
Size-dependent standard deviation for growth rates: Empirical results and theoretical modeling

Boris Podobnik*
Department of Physics, Faculty of Civil Engineering, University of Rijeka, Rijeka, Croatia;

Zagreb School of Economics and Management, Zagreb, Croatia;
and Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA

Davor Horvatic
Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia

Fabio Pammolli
Faculty of Economics, University of Florence and IMT Institute for Advanced Studies, Lucca, Italy

Fengzhong Wang and H. Eugene Stanley
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA

I. Grosse
Martin Luther University, Institute of Computer Science, Halle, Germany

�Received 26 September 2007; revised manuscript received 7 January 2008; published 8 May 2008�

We study annual logarithmic growth rates R of various economic variables such as exports, imports, and
foreign debt. For each of these variables we find that the distributions of R can be approximated by double
exponential �Laplace� distributions in the central parts and power-law distributions in the tails. For each of
these variables we further find a power-law dependence of the standard deviation ��R� on the average size of
the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product
�GDP� �Phys. Rev. Lett. 81, 3275 �1998��. By analyzing annual logarithmic growth rates R of wages of 161
different occupations, we find a power-law dependence of the standard deviation ��R� on the average value of
the wages with a scaling exponent ��0.14 close to those found for the growth of exports, imports, debt, and
the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the
USA that the standard deviation ��R� of the annual logarithmic growth rate R increases monotonically with the
average value of payroll. However, also in this case we observe a power-law dependence of ��R� on the
average payroll with a scaling exponent ��−0.08. Based on these observations we propose a stochastic
process for multiple cross-correlated variables where for each variable �i� the distribution of logarithmic
growth rates decays exponentially in the central part, �ii� the distribution of the logarithmic growth rate decays
algebraically in the far tails, and �iii� the standard deviation of the logarithmic growth rate depends algebra-
ically on the average size of the stochastic variable.
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I. INTRODUCTION

The dynamics of noise-driven stochastic systems de-
scribed by temporal stochastic processes are of interest in a
variety of phenomena such as Brownian motion �1�, Johnson
noise �2�, company growth �3�, chemical reactions �4�, stellar
dynamics �5�, and quantum optics �6�. In economics, sto-
chastic processes have been successfully applied to model
diverse levels of economics systems, ranging from the “mi-
cro” level of company products to the “macro” level of com-
pany sizes and even national economies. Since the pioneer-
ing work of Gibrat �3�, researchers have analyzed the
relationship between the size of a company and its growth
rate �7–14�. For countries, it has been found that the loga-
rithmic growth rates of the gross domestic product �GDP� are
approximately �i� double exponentially �Laplace� distributed
in the central part �15,16� and �ii� power-law distributed in

the tails �12� with �iii� a power-law relation between the
average GDP and the standard deviation of the logarithmic
growth rates with a scaling exponent ��0.15 �15�. These
results obtained for macroeconomic data are in agreement
with those obtained for microeconomic data, such as sales of
different companies �9�. In Ref. �9� the scaling behavior of
the growth of U.S. companies was investigated, and the same
power-law scaling of the standard deviation of the logarith-
mic growth rate with the initial size was found. Interestingly,
the same power-law scaling behavior was also found for both
the sales and the number of employees. Recently, some other
microeconomic variables �the number of products of phar-
maceutical companies� were analyzed �12�, and the same
scaling behavior was observed. Analyses of different markets
have shown that also the distributions of growth rates of
firms, companies, and industrial production can be approxi-
mated by tent-shaped exponential distributions �17,18�, and
exponential-power �Subbotin� distributions �19�.
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II. EMPIRICAL ANALYSIS

We ask if the mechanism found for the time evolution of
the country GDP could be responsible for the observed dy-
namics of three different economic variables: total exports
�exports of goods and services�, total imports �imports of
goods and services�, and foreign debt for different countries
and different years �20�. For each of these three economic
variables S, each country i, and each year t ranging from
1966 to 2005 �21�, we compute the annual logarithmic
growth rate as

Rt
�i� � ln�Si+1

�i� /St
�i�� , �1�

and join all �Rt
�i� ,St

�i�� pairs into one common data set. Table
I summarizes five statistical features of the three analyzed
data sets. In order to investigate if and how ��R� correlates
with �S�, we divide the data set into ten subsets by selecting
ten subintervals of equal size of ln S.

