the models studying each of the processes separately. For example, the phase diagram consists of first- and second-
order transition regions separated by two tricritical lines that merge and enclose a two-stage transition region.
In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation
probability followed by a continuous second-order transition at a lower occupation probability. Furthermore, at
certain fixed interdependencies, the percolation transition changes from first-order → second-order → two-stage
→ first-order as the k-core threshold is increased. The analytic equations describing the phase boundaries of the
two-stage transition region are set up, and the critical exponents for each type of transition are derived analytically.
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I. INTRODUCTION

Understanding cascading failures is one of the central
questions in the study of complex systems [1]. In complex
systems, such as power grids [2,3], financial networks [4], and
social systems [5], even a small perturbation can cause sudden
cascading failures. In particular, two models for cascading fail-
ures with two different mechanisms were studied extensively
and separatel:, k-core percolation [6,7] and interdependency
between networks [8–11].

In single networks, k-core is defined as a maximal set
of nodes that have at least k neighbors within the set. The
algorithm to find k-cores is a local process consisting of
repeated removal of nodes having fewer than k neighbors
until every node meets this criterion. k-core decomposition
of networks has been extensively used in studying the
organization of large networks [12] and relating this
organization to the functionality in diverse systems such as the
internet [13], protein interaction networks [14,15], neuronal
networks [16], and cortical organization of the human brain
[17]. The greater importance of nodes present in the higher
k-cores is demonstrated also in epidemiology [18], community
detection [19], and neuronal networks [17,20]. Furthermore, k-
core percolation has been used in explaining cascading failures
[6,7], evolutionary biology [21], and robustness studies of
airport networks [22]. Additionally, the threshold k can be
node-dependent, which is often referred to as heterogeneous k-
core percolation. Both homogeneous and heterogeneous cases
have been extensively studied in single networks [23–27].

Another salient feature of real-world systems that causes
cascading failures is interdependency. For example, power net-
works and communication networks depend on each other to
function and regulate, so failure in one or both networks leads
to cascading failures in one or both systems. Cascading failures
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have been studied extensively as percolation in interdependent
networks [8,9,28–31]. An increase in either interdependency
or k-core threshold increases the instability in networks. The
models, studying these processes separately, demonstrate this
with percolation transition changing from second-order →
first-order as the parameters are increased [9,26].

As motivated above, k-core percolation provides a model to
understand the robustness of diverse systems and more specif-
ically robustness of important nodes in the system. Recent
studies have shown that these systems are often interdependent
on other systems, and interdependency makes the systems
more vulnerable [8,32]. Therefore, k-core percolation has
to be studied in the presence of interdependency, as we do
here, for better understanding of the robustness of the the
systems. In this paper, we study a general model that combines
both processes (k-core percolation and interdependency), and
we demonstrate that the results of the combination are very
rich and include novel features that do not appear in the
models that study each process separately. In many aspects,
results are counterintuitive. For example, at certain fixed
interdependencies, the percolation transition changes from
first-order → second-order → two-stage → first-order as the
k-core threshold is increased.

Consider a system composed of two interdependent uncor-
related random networks A and B with both having the same
arbitrary degree distribution P (i). The coupling q between
networks is defined as the fraction of nodes in network A
depending on nodes in network B and vice versa (Fig. 1). The
k-core percolation process is initiated by removing a fraction
1 − p0 of randomly chosen nodes, along with all their edges,
from both networks. In k-core percolation, nodes in the first
network with fewer than ka neighbors are pruned (the local
threshold of each node may differ), along with all the nodes
in the second network that are dependent on them. The k-core
percolation process is repeated in the second network, and
this reduces the number of neighbors of nodes in the first
network to fewer than ka . This cascade process is continued
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FIG. 1. Demonstration of an interdependent network with cou-
pling q = 0.75 with dependency links shown as dashed lines. The
2-core and 3-core are the highest possible k-core in the top and
bottom layers, respectively, while still preserving all the dependency
links.

