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Abstract—We sought to quantify the fractal scaling properties
of human respiratory dynamics and determine whether they are
altered with healthy aging and gender. Continuous respiratory
datasets ~obtained by inductive plethysmography! were col-
lected from 40 healthy adults ~10 young men, 10 young
women, 10 elderly men, and 10 elderly women! during 120
min of spontaneous breathing. The interbreath interval ~IBI!
time series were extracted by a new algorithm and fractal
scaling exponents that quantify power-law correlations were
computed using detrended fluctuation analysis. Under supine,
resting, and spontaneous breathing conditions, both healthy
young and elderly subjects had scaling exponents for the IBI
time series that indicate long-range ~fractal! correlations across
multiple time scales. Furthermore, the scaling exponents ~mean
6 SD! for the IBI time series were significantly (p,0.03)
lower ~indicating decreased correlations! in the healthy elderly
male (0.6060.08) compared to the young male (0.6860.07),
young female (0.7060.07), and elderly female (0.6760.06)
subjects. These results provide evidence for fractal organization
in physiologic human breathing cycle dynamics, and for their
degradation in elderly men. These findings may have implica-
tions for modeling integrated respiratory control mechanisms,
quantifying their changes in aging or disease, and assessing the
outcome of interventions aimed toward restoring normal physi-
ologic respiratory dynamics. © 2002 Biomedical Engineering
Society. @DOI: 10.1114/1.1481053#
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INTRODUCTION

Recent studies of cardiovascular dynamics have re-
vealed fractal scaling in the organization of heart
rate16,17,29 and blood pressure18 fluctuations. The ob-
served fractal scaling indicates the presence of long-
range ~power-law! correlations in the underlying dynam-
ics. These long-range correlations seem to be a

dynamical hallmark of integrative control systems.1

Moreover, in the case of heartbeat control, this organi-
zation degrades with aging and disease,16–18,29 suggesting
a loss of coupling and functional integrity of the inter-
acting physiologic control systems. In addition, a previ-
ous study32 provided evidence that heart rate dynamics
may be less complex in men than women under cer-
tain conditions as assessed by an approximate entropy
statistic.

Although neuroautonomic mechanisms that influence
heart rate and blood pressure also affect, or are mediated
by respiration, little is known about the possible long-
range ~fractal! organization of breathing patterns in adult
humans, and the effects of aging and gender on respira-
tory variability.4,6,14,15,34 From a neurophysiologic view-
point, such fractal behavior is of interest because it im-
plies the presence of long-term dependence ~‘‘memory’’
effect!. In the case of respiration, long-range correlations
would mean that fluctuations in breathing rate would be
correlated with respiratory variations hundreds of breaths
earlier, and the correlation strength would decay in a
scale-invariant ~power-law! manner.2,10,29 Identification
of such fractal correlation properties is important because
it would guide ongoing efforts to develop realistic mod-
els of respiratory control. Furthermore, increased under-
standing of the organization of multiscale breathing pat-
terns in health might be useful for the detection of
subclinical disease, as well as the design of mechanical
ventilators or other interventions to restore normal respi-
ratory function.

In the present study, we sought to test the hypothesis
that spontaneous breathing in humans, the output of a
complex integrative control system, exhibits long-range
~fractal! correlations. We also sought to assess quantita-
tively the possible effects of gender and physiological
aging on these properties. A major methodologic diffi-
culty impeding studies in this area is that the instanta-
neous lung volume signals recorded in the clinical labo-
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ratory are often very noisy and highly nonstationary. In
order to study the long-range correlation properties of
respiratory dynamics, we needed to ~i! develop a reliable
signal processing algorithm to accurately identify respi-
ratory cycles in these noisy signals, and ~ii! apply a
scaling measurement technique that takes into account
the intrinsic nonstationarities of the processed data.

In this study, we developed a robust algorithm for
respiratory cycle detection and applied it to instantaneous
lung volume signals recorded in a clinical laboratory.
Then, we applied the detrended fluctuation analysis
~DFA! technique28,29 to quantify the scaling behavior of
these nonstationary respiratory time series. Based on the
combination of these two algorithms, we present evi-
dence indicating the presence of long-range correlations
of breathing dynamics in healthy adults and a possible
alteration of this behavior in elderly men.