In Fig. 1 we find that, for each economic variable S, the
standard deviation ��R� of the annual logarithmic growth
rate R decreases algebraically �power law� with the annual
average size �S� of the economic variable S, i.e.,

��R� � �S�−�. �2�

Surprisingly, the three scaling exponents � are close to the
scaling exponent ��0.15 reported for the growth of the
GDP �15�. We also investigate the annual growth rate for
foreign direct investments, and find it has a similar value of
�.

Next we investigate how sensitively the values of the
scaling exponents depend on the number of subsets chosen.
Table II shows that the scaling exponents � vary only little
with the number of subsets chosen. The results in Ref. �15�
imply that the growth rates R from the high GDP countries
have a lower standard deviation than the growth rates from
the low GDP countries. Surprisingly, we find the same scal-
ing relation for imports, exports, and debt. In order to explain
why, for example, debt and GDP exhibit a similar scaling
behavior, we note that, from an economic perspective, gov-
ernments are good if they are capable of maintaining debt in
a stable proportion to the GDP.

We stress that the first reason why we join data of all
countries is to increase the statistics, since there are at most
40 data points for each country. The second reason is to
investigate the global behavior of the economics variables
analyzed in the paper. However, it would be interesting to
accomplish the data analysis focused on individual countries.
Thus, we propose the following procedure. For each country
with n values of R, we first calculate the average

�R� =
1

n
	
t=1

n

Rt. �3�

Second, we calculate the scaling exponent � for each of the
three economic variables, exports, imports, and debt, and for
each country, and we obtain that the values of � can be both
positive and negative, but the average scaling experiment is

TABLE I. First four moments of the distribution of R for ex-
ports, imports, and debt. We calculate the annual logarithmic
growth rate Rt

�i�� ln�St+1
�i� /St

�i�� for each year t and each country i.
From the set of all Rt

�i� we compute the average growth rate �R�, the
median of R, the standard deviation ��R�, the skewness of R, and
the kurtosis of R. If the distribution of R were Gaussian, the skew-
ness of R would be equal to zero, and the kurtosis of R would be
equal to 3. We find that the skewness of R is greater than zero for all
of the three economic variables, stating that in all three cases the
distribution of R is asymmetric with a thin tail on the left and a
thick tail on the right. We also find that the kurtosis of R is greater
than 3 for all of the three economic variables, stating that in all
three cases the distribution of R has thicker tails than a Gaussian
distribution with the same mean and variance. Interestingly, with
respect to both the third and the fourth moment, the deviation from
the Gaussian distribution is greatest for debt and smallest for
imports.

Export Import Debt

Years 1966–2005 1966–2005 1970–2005

Length 4049 4049 3789

No. countries 174 174 135

�R� 0.076 0.073 0.124

Median of R 0.076 0.075 0.083

��R� 0.184 0.169 0.251

Skewness of R 0.314 0.198 5.665

Kurtosis of R 11.43 7.705 71.59
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FIG. 1. Standard deviation ��R� of the logarithmic growth rate
R as a function of the average value S of imports, exports, and debt.
We find that, for each of the three economic variables, the standard
deviation ��R� decays algebraically with S. Interestingly, all three
scaling exponents � are similar to each other and surprisingly simi-
lar to the scaling exponent ��0.15 observed for the gross domestic
product of countries �GDP� and firms.

TABLE II. Scaling exponents � for exports, imports, and debt
for different values of the number of subsets. We find that the three
scaling exponents are almost independent of the number of subsets.

Export Import Debt

7 0.12�0.02 0.08�0.01 0.13�0.02

10 0.12�0.01 0.09�0.01 0.13�0.02

15 0.13�0.01 0.09�0.01 0.14�0.02

20 0.11�0.01 0.09�0.01 0.14�0.02
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positive for each economic variable. In Fig. 2 we show a
probability distribution for import data, and we find that
positive scaling exponents prevail giving

��� = 0.16 � 0.74. �4�

The same analysis carried out for export data yields

��� = 0.10 � 0.71, �5�

and for the debt data we obtain

��� = 0.16 � 0.25. �6�

Note that the standard deviations are very high, but the av-
erage scaling exponents are close to those obtained in Fig. 1.