in both networks until a steady state is reached. The cascades
in both networks are bigger during k-core percolation than
during regular percolation due to the pruning process. Here
we consider the case of heterogeneous k-core percolation in
which a fraction r of randomly chosen nodes in each network
is assigned a local threshold ka + 1 and the remaining fraction
1 − r nodes are assigned a threshold ka . This makes the
average local threshold per site, identical for both networks,
to be k = (1 − r)ka + r(ka + 1), which allows us to study the
k-core percolation continuously from ka-core to (ka + 1)-core
by changing the fraction r . Note that the k-core percolation
properties depend on the distribution of local thresholds ka

and not on the average threshold per site as found in single
networks [27,33]. In this paper, for notational simplicity, k

is used for indexing various functions. The functions truly
depend on the parameters ka and r , which can be calculated
from k using

ka = �k�,
r = k − ka, (1)

where �k� denotes the floor function of k.
At the steady state of the cascade process, the network

becomes fragmented into clusters of various sizes. Only
the largest cluster (the “giant component”) is considered
functional in this study and is the quantity of interest. The
fraction of nodes φ′

∞ remaining in the steady state is identical
in both networks as the entire process is symmetrical for both
networks and can be calculated using the formalism developed
by Parshani et al. [9],

φ′
∞ ≡ p0{1 − q[1 − p0Mk(φ′

∞)]}, (2)

where Mk(φ′
∞) is the probability of a node to belong to the giant

component in a single network with an occupation probability
of φ′

∞. Due to coupling between the networks, the fraction φ′
∞

remaining in each network at the steady state of the cascade
process is less than the fraction p0 of nodes remaining in
each network after the initial damage. The size of the giant
component in the coupled networks at the steady state φ∞ is

φ∞ = φ′
∞Mk(φ′

∞). (3)

The k-core formalism for single networks [25], based on
local treelike structure, can be used to calculate Mk(φ′

∞). In
this formalism, any node belonging to the giant component is
required to be the root node for (ka − 1)-ary tree to satisfy the
condition of the root node having at least ka neighbors within
the giant component. Therefore, the function Mk(φ′

∞) depends
on the probability of reaching a node in the giant component
starting from any randomly chosen link Z and a randomly
chosen node X. The function is given by

Mk(φ′
∞) = Mk(Z(φ′

∞),X(φ′
∞))

= (1 − r)
∞∑

j=ka

P (j )�ka

j (Z(φ′
∞),X(φ′

∞))

+ r

∞∑
j=ka+1

P (j )�ka+1
j (Z(φ′

∞),X(φ′
∞)), (4)

where

�
ka

j (Z,X) =
j∑

l=ka

(
j

l

)
(1 − X)j−l

l∑
m=1

(
l

m

)
Zm(X − Z)l−m,

which depends only on the value of ka .
These are calculated using the self-consistent equations

X

fk(X,X)
= Z

fk(Z,X)
= φ′

∞, (5)

where

fk(Z,X) = (1 − r)
∞∑

j=ka

jP (j )

〈j 〉 �
ka−1
j−1 (Z,X)

+ r

∞∑
j=ka+1

jP (j )

〈j 〉 �
ka

j−1(Z,X). (6)

The probabilities Z and X are equal when the local thresholds
of k-core percolation are ka � 2 [26].

Since there are many intermediate variables and are coupled
through multiple equations, we will sketch a way of solving
them. Equation (2) can be simplified into a quadratic equation
in p0 as

qMk(φ′
∞)p2

0 + (1 − q)p0 − φ′
∞ = 0,

which has a positive root given by

p0 = q − 1 + √
(q − 1)2 + 4qφ′∞Mk(φ′∞)

2qMk(φ′∞)
. (7)

Equation (6) can be used to express φ′
∞, and X as a function

of Z. The simplified form is given by

p0 =
q − 1 +

√
(q − 1)2 + 4q ZMk(Z,X(Z))

fk(Z,X(Z))

2qMk(Z,X(Z))
≡ hk,q(Z), (8)

which can be (numerically) solved for Z at any initial
percolation probability p0. This value of Z is used to calculate
X, φ′

∞, Mk(φ′
∞), and ultimately the giant component φ∞.

The size of the giant component as a function of p0, found
through the above discussed method, is in excellent agreement
with simulation results for both Erdős-Rényi (see Figs. 2 and
3) and scale-free networks (see Fig. 4).
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FIG. 2. Comparison of theory (lines) and simulation (symbols)
for two coupled Erdős-Rényi networks at fixed average local threshold
(a) k = 1.5, (b) k = 2.0, and (c) k = 2.5. As the coupling q is
increased, k-core percolation transition changes from second-order to
first-order. For k = 2.0, a two-stage transition is seen at intermediate
couplings. Simulation results agree well with the theory.