METHODS

Subjects

Two groups of healthy adult subjects, 20 young ~mean
age 27, range 21–34 yr! and 20 elderly ~mean age 74,
range 68–81 yr!, participated in this study. A study of
heart rate dynamics for a subset of these subjects is
reported elsewhere.17 Each group consisted of 10 women
and 10 men. All subjects provided written informed con-
sent and underwent a screening medical evaluation and
electrocardiogram ~ECG! to assure that they were in
good health. The elderly subjects underwent a graded
treadmill exercise tolerance test, to reduce the likelihood
of undetected coronary artery disease.

Respiratory Signal Acquisition

Subjects lay supine for 120 min while continuous
respiration signals were collected, using an inductive
plethysmograph ~Respitrace, Ambulatory Monitoring,
Ardsley, NY!. Signals were obtained from two elastic
respiratory transducer bands, one placed around the mid-
chest, and the other around the abdomen. All subjects
remained in a resting, inactive state while watching the
movie ‘‘Fantasia©’’ ~Disney, Inc., 1940! in order to main-
tain wakefulness. The continuous respiration signals
were digitized and sampled at 250 Hz. The respiration
signals were used as an indirect measurement of chest
movement and lung volume. Since the physiologic focus
of interest here is on fluctuations of the breath-to-breath
cycle periods, it is necessary to map the respiration sig-
nal only to relative, not absolute, changes in lung vol-
ume. From each digitized respiration signal, the inter-
breath interval ~IBI!, i.e., the time period for one
complete cycle of respiration ~end-to-end inspiration!
was determined via an automated computer program ~see
below! and visually verified. Each subject’s IBI time

series was then analyzed by detrended fluctuation
analysis,28,29 a method designed to extract fractal scaling
exponents from nonstationary time series, as well as by
standard Fourier power spectrum analysis.

Respiratory Signal Preprocessing

There are two major problems related to the analysis
of respiratory time series: ~1! the signals are very com-
plex, consisting of fluctuations related to intrinsic respi-
ratory oscillations as well as external fluctuations due to
environmental noise; and ~2! the signals are highly non-
stationary. These problems are illustrated in Fig. 1, which
shows a representative digitized lung volume signal from
a healthy elderly male subject. To study the respiratory
dynamics from this noisy and nonstationary signal, ro-
bust preprocessing measures need to be developed to
simplify the task of annotating the raw signals.

Respiratory Signal Detection Algorithm

Detecting the peak or trough of the respiration signal
is the first step towards extracting the IBI time series. As
shown in Fig. 1, since the signal near its trough becomes
relatively flat, it is difficult to accurately identify the
location of the minimum of each respiration signal.
@These and all other original signals, as well as source
codes of the analysis software from this study, will be
made available via the Research Resource for Complex
Physiologic Signals ~http://www.physionet.org!.# There-
fore, we decided to use the peak-to-peak interval as the

FIGURE 1. Representative segment of the digitized respira-
tion signal illustrates the lung volume signal and the breath-
to-breath changes in the interbreath interval „IBI…. The lung
volumes are in arbitrary units. The dotted vertical lines de-
note the location of peaks detected by our algorithm. Note
that the small bump „arrow… after the second peak is an
example of a ‘‘type 2’’ local maximum discussed in the text.
This local maximum is not likely a true respiration peak and
was not identified as such by our algorithm.
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IBI. We tested available commercial software for peak
detection and found that these software tools, which
were developed for more general purposes, did not pro-
vide reliable detection for the types of noisy, nonstation-
ary signals of interest here. Therefore, we developed a
new algorithm to achieve this goal.

To accurately identify the peak of each respiration
cycle, we need to find all the ‘‘local’’ maxima that cor-
respond to the end points of inspiration. Two types of
local maxima that are not true respiration peaks, how-
ever, are likely to be mistakenly identified by conven-
tional peak-detection algorithms: ~1! ‘‘type 1’’ false
peaks are those local maxima caused by signal noise, and
~2! ‘‘type 2’’ false peaks are caused by transient physi-
ologic interruptions of the respiration signal. For ex-
ample, in the expiration phase ~with the respiration sig-
nal moving downward!, there may be brief increases of
lung volume creating local maxima in the signal ~see
Fig. 1!. However, the overall movement of the signal is
still dominated by a downward trend. If a transient up-
ward bump is much smaller than the overall trend, then
it is reasonable to assume that the expiration phase per-
sists, and the local maxima should not be considered as
a starting point of a new respiration cycle. Analogous
pseudopeaks may also occur during the inspiration phase.