Motivated by the results found in Fig. 1, we investigate
how the growth-rate distribution depends on the initial size.
We partition the data set into three subsets of equal size
according to the export value. In Fig. 3, for the subsets with
the smallest and the largest values of S, we find that �i� the
central parts of the empirical conditional distributions of
growth rates R are consistent with the Laplace distribution
P�R�=1 / �
2��exp��−
2�R−a�� /��. Both parameters a
=median of R and ��
2 /N	�Rt−a� are the maximum like-
lihood estimates of the scalar parameters of the Laplace dis-
tribution. We also find that �ii� the spread of the distribution
measured by the standard deviation of R decreases with an
increase of S, consistent with Fig. 1. Again, we find that
changing the number of subsets �e.g., from three to four�
leaves both findings �i� and �ii� unchanged. Note that by
conditional distributions we assume distributions calculated
conditional on a specific group of data, not specific initial
value S0, as commonly defined in probabilistic theory.

Next, we investigate the growth-rate distributions of ex-
ports, imports, and debt for all countries and all years. We
calculate probabilities by measuring the empirical growth
rates at equally spaced growth-rate subintervals. In Figs.
4�a�–4�c� we find that, for all of the three economic variables

S, the central parts of the empirical probability distributions
P�R� can be approximated by a Laplace distribution, where
the median of R is obtained over all countries and all years.

In contrast to the central part, the far tails of the condi-
tional probability distributions cannot be approximated by
Laplace distributions. We find that the far right tails �R
�0.8 in Fig. 4�a�� of the conditional probability distributions
can be approximated by a power law P�R��R−�, consistent
with similar findings for both financial �22,23� and economic
�12� data.

To estimate the scaling exponent, we employ the equation
�=1+n�	t=1

n ln�Rt /Rmin��−1 �24�, where Rmin is the smallest
value of Rt for which the power-law behavior holds, and the
sum runs only over those values of Rt that exceed Rmin. For
chosen Rmin=0.8, for exports, imports, and debt we obtain
the following results: �=4.3, �=5.5, and �=3.0, which are
comparable to the scaling exponent �=4 obtained for the
growth-rate distribution of the country GDP �12�.

By analyzing different levels of aggregation of economic
systems, from microeconomics to macroeconomics, different
research groups have found that many economics variables
exhibit a power-law scaling of the standard deviation with its
size. Here, we analyze data of countries that report pay data
�wages� for each year and all years cumulatively for at least
one of the 161 occupations. The number of countries that
report pay data for at least one occupation varies between 42
and 76 in the years 1983–2002 �25�. We compute the annual
logarithmic growth rate Rt

�i�� ln�St+1
�i� /St

�i��, for each wage S
and each country i, between two subsequent years t and t
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FIG. 2. Probability distribution of the country-specific scaling
exponents � for import data. For each country, we estimate � by a
linear regression of ln�R− �R��2 versus −2� ln S. We find that the
scaling exponents � vary strongly from country to country, ranging
from strongly negative values smaller than −2 to strongly positive
values greater than +2. Interestingly, the average scaling exponent
��0.16 is positive and comparable to the value ��0.09 obtained
from the pooled data set of all countries.
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FIG. 3. Conditional probability distributions P�R �S� of the loga-
rithmic growth rate R of exports for two values of S. We stratify the
whole data set �Rt

�i� ,St
�i�� into three equally large subsets according

to the values of St
�i�. The lower curve �filled circles� shows the

conditional probability distribution P�R �S� for the subset with the
greatest values S of exports, S�8.8	109, and the upper curve
�open circles� shows the conditional probability distribution P�R �S�
for the subset with the smallest values of exports, S
9.2	108.
Note that the distributions are shifted for the sake of clarity. We find
that the central parts of both of the conditional distributions can be
approximated by Laplace distributions centered at the median of R.
We further find that the standard deviations ��R� of both distribu-
tions are significantly different. Specifically, we find that ��R�
�0.139 for the group with the greatest values S of exports is
smaller than ��R��0.223 for the group with the smallest values S
of exports, consistent with the observation from Fig. 1 that the
standard deviation ��R� decreases with increasing S.
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+1 �if they exist�. We then join all �Rt
�i� ,St

�i�� pairs into one
common data set. We divide the data set into five equal-size
subsets of lnS. Figure 5�a� shows that the standard deviation
��R� of the annual logarithmic growth rate R decreases as a
power law with �S�, ��R�� �S�−�. The scaling exponent

� = 0.14 � 0.04 �7�

is close to the scaling exponent ��0.15 reported for the
growth of the GDP �15�. If the data set is divided into six
subsets, we obtain a slightly smaller scaling exponent

� = 0.10 � 0.03. �8�

In Fig. 5�b� we find that the probability distribution P�R�
of the logarithmic growth rates R of wages can be well ap-

proximated by a Laplace distribution in the central part,
while the far right tails can be well approximated by a power
law R−� with scaling exponent ��4.2.