The function hk,q(Z) in Eq. (8) determines the nature of
the phase transition and the critical percolation thresholds

pc, illustrated below in the example of two Erdős-Rényi
networks.

II. TWO COUPLED ERDŐS-RÉNYI NETWORKS

A. Complete phase diagram

To demonstrate the richness of the model that combines
k-core and interdependency, we focus on two interdependent
Erdős-Rényi networks. Both networks have identical degree
distributions given by P (i) = zi

1 exp(−z1)/i! with the same
average degree z1. The function fk is given by fk(Z,X) = 1 −
e−z1Z , fk(X,X) = 1 − re−z1X for 1 � k < 2. Since X = Z

for k � 2, fk(Z,Z) = 1 − e−z1Z(1 + rz1Z). The functions Mk

are given by Mk(Z,X) = 1 − e−z1Z − rz1Ze−z1X for 1 � k <

2, and Mk(Z,Z) = 1 − (1 − r)�(2,z1Z)
�(2) − r �(3,z1Z)

�(3) for k � 2,
where �(m,x) and �(m) are incomplete and complete gamma
functions, respectively, of order m. The parameter r appearing
in the functions is calculated using Eq. (1).

The behavior of the function hk,q(Z) (Eq. (8)) for fixed
values of parameters, as a function of Z determines the
nature of the k-core percolation transition. In general, the
function hk,q(Z) has either (1) a monotonically increasing
behavior, (2) a local minimum, or (3) a global minimum
(see Fig. 5). Monotonically increasing behavior corresponds
to a second-order percolation transition. When hk,q(Z) has
a global minima, percolation transition is an abrupt (first-
order) transition. The presence of local minima indicates
that the percolation transition is a two-stage transition in
which the giant component undergoes an abrupt (first-order)
jump followed by a continuous transition as the occupation
probability p0 is decreased [see the case of q = 0.765 in
Fig. 2(b)]. Using this analysis, we plot the complete phase
diagram of k-core percolation transition for Erdős-Rényi
networks in Fig. 6.

The boundaries of the phase diagram (Fig. 6), q = 0 and
k = 1 lines correspond to the cases of k-core percolation
in single network and regular percolation in interdependent
networks, respectively. We describe the complex nature of
the combined k-core percolation and interdependent network
model at intermediate couplings 0 < q < 1, and contrast it
with the known results at the boundaries. Parshani et al. [9]
demonstrated that regular percolation in coupled networks
changes from a second-order to first-order when it passes
through a tricritical point at the critical coupling qtri,1. The
tricritical nature is preserved in k-core percolation as the
average local threshold k is increased, but the tricritical
coupling qtri,k increases with k, as can be seen in Fig. 6. The
dependence of qtri,k on the average degree z1 is

qtri,k = 1 + Xk−1,0 −
√

(1 + Xk−1,0)2 − 1, (9)

where Xk−1,0 is the numerical solution for X in self-consistent
Eq. (5) when Z = 0.

A first-order transition indicates network instability. Be-
cause instability increases with an increase in both the coupling
q and the average local threshold k—more nodes are removed
during k-core percolation at higher local thresholds—we
expect the k-core percolation transition to become first-order
at lower couplings when the average local threshold is higher.
Counterintuitively, Fig. 6 shows that the tricritical coupling
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FIG. 3. The giant component for two coupled Erdős-Rényi networks (z1 = 10), computed numerically and through simulations, as a
function of fraction of initially removed nodes p0 at different average local threshold k for couplings: (a) q = 0.3, (b) q = 0.7, (c) q = 0.8, and
(d) q = 0.9. For low coupling q = 0.3, the nature of k-core percolation is similar to that of single networks. For high couplings q = 0.8 and
q = 0.9, k-core percolation is first-order, indicating the increased instability of the system compared to single networks. For the intermediate
coupling q = 0.7, k-core percolation is initially first-order for k = 1.5, which then becomes a two-stage transition as the average local threshold
is increased to k = 2.0. The cascades during k-core percolation are expected to increase as the local threshold of nodes are increased, and
therefore, k-core percolation would be (intuitively) expected to remain as first-order. Surprisingly, k-core percolation changes to second-order
for k = 2.3. Finally, the increased instability in the system is manifested into k-core percolation becoming a first-order transition for k = 2.7.
Simulation results (shown as symbols) are obtained for a system with 106 nodes in each network.