Although the mechanisms of the above two ‘‘false
peaks’’ are different, their manifestations are similar.
Therefore, we developed a unified approach to handle
both cases. The basic concept of our algorithm is the
following: We consider the respiration cycles to be alter-
nating downward and upward trends in a noisy signal
occasionally interrupted by relatively small reverse
trends ~introduced by brief pauses of breathing or other
causes!. Therefore, our task is to detect the basic down-
ward and upward movements of the signal and the re-
versal of these trends.

To this end, we adapted the moving average analysis
technique that has been widely used in economic time
series analysis.5 The moving average over a window of
width W of a signal is defined as the average value of the
signal at the preceding period of length W. To be more
precise,

XW~ t !5

1

W (
i50

W21

X~ t2i !,

where X is the signal, t is the index of time, and XW is
the moving average ~of window W) of the signal.

Moving average processing reduces noise in the signal
and facilitates detection of local trends. To discern local
peaks, two moving averages are needed: one with a large
window value W1 , and one with a small window value
W2 . The longer-term moving average represents the
slower trends and the shorter-term moving average re-

flects fast-varying trends. We are interested in the cross-
over points of these two moving averages. When the
short-term moving average crosses over to a value ex-
ceeding the long-term moving average, it indicates that
the underlying signal is on an upward trend because the
average of its recent history is greater than the average
of its longer-term history. As the upward trend proceeds,
the short-term moving average will diverge from the
long-term moving average. The deviation of these two
moving averages reaches a maximal value when the sig-
nal is around its peak. As the signal moves downward,
the two moving averages approach each other, and even-
tually the short-term moving average crosses over to a
value below the long-term moving average.

By carefully choosing the two window sizes W1 and
W2 , we effectively smooth out most of the local maxima
generated by noise and pauses in breathing. In this study,
we first examined a small subset of data to optimize the
result of our algorithm. The optimized window sizes
were set for W15250 ~samples! and W2525 and applied
to the complete database. Each true respiration peak is
located between the crossover points where the short-
term moving average crosses over to values above and
then below the long-term moving average curve. The
‘‘true’’ peak is identified simply as the largest local maxi-
mum between these two crossover points.

Our algorithm also takes into account the maximal
deviation between the two moving averages. Because
some signals might have a very large noise level, it is
important to make sure that the crossover is not due to
noise-related artifacts. To estimate the noise level locally,
we calculate the standard deviation of the first difference
of the signal in the observation window of width W2 . If
the maximal deviation of the two moving averages is
less than two times the standard deviation, then the sec-
ond crossover point is very likely to be caused by noise
and will be discarded by our algorithm.

After the algorithm automatically annotated the in-
spiratory peaks of the respiration cycles, we visually
inspected the time series to correct misdetections ~mostly
overdetection of type 2 false peaks discussed above!.
Approximately 1% – 2% of the peaks identified by the
automated algorithm were corrected by this visual in-
spection. We also note that since it is difficult to unam-
biguously distinguish certain type 2 false peaks from true
respiration peaks, we have systematically deleted all am-
biguous peaks so that our approach is consistent. Our
subsequent analysis is not very sensitive to a small
amount of missing data.

Time Series Analysis

We investigated the difference in correlation proper-
ties of the respiratory rate time series between age and
gender groups by applying a recently developed de-
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trended fluctuation analysis technique and traditional
Fourier analysis. Figure 2 shows two typical IBI time
series: one from an elderly subject @Fig. 2~a!#, and the
other from a young adult @Fig. 2~b!#. The respiratory rate
~cycle per minute!, w , can be calculated from the IBI via
the relation w560/IBI . Our studies show that both the
respiratory rate and IBI time series give very similar
results. We present here our analysis of the IBI time
series.

Detrended Fluctuation Analysis

One useful approach to study the scaling properties of
a time series is to apply methods derived from the con-
cept of self-similar ~fractal! processes. The concept of
self-similar processes was developed by Hausdorff, Be-
sicovich, Kolmogorov, and Mandelbrot.19,25 An object is
self-similar if its subsets can be rescaled to resemble
~statistically! the original object itself. A scaling expo-
nent ~also called the self-similarity parameter! can be
defined by this rescaling process. Long-range ~power-

law! correlations and self-similar processes are related in
that a stationary time series with long-range correlations
can be integrated, i.e., by forming an accumulated sum,
to generate a self-similar process. Therefore, measure-
ment of the self-similarity scaling exponent of the inte-
grated time series can reveal long-range correlation prop-
erties of the original time series. Hurst analysis2 and
root-mean-square analysis of random walks26 are both
based on this concept.