III. UNIVARIATE STOCHASTIC PROCESS

In an attempt to propose a model that could simulta-
neously reproduce the observed power-law scaling of ��R�
with �S� and the conditional distribution of Rt, we propose
the following multiplicative discrete-time stochastic process
of logarithmic growth rates,

Rt � ln
 St

St−1
� = �0�t + �St−1�−
�0�t�t , �9�

where �t is an independent and identically distributed �i.i.d.�
Gaussian noise term with mean ��t�=0 and variance ��t

2�
=1 �26�. Here, the parameter �0 is related to the expected
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FIG. 4. Probability distributions P�R� of the logarithmic growth
rates R of �a� exports, �b� imports, and �c� debt. We find that, for
each of the three economic variables, the central parts of P�R� can
be approximated by a Laplace distribution centered at the median of
R, and N denotes the number of data points. Consistent with Table
I the standard deviation ��R�, the skewness of R, and the kurtosis of
R are greatest for debt and smallest for imports.

−3.0 −2.0 −1.0 0.0 1.0 2.0 3.0
R − median(R)

10
−4

10
−2

10
0

10
2

P
(R

)

Wages
Laplace (b)

−3.0 −2.0 −1.0 0.0 1.0 2.0 3.0
R − median(R)

10
−4

10
−2

10
0

10
2

P
(R

)

Wages
Laplace (b)

FIG. 5. �a� Standard deviation ��R� of the logarithmic growth
rate R as a function of the average value S of wages �expressed in
U.S. dollars� of 161 different occupations and different countries.
We divide the whole data set �Rt

�i� ,St
�i�� into five subsets of equal

sizes according to the values of St
�i�. We find that the standard de-

viation ��R� decays algebraically with S. Interestingly, the scaling
exponent � is very similar to the scaling exponent ��0.15 ob-
served for the GDP of countries and firms, and to the scaling expo-
nents � found for exports, imports, and debt in Fig. 1. For the
average, the median, and the standard deviation of R we obtain
�R�=0.042, median=0.05, and �=0.28, respectively. �b� Probability
distribution P�R� of the logarithmic growth rates R of wages. We
find that the central parts of P�R� can be approximated by a Laplace
distribution centered at the median of R, where the far tails of P�R�
can be approximated by a power law R−� with scaling exponent
��4.2.
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growth rate �R�, �0 controls the spread of R, and the scaling
parameter 
 controls the scaling exponent of the power-law
dependence of ��R� on �S�. The dependence of ��R� on �S�
emerges from the relation ��R�2���R−�0�2�=�0

2��S�−2
�,
where ��R� decreases with �S� for 
�0.

The stochastic process of Eq. �9� is motivated by the sto-
chastic process of proportional growth rates �27,28�

Rt� �
�Si

St−1
= �0�t + �St−1�−
�0�t�t , �10�

where there is virtually no difference between the stochastic
processes of Eqs. �9� and �10� in the limit ��St��St−1, due to
the limit transformation ln�St /St−1�=ln��St−1+�St� /St−1�
��St /St−1.

The difference between the stochastic processes of Eqs.
�9� and �10� increases with increasing �St /St−1. The discrete-
time stochastic process of Eq. �10� leads to unacceptable
negative values of S for negative noise terms �t �when Rt�
�−1�, due to the relation St=St−1�1+Rt��. In contrast, the
stochastic process of Eq. �9� leads to exponentially decreas-
ing, but positive, values St=St−1 exp�Rt� for negative values
of Rt. This means that the variable S fluctuates �due to the
noise term �� around the exponential trend determined by the
first term on the right hand side of Eq. �9�.

With the goal of modeling findings �i�–�iii� both qualita-
tively and quantitatively, we choose 
=0.15 �9� and generate
N=300 time series St all of the same length n=200 by the
discrete-time stochastic process of Eq. �9�. The choice of S0
is arbitrary. For each time series S, we calculate the logarith-
mic growth rates R, the average size �S�, and the standard
deviation ��R�. Figure 6 shows ��R� versus �S�.