qtri,k increases with k. To test this further, we analyze Eq. (9).
A perturbative expansion shows that qtri,k indeed increases
with k, around k = 1, as

qtri,k = qtri,1 + δke−1(1 + δke−1)

z1

(
z1 + 1√
2z1 + 1

− 1

)
, (10)

where δk = k − 1 and the tricritical coupling qtri,1 (consistent
with results found in Ref. [34]) is given by

qtri,1 = 1 + 1

z1
−

√(
1 + 1

z1

)2

− 1. (11)

We compare the perturbative solution of Eq. (10) with the
numerical solution of Eq. (9) and the simulation results in
Fig. 7.

Above an average local threshold k � 2, the tricritical
nature ceases to exist. Instead, as the coupling q is increased,

the k-core percolation transition goes through a two-stage tran-
sition as it changes from second-order to first-order. Figure 2(b)
shows that this two-stage transition has characteristics of both
first- and second-order transitions. The critical couplings qc,1

and qc,2 separate the two-stage transition from the first- and
second-order transition regions respectively. At the critical
line qc,2(k), the function hk,q(Z) develops an inflection point
at Z > 0 that signals the development of a local minimum for
q > qc,2 [see Fig. 5(b)]. The condition for qc,2 at a fixed k is

h′
k,qc,2

(Z0) = 0 and h′′
k,qc,2

(Z0) = 0, (12)

where the derivatives are taken with respect to Z and the
inflection point Z0 must be determined using the relationship
in Eq. (12). For couplings q � qc,1, the global minimum of
hk,q(Z) occurs at Z = 0. For q > qc,1, the global minimum
shifts to Z0 > 0. At the critical line qc,1(k), the function has
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FIG. 4. Comparison between theory and simulation (symbols) of
k-core percolation in two interdependent scale-free networks with
exponent γ = 2.5, with both layers having identical local thresholds
k = 1,2,3. Simulation results were obtained for a system with N =
106 nodes in each network. The minimum and maximum degree
for nodes in each network were set to be imin = 2 and imax = 1000,
respectively.

global minima at both Z = 0 and Z0 > 0 [see Fig. 5(b)], and
this yields the conditions for the critical coupling qc,1,

h′
k,qc,1

(Z0) = 0 and hk,qc,1 (Z0) = hk,qc,1 (Z = 0), (13)

where the derivatives are taken with respect to Z.
In single networks, the k-core percolation transition reaches

a tricritical point when the average local threshold is increased
from 2 to 3 at kc = 2.5 [26]. Figure 6 shows that this tricritical
point is preserved when the coupling between the networks is
increased up to a critical coupling qc,2.5 and forms a second
tricritical line. The point qc,2.5 (point “X”) is a triple point
surrounded by three regimes. This critical coupling depends
on the average degree z1:

qc,2.5 = 1 + 3

2z1
−

√(
1 + 3

2z1

)2

− 1. (14)

The critical lines qc,1(k) and qc,2(k) can be calculated
perturbatively around the point qc,2.5. Using the expansion
of hk,q(Z) around Z = 0 with the conditions in Eq. (12) and
Eq. (13), we get a general equation

am(1 − q)4 + bmq(1 − q)2 + cmq2 = 0, (15)

where am = z2
1

36 [12(3 − 2m)δ2 + 6(m − 2)δ + 1], bm = z1
6

[12(1 − m)δ2 + (4 − 2m)δ − 1],cm = δ2 + δ + 1/4 with δ =
2.5 − k. Solving Eq. (15) with m = 3 and m = 4 gives qc,2

and qc,1, respectively. The numerical solution of Eq. (15) are
plotted in Fig. 8.

Finally, for the average local threshold 2.5 < k � 3, k-
core percolation transition remains first-order even when the
coupling between the networks is increased.