To minimize the effect of nonstationary trends present
in ‘‘real-world’’ physiologic data, we applied a previ-
ously validated method—termed detrended fluctuation
analysis28,29—to the analysis of the respiratory rate. The
advantages of DFA over conventional methods ~e.g.,
spectral analysis and Hurst analysis! are that it permits
the detection of long-range correlations embedded in
nonstationary time series, and also avoids the spurious
detection of apparent long-range correlations that are ar-
tifacts of nonstationarities. This method has been vali-
dated on control time series that consist of long-range

FIGURE 2. Illustrative respiratory time series for „a… young adult male and „b… elderly male. „c… Comparison of detrended
fluctuation analysis „DFA… for subjects in „a… and „b… plotted on a double logarithmic scales. Dotted lines in panel „c… are the
least-square fits for both subjects. The slopes of these fitted lines are the DFA exponents, a. The slope for the elderly subject
„closer to 0.5… is consistent with a degradation of long-range fractal scaling, indicating more random „uncorrelated… behavior.
Fourier spectral densities are plotted in „d… for the same subjects in „a… and „b…. The b exponents are given by linear regression
fits †solid lines in „d…‡. Note that the noisy spectra lead to less reliable estimations of fractal scaling exponents compared with
the DFA plots in „c…. To facilitate comparison of scaling behavior in „d…, we have offset the two sets of data points.
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correlated data superimposed on a nonstationary external
trend.28 This method has been successfully applied to
detect long-range correlations in highly complex heart
beat time series,12,17,24,29 and other physiological
signals.8–11

A detailed description of the DFA algorithm appears
elsewhere.28,29 Briefly, the IBI time series ~with N data
points! is first integrated, y(k)5( i51

k @I(i)2Iave# , where
I(i) is the IBI at time i and Iave is the average IBI. Next,
the integrated time series is divided into boxes of equal
length, n. In each box of length n, a least-squares line
segment is fit to the data ~representing the trend in that
box!. The y coordinate of the straight line segments is
denoted by yn(k). Next, we detrend the integrated time
series, y(k), by subtracting the local trend, yn(k), in
each box. The root-mean-square fluctuation of this inte-
grated and detrended time series is

F~n ![A1

N (
k51

N

@y~k !2yn~k !#2. ~1!

One calculates F(n) for a range of time scales ~box
sizes! to provide a relationship between F(n), the aver-
age fluctuation as a function of box size. In our case, the
box size n ranged from 10 respiration cycles ~about 40 s!
to 400 cycles ~about 26 min!. The lower cutoff scale of
n is selected such that the artifact of the DFA, which
appears on a small scale, will be minimized.3 While the
upper bound of n is determined by the number of data
points, it is usually selected at about 1

4 of the total data
length. Typically, F(n) will increase with box size n
@Fig. 2~c!#. A linear relationship on a double log graph
indicates the presence of power-law ~fractal! scaling. Un-
der such conditions, the fluctuations can be characterized
by a scaling exponent a , the slope of the line relating
log F(n) to log n @Fig. 2~c!#.

As discussed above, a good linear fit ~with r.0.98)
of log F(n) vs. log n indicates that F(n);na, where a is
the single exponent describing the correlation properties
of the entire range of time scales. Figure 2~c! shows the
DFA results for data from one young and one elderly
subject. The scaling exponent (a value! is reduced from
0.69 for the young adult to 0.58 for the elderly subject,
indicating a shift from more complex fractal-like scaling
to behavior that is more random. Note that a50.5 indi-
cates that there is no correlation in the time series, i.e.,
white noise.

As described above, the DFA algorithm involves a
detrending step. Our previous analysis10 showed that
when the signal is highly nonstationary, it is necessary to
apply higher-order detrending. In other words, instead of
fitting the integrated signal with a linear trend, we can fit
it with higher-order polynomials.10 In this study, we ap-
ply polynomials up to the fourth order. The results dis-

cussed below are for parabolic detrending ~polynomial of
order 2!. Higher-order polynomial detrending produced
similar results.

Power Spectrum Analysis

A standard technique of time series analysis is spec-
tral analysis.30,33 For time series with long-range corre-
lations, the Fourier power spectrum shows power-law
scaling behavior, i.e., the power spectrum is a straight
line if plotted on a double-logarithmic graph. In other
words, S( f );1/f b, where S( f ) is the Fourier power
spectral density, f denotes the frequency, and b is the
spectral scaling exponent.