Qualitatively, we find that time series with a small aver-
age value of S show a high standard deviation of the annual
growth rate R, whereas time series with a high average value
of S show a small standard deviation of the annual growth
rate R. Quantitatively, we find that the standard deviation

��R� decreases algebraically with the average value of S, i.e.,
��R�� �S�−�, with a scaling exponent �=
. This states that
the univariate stochastic process of Eq. �9� can, qualitatively
and quantitatively, reproduce observation �iii�.

Next, we investigate if the stochastic process proposed in
Eq. �9� could possibly also reproduce observation �i�. We
generate many time series of length n=30, where each time
series is obtained with equal S0. In Fig. 7�a�, for 
=0.15, we
find that the central part of the conditional probability distri-
bution P�R �S0� is more consistent with a Laplace distribution
than a Gaussian distribution. This is surprising, because the
Laplace distribution is obtained as the superposition of
Gaussian distributions of � in Eq. �9�. So far, the stochastic
process proposed in Eq. �9� reproduces observations �i� and
�iii�.

Further, we investigate if the stochastic process of Eq. �9�
could possibly also reproduce observation �ii�. In Fig. 7�b�,
we plot the far tails of P�R �S0� in a log-log plot, and find that
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FIG. 6. Dependence of ��R� on S for time series generated by
the stochastic process of Eq. �9�. We generate 300 times series St,
each of the same length n=200, by the stochastic process of Eq. �9�
with parameter values �0=0.01, �0=0.5, 
=0.15, and S0=10 000.
We compute the average size �S� and the standard deviation ��R�
from each of the 300 time series, and show a log-log scatter plot of
��R� versus �S�. We find that the dependence of ��R� on �S� can be
approximated by a power law, ��R�� �S�−�, with scaling exponent
�=
.
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FIG. 7. Probability distribution P�R� for time series generated
by the stochastic process of Eq. �9�. For four different values of �0,
we generate 106 time series St, each of the same length n=30, by
the stochastic process of Eq. �9� with parameter values �0=0.01
and 
=0.15. Specifically, we choose the four values �0=40, �0

=20, �0=15, and �0=10. For �0=40, we choose S0=1010, and for
�0�=30, �0�=15, and �0�=10 we choose S0� satisfying the relation
�0S0


=�0�S0�

. We study the four probability distributions of the re-

sulting 3	107 values of R for these four different values of �0 and
S0. �a� We find that the four different probability distributions P�R�
collapse after rescaling of R, and that the central part of the col-
lapsed probability distribution P�R� can be approximated by a
Laplace distribution. �b� We find that the tails of the four probability
distributions P�R� can be approximated by a power law R−� with a
positive scaling exponent � whose magnitude is monotonically de-
creasing with an increasing value of �0.
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the tails of P�R �S0� can be approximated by a power law.
This is a requiring property because a power law in the far
tails is a common behavior for both financial �22,23� and
economic �12� data, and commonly modeled by multiplica-
tive stochastic processes �29�. Figure 7�b� shows that by tun-
ing the parameter �0, one obtains virtually any scaling expo-
nent of the power-law tails. This property that the tail slopes
are inversely proportional to the noise intensity �controlled
by the value of �0 for the stochastic process of Eq. �9�� is
associated with a large class of multiplicative stochastic pro-
cesses.

Generally, we find that time series of the stochastic pro-
cess of Eq. �9� with different initial values S0 and S0� and
different parameter values of �0 and �0� generate the same
conditional distribution if �0S0

−
=�0�S0�
−
 �Fig. 7�a��. We con-

clude that the three empirical findings �i�–�iii� are reproduced
by the stochastic process proposed in Eq. �9�.

We find that the stochastic process of Eq. �9� can be used
for modeling both increasing �with 
�0� �30� and decreas-
ing �
�0� power-law scaling of the standard deviation ��R�
with S. To this end, we analyze payroll data, denoted by S,
calculated for each of the 50 states of the USA �31�. We
compute for each state i, and each year t ranging from 1992
to 2004, the one-year logarithmic growth rate of Eq. �9�, Rt

i,
and join all �Rt

�i� ,St
�i�� pairs into one common data set.