B. Critical exponents and critical percolation thresholds

The critical percolation thresholds and critical exponents
for all three transitions discussed above can be calculated from
the function hk,q(Z). At the second-order transition and the
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FIG. 5. Comparison of behavior of the function hk,q (Z) for two
coupled Erdős-Rényi networks at fixed average local threshold (a)
k = 1.5 and (b) k = 2.0 at different couplings. As seen in the phase
diagram (see Fig. 6), k-core percolation changes from a second-order
at low couplings to a first-order at high couplings passing through
a tricritical point for k = 1.5, and through a two-stage transition for
k = 2.0. In both cases, hk,q (Z) is characterized by monotonically
increasing behavior corresponding to second-order transition and,
by the presence of a global minima corresponding to first-order
transition. For k = 1.5, the inflection point occurs at Z = 0, which
immediately turns into a global minima as the coupling is increased,
leading to a tricritical point. For k = 2.0, the inflection point occurs
at Z > 0, which turns into a local minima, leading to a two-stage
transition, followed by being a global minima as the coupling is
increased.

continuous part of the two-stage transition (q < qc,1, the gray
regions in Fig. 6), the critical behavior of the giant component
takes the form φ∞ ∼ (p0 − pc,2)β2 , where pc,2 = hk,q(Z = 0).
The analytical expressions for pc,2 are

pc,2 =
{

1
z1(1−q) , 1 � k � 2

1
z1[1−(k−2)](1−q) , 2 � k � 2.5

. (16)

We find the exponent β2 by using the Taylor series
expansion of the function hk,q(Z) around Z = 0. The exponent
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depends on coupling, indicating that coupling changes the
universality classes of these k-core percolation transitions. The
exponents found at different points of the phase diagram (see
Fig. 9) are

β2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, 1 � k < 2,q < qtri,k

1/2, 1 � k < 2,q = qtri,k

2, 2 � k < 2.5,q � qc,1

1, k = 2.5,q < qc,2.5

2/3, k = 2.5,q = qc,2.5

. (17)

At the first-order transition and the abrupt jump of the
two-stage transition, the critical behavior of the giant com-
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105 nodes.
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FIG. 8. Numerical solution of the perturbative expansion of
qc,1(k) and qc,2(k) around the triple point qc2,.5 given in Eq. (15).

ponent takes the form φ∞ − φ∞,0 ∼ (p0 − pc,1)β1 , where
pc,1 = hk,q(Z0). Z0 is the minimum of the function hk,q(Z)
found using the condition h′

k,q(Z0) = 0. Both pc,1 and pc,2

are calculated numerically and are in good agreement with
the simulations shown in Fig. 10. We calculate the critical
exponent β1 using a Taylor series expansion of the function
hk,q(Z) around the minimum Z0 and find that it is dependent
only on coupling q (see Fig. 9) as given by

β1 =
{

1/3, q = qc,2

1/2, q > qc,2
. (18)
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FIG. 9. The critical exponents for the k-core percolation of
coupled networks are given at different regions of the phase diagram
for two interdependent Erdős-Rényi networks with average degree
z1 = 10. β1 denotes the critical exponent for the first-order transition
and near the abrupt jump of the two-stage transition. β2 denotes the
critical exponent for the second-order transition and at the continuous
part of the two-stage transition. Regions labeled with both β1 and
β2 represent the two-stage transition regime. The exponents are
summarized in Eqs. (17) and (18). The symbol “X” in the phase
diagram indicates the coupling qc,2.5. The critical exponents of k-core
percolation transitions for low couplings are identical to those found
in single networks [26].
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FIG. 10. Percolation threshold pc as a function of (a) the coupling
q for fixed average local threshold k = 1.0,1.5,2.0,2.5 representing
horizontal lines in Fig. 6 and (b) the average local threshold k for
several fixed coupling q = 0.3,0.7,0.8,0.9 representing vertical lines
in Fig. 6. Dashed and continuous lines indicate that the percolation
threshold is at abrupt (first-order) jump and continuous transition
respectively. Simulation results (shown as symbols) are obtained for
a system with 106 nodes in each network.

The exponents β1 and β2 are shown on the phase diagram for
all regimes in Fig. 9.