In principle, the DFA scaling exponent a is related to
the slope b of the power spectrum log–log plot by the
equation: a5(11b)/2.29 Therefore, both DFA and Fou-
rier analysis should lead to consistent results. However,
in practice, for real-world signals that are nonstationary
and noisy, Fourier analysis is less reliable than the DFA
method for detecting long-range correlations.29

We derived power spectral density estimates by using
two different Fourier analysis algorithms: ~1! A standard
fast Fourier transform algorithm for evenly sampled data;
and ~2! the Lomb Fourier transform for nonevenly
sampled data.31 For the former case, we used the IBI
time series indexed by the breathing cycle number. For
the latter method, we used the actual time as the index
for the IBI series, since these time series are unevenly
sampled. Note that the units of the frequency are differ-
ent in these two cases: 1/cycle in the first method and 1/s
~Hz! for the Lomb method.

From the spectrum of each subject, a linear regression
fit of power versus frequency on a log–log scale was
calculated @Fig. 2~d!#. To be consistent, the frequency
range for the fit corresponds to the range of fit used in
the DFA analysis.

Assessing Effects of External Stimuli

All subjects watched the movie Fantasia© to help
maintain wakefulness and provide a relatively constant
environment during the 120 min data recording period.
However, these common stimuli may influence breathing
patterns of our subjects in a similar way.7

To determine whether the visual and auditory stimuli
had a similar effect on different subject’s breathing pat-
terns, we measured the IBI cross correlation from pairs
of subjects. The cross-correlation function, denoted as
rxy(t), of two time series x(t) and y(t) is defined as

rxy~t !5

E$@x~ t2t !2mx#@y~ t !2my#%

sx sy
,
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where E@z# denotes the expectation value of variable z,
and m and s2 denote the mean and variance of the time
series. In this analysis, x(t) and y(t) are averaged IBI
time series ~over 30 s! to reduce noise.

Because the movie was not started at precisely the
same moment after the beginning of each recording, the
cross-correlation function was calculated with a variable
lag time, t . The maximal value of this cross-correlation
function is considered possibly meaningful if it is greater
than two times the standard deviation of the cross-
correlation function calculated by using a randomized
IBI time series ~obtained by shuffling the original time
series!. We also recorded the corresponding time lag for
which the maximal value of the cross-correlation func-
tion occurs.

We calculated all possible combinations of cross-
correlation functions. Of the total 780 (540339/2) pairs
of subjects, only 3% had maximal values exceeding the
threshold selected above. To select those values that
likely represented meaningful cross correlations rather
than chance effects, we applied a second criterion. If
there is a common rhythm appearing in a certain sub-
jects’ breathing patterns, then a simple relationship
among the time lags should exist. Let tAB be the time
lag for the maximal cross-correlation function for sub-
jects A and B, tBC is the lag for subjects B and C, and
tAC the lag for subjects A and C. Then, we expect tAB

1tBC5tAC .
Only three subjects ~1 young female, 1 elderly female,

and 1 elderly male! showed evidence of common breath-
ing patterns according to this second criterion. However,
we observed that these three subjects had very different
a exponents ~0.73, 0.62, and 0.56!, indicating that any
movie-related breathing patterns probably had little effect
on the long-range correlations.

In summary, cross-correlation analysis suggests that
the movie had some effect on a small subset of subjects’
respiration patterns. However, it did not seem to have a
systematic effect on the correlation properties of the res-

piration dynamics as measured by the DFA algorithm.
This is probably due to the fact that the DFA algorithm
removes slowly varying trends in the data.

Statistical Analysis

Subject characteristics and scaling exponents were
compared between groups using the nonparametric
Kruskal–Wallis test for statistically significant age/
gender effects ~i.e., by stratifying all subjects by age and
gender and testing for differences between the four
groups of subjects!. If this test showed a significant
group effect on a , multiple Wilcoxon rank sum tests
were performed to compare two groups at a time ~e.g.,
older men versus older women, young men versus older
men! to test for age or gender effects. These nonpara-
metric tests make no assumptions about the underlying
distribution of the data being compared. Statistical analy-
sis was performed using SAS software release 7.0 ~Cary,
North Carolina!. A p value less than 0.05 was considered
statistically significant. Group results are reported as
mean 6 standard deviation.