Figure 8�a� shows the standard deviation ��R� of the loga-
rithmic growth rates R of total payroll as a function of the
average size �S�. For total payroll we find a power-law scal-
ing ��R�� �S�−� of the standard deviation ��R� with �S�, in
agreement with what was earlier found for countries and
companies. However, in contrast to what was found for
countries and companies, we find for total payroll that the
scaling exponent

� = − 0.08 � 0.03 �11�

is negative. With an arbitrarily chosen negative value of 
,
Fig. 8�b� shows that the increasing functional dependence of
��R� on �S� can be modeled by the stochastic process of Eq.
�9�.

To exemplify the utility of the stochastic process of Eq.
�9�, next we propose a simple model for the growth of busi-
ness companies. We assume that each company � is com-
prised of K� units, such as divisions or products. To make the
model simple, we assume that neither the number of compa-
nies nor the number of company units change in time. At
time t, each company unit has size si,t, where i
=1,2 , . . . ,K�. We assume si,t are independent random vari-
ables, and we propose that the size si,t of each company unit
is governed by the stochastic process of Eq. �9�, where the
initial sizes si,0 are drawn from a Gaussian distribution. The
size of a company is defined as S�,t�	i=1

K� si,t. The growth
rate of each company is defined as Rt� ln�S�,t+1 /S�,t�. Fi-
nally, for each company we generate a time series S�,t of the
same length n=200. For each time series S�,t, we calculate
the logarithmic growth rates Rt, the average size �S�, and the
standard deviation ��R�. Figure 9 shows ��R� versus �S�,
where the power-law dependence is consistent with the em-
pirically found power-law relationship between firm size and
growth-rate standard deviation �9�.

In conclusion, we find that, in contrast to the stochastic
process of Eq. �10�, the univariate stochastic process of Eq.
�9� can reproduce, both qualitatively and quantitatively, find-
ings �i�–�iii� that are typical for a wide range of financial and
economic variables.

IV. MULTIVARIATE STOCHASTIC PROCESS

Financial and economic variables, such as exports, im-
ports, debt, and the GDP, are often cross correlated. Hence,
we attempt in the following to generalize the univariate sto-
chastic process of Eq. �9� to multiple �cross-correlated� vari-
ables. As an example of correlated variables, we expose the
time series of exports and imports of Germany in Fig. 10,
because export and import data are characterized by cross
correlations between their time series �32�. Correlations be-
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FIG. 8. Standard deviation ��R� of the annual logarithmic
growth rate R as a function of the average size �S� of total payroll
expressed in U.S. dollars. In contrast to the observation found for
countries �Fig. 1� and wages �Fig. 2�, we find that for total payroll
the standard deviation ��R� increases with S. However, in agree-
ment with the observations of Figs. 1 and 2, the dependence of ��R�
on S can be approximated by a power law, with a negative scaling
exponent ��=−0.08�0.03�. For the average and the median of R
we obtain �R�=0.054 and median of R=0.057, respectively. �b�
Standard deviation ��R� as a function of S for time series generated
by the stochastic process of Eq. �9�. We generate 300 time series St,
each of the same length n=200, by the stochastic process of Eq. �9�
with parameter values �0=0.02, �0=0.01, 
=−0.15, and S0=105.
We find qualitatively that for negative values of 
 the standard
deviation ��R� grows monotonically with S and quantitatively that
the dependence of ��R� on S can be approximated by a power law
S−� with a negative scaling exponent ��
.
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tween these two time series are obvious because an increase
in exports is practically always followed by an increase in
imports. In economics, the GDP for any country is defined as
the sum of five economic variables, among which are exports
and imports.

In order to test if it is possible to model simultaneously
the growth of the GDP and its cross-correlated constituents,
all specified by a size dependence of ��R�, we define a “the-
oretical” GDP as the sum of two cross-correlated variables I1
and I2 �33�. We propose that the logarithmic growth rates for
I1,t and I2,t follow a stochastic process that is an extension of
the stochastic process of Eq. �9�,

RI1,t � ln
 I1,t

I1,t−1
� = �0 + �0I1,t−1

−
 ��I1,t + �RI2,t−1� , �12�

RI2,t � ln
 I2,t

I2,t−1
� = �0 + �0I2,t−1

−
 ��I2,t + �RI1,t−1� , �13�

where parameter � controls the cross correlations between
I1,t and I2,t. Note that the process generating the growth of I2,t
is similar to the stochastic process generating the growth of
I1,t, where I1,t and I2,t are exchanged. For simplicity, both
stochastic processes generating I1,t and I2,t are defined by
equal values for �0 and �0.