The richness of the phase diagram is striking when the
change in k-core percolation transition is considered as
threshold k is increased at fixed q. At certain fixed intermediate
couplings, the k-core percolation transition changes from
first-order → second-order → two-stage → first-order as the
k-core threshold is increased (see the vertical arrow in Fig. 6).
Additionally, note that the result for fully interdependent
networks q = 1 is consistent with the result for the k-core
percolation transition in multiplex networks in that they are
both first-order for any average threshold k [35].

In conclusion, we have demonstrated the richness of
the combination (k-core percolation and interdependency)
by analyzing our generalized model for two interdepen-
dent Erdős-Rényi networks. The coupling between networks
changes the universality classes of k-core percolation found in
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FIG. 11. Complete phase diagram for k-core percolation transi-
tion for two coupled random regular networks with coupling q. Both
the networks have the same local k-core threshold distribution. A
fraction r of randomly chosen nodes have local threshold ka + 1
and remaining nodes have ka , resulting in average local threshold
k = (1 − r)ka + r(ka + 1). The phase diagram has similar features
that were seen in two coupled Erdős-Rényi networks (Fig. 6). The
critical exponents for all the regions in the phase diagram are
identical to that of Erdős-Rényi networks as reported in Sec. II B.
The expressions for critical percolation thresholds for continuous
transition part of both second-order and two-stage transitions are
given in Eq. (A1).

single networks, and the new critical exponents are calculated
analytically. At fixed k-core threshold, the k-core percolation
transition changes from second-order to first-order as the
coupling is increased, passing through either a tricritical
point or two-stage transition depending on the average local
threshold. Counterintuitively, we find the tricritical coupling
to increase with the k-core threshold. The richness of this
generalized model is further emphasized with the k-core
percolation transition, for certain fixed couplings, changing
from first-order → second-order → two-stage → first-order as
the k-core threshold is increased, in contrast to second-order →
first-order for k-core percolation in single networks. To test the
universality of our results, we also analyzed, both analytically
and numerically, the phase diagram for k-core percolation in
interdependent random regular networks and found this system
to be very similar to that of Erdős-Rényi networks (see Sec. A).
Studying these new percolation transitions found in this
generalized model will enable us to understand the importance
and the rich effects of coupling between different resources in
cascading failures that occur in real-world systems, which will
enable us to design more resilient systems.
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APPENDIX: RANDOM REGULAR NETWORK:
COMPLETE PHASE DIAGRAM

We consider two coupled random regular networks
with identical degrees z1. The function fk is given
by fk(Z,X) = 1 − (1 − Z)z1−1, fk(X,X) = 1 − r(1 − X)z1−1

for 1 � k < 2. Since X = Z for ka � 2, fk(Z,Z) = 1 − (1 −
Z)z1−1 − rZ(z1 − 1)(1 − Z)z1−2. The functions Mk are given
by Mk(Z,X) = 1 − (1 − Z)z1 − rz1Z(1 − X)z1−1 for 1 �
k < 2 and Mk(Z,Z) = 1 − (1 − Z)z1 − z1Z(1 − Z)z1−1 −
r z1(z1−1)

2 Z2(1 − Z)z1−2 for k � 2. Based on the behavior of
hk,q(Z), the complete phase diagram for the percolation
transition is plotted in Fig. 11. The features of the phase
diagram are the same as those of coupled Erdős-Rényi
networks, including identical critical exponents. The critical

percolation thresholds are different and, for second-order and
continuous part of the two-stage transitions for random regular
networks is given by

pc,2 =
{

1
(z1−1)(1−q) , 1 � k � 2

1
(z1−1)[1−(k−2)](1−q) , 2 � k � 2.5

. (A1)

The tricritical coupling for regular percolation in interde-
pendent random regular networks depends on its degree z1 as
given in Eq. (A2),

qc,1 = 1 + α −
√

(1 + α)2 − 1, (A2)

where α = z1
(z1−1)(z1−2) .

The tricritical point found for average local threshold k =
2.5 in single random regular network is preserved in coupled
networks as well. The tricritical nature persists only up to a
critical coupling qc,2.5 and its dependence on the degree z1 is
given by Eq. (A3),

qc,2.5 = 1 + α′ −
√

(1 + α′)2 − 1, (A3)

where α′ = 3z1
2(z1−2)(z1−3) .
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