For each time step, we perform simulations to calculate
two variables, I1,t of Eq. �11� and I2,t of Eq. �12�, for different
initial values I1,0 and I2,0, and we compute �GDP�t� I1,t
+ I2,t. In Fig. 11 we find that, regardless of the presence of
cross correlations between I1,t and I2,t, the magnitude of RIi,t

�i=1,2� scales with size as a power law �RIi,t
−�0�� �Ii,t�−�

for each of the two variables Ii,t.
We further find that, not only for each variable Ii,t, but

also for the GDP, the magnitude of RGDP,t scales with size
according to the same power law. We find that these findings
are not restricted to the particular parameter value 
=0.15
consistent with observation �iii�. We also find that the stan-
dard deviation scales with size as a power law for each vari-
able I1,t, I2,t, and GDP independently of the values of 
.

Several stochastic processes have been proposed for mod-
eling the growth dynamics of complex organization, such as
companies �3,7–9,12,16,17,34–39�. However, the dynamics
of the proposed stochastic processes are not fully consistent
with the three observations �i�–�iii�, widely found in empiri-
cal data �9,12�. For example, the model of Fu et al. �12� can
reproduce findings �i� and �ii�, but fails to explain �iii�. Sec-
ond, none of the existing models explains, in the case of
different �iv� cross-correlated variables, the size dependence
of the standard deviation of growth rates for each of the
variables.

V. CONCLUSIONS

We find that many economic variables S—including ex-
ports, imports, and foreign debt—exhibit three ubiquitous
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FIG. 9. Standard deviation ��R� of the growth rate R as a func-
tion of the average size �S� obtained for modeling business compa-
nies, denoted by �, where R=ln�S�,t /S�,t−1� defines the growth rate
of each company, and S�,t denotes the size of a company. Each
company is comprised of K� units where each company unit has
size si,t, we assume si,t are independent random variables, and it
holds S�,t=	i=1

K� si,t. The size of each company unit is governed by
the stochastic process of Eq. �9� with parameter values �0=0.02,
�0=0.7, and 
=0.15. We draw initial sizes si,0 from a Gaussian
distribution with a mean of 105 and standard deviation of 104. We
consider 300 different companies, and for each company we gener-
ate a time series, each of the same length n=200. For each company
we calculate the average size �S� and the standard deviation ��R�.
We find that the standard deviation ��R� decreases with S according
to a power law with scaling exponent ��
.
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FIG. 10. Time series of exports and imports of Germany ex-
pressed in U.S. dollars. We find that exports and imports are highly
correlated.
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FIG. 11. Dependence of the magnitude �RIi,t
−�0� of the logarith-

mic growth rate RIi,t
on the value of Ii in the presence of cross

correlations. We generate a bivariate time series It
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�2� of length
n=10 000 by the stochastic process of Eqs. �11� and �12� with pa-
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=1,2 ,3, �RIi,t

−�0
�i�� is monotonically decreasing with Ii , t and that

the dependence of �RIi,t
−�0� on Ii , t can be approximated by a

power law with a scaling exponent ��
.
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properties: their logarithmic growth rates R are �i� Laplace
distributed in the central part and �ii� power-law distributed
in the far tails, and �iii� the standard deviation ��R� decays
algebraically with the average size �S� with a scaling expo-
nent ��0.15 surprisingly similar for all three economic
variables and surprisingly close to the scaling exponent ob-
served for the GDP.

When analyzing wages for 161 different occupations and
total payroll data obtained from 50 of states of the USA, we
also find a power-law dependence of ��R� on �S� in both
cases. However, for the wages data ��R� decreases mono-
tonically with �S� with a positive scaling exponent � close to
that observed for exports, imports, debt, and the GDP,
whereas for the payroll data ��R� increases monotonically
with �S� with a negative scaling exponent ��−0.08.

We propose a univariate stochastic process with only two
control parameters that is capable of reproducing, qualita-

tively and quantitatively, these three findings. We further
show that the parameter 
 controls the scaling exponent of
�iii�, and �0 controls the scaling exponent of �ii�. We propose
a multivariate stochastic process that extends the univariate
stochastic process to multiple cross-correlated variables, and
we find that this stochastic process reproduces each of the
three findings �i�, �ii�, and �iii� for each of the variables.
Moreover, we find that the “theoretical” GDP, defined as the
sum of the cross-correlated variables, reproduces all three
findings �i�, �ii�, and �iii�.
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