RESULTS

Tables 1 and 2 summarize the results for the mean
and the range of IBI, as well as the scaling exponents of
the IBI time series. The mean and range of IBI fluctua-
tions did not show a significant dependence on age or
gender.

Based on the DFA analysis, the fluctuations in the IBI
time series were not simply attributable to random ~un-
correlated! variations. Instead, we observed that scaling
exponents (aÞ0.5) are consistent with long-range cor-
relations extending over a range of 10–400 breathing
cycles. To verify that the long-range correlations were
statistically significant, we did the following test. For
each IBI time series, we randomized the sequential order
of the IBI data, generating a surrogate time series with
the same average and standard deviation as the original

TABLE 1. Interbreath interval dynamics. IBI: interbreath interval. DFA: detrended fluctuation
analysis. FFT: fast Fourier transform. The IBI values are unadjusted means Á SD.

Variable Young women Young men Elderly women Elderly men

Mean IBI (s) 3.4960.27 3.9660.76 3.6160.70 3.8360.57
Range of IBI (s) 3.03 – 3.89 2.93 – 5.26 2.60 – 4.87 3.13 – 4.85
a exponent by DFA 0.7060.07 0.6860.07 0.6760.06 0.6060.08a

b exponent by FFTb 0.4060.19 0.3560.14 0.3060.19 0.2360.20
b exponent by Lomb periodogramc 0.4760.18 0.3960.19 0.3560.22 0.2560.27

aMultiple Wilcoxon rank sum tests were performed to compare two groups at a time. The exponent
a for the group of elderly men is significantly different from the other three groups (p,0.03 for all
three comparisons). The group average values of a are not statistically different among the groups
of young men, young women, and elderly women (p.0.3 for all comparisons).

bb exponents derived by the FFT algorithm are not significantly different among groups.
cb exponents derived by the Lomb algorithm are not significantly different among groups.
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data set. By definition, these surrogate time series are
uncorrelated. As expected, DFA analysis showed that the
a exponents were very close to 0.5 ~with standard de-
viation less than 0.03! for these randomized time series.
For each group of 10 subjects, the a values of the origi-
nal IBI time series were then compared to the random-
ized time series. The Student’s t test confirmed that the a
exponents of all four groups were statistically different
from those uncorrelated surrogate time series.

Next, each subject’s a exponent was compared to a

values of 100 surrogate time series ~generated by 100
randomized representations of the original time series! to
estimate the likelihood that the a exponent was different
from that of its randomized surrogates.8 The DFA scaling
exponents for 6 of the 10 elderly male subjects were not
significantly different from that of the randomly shuffled
~white-noise! control series. In contrast, the DFA scaling
exponents from all subjects (n530) in the other three
groups were significantly (p,0.05) higher than the ran-
domized control series.

The strength of the IBI fractal correlations appears to
have both an age and gender dependence (p50.02 by
the Kruskal–Wallis test!. Figure 3 shows the results of
DFA analysis of the IBI time series for all 40 subjects.
The strength of correlation, as indicated by the a expo-
nent, is significantly lower in the elderly male group but
not in the elderly female group, compared to the young
adults ~Tables 1 and 2!. Multiple Wilcoxon rank sum
tests were performed to compare two groups at a time.
The exponent a had a mean value of 0.6060.08 for the
group of elderly men, significantly different from the
other three groups (p,0.03 for all three comparisons!.
Moreover, 6 of the 10 elderly male subjects had a scal-
ing exponents lower than those of any individual in the
other groups. In contrast, the mean values of a were not
statistically different among the groups of young men,
young women, and elderly women.

The b exponent ~based on the log–log slopes of the
power spectrum! also showed a trend toward decreased
values for the elderly male group ~Tables 1 and 2!, con-
sistent with the a exponent changes. However, in con-
trast to DFA, neither of the spectral analysis methods
@fast Fourier transform ~FFT! or the Lomb periodogram
method# showed significant age or gender differences in
the power spectrum exponents.

FIGURE 3. Scaling exponents a from DFA analysis for 40
subjects divided into four groups based on age and gender.
The a values are obtained from the least-squares fit of the
DFA analysis †see Fig. 2„c…‡ of the IBI time series over the
range of 10 cycles „about 40 s… to 400 cycles „about 26 min….
The asterisk with vertical bars denotes mean Á S.D. for each
group, respectively. The a values of the young female,
young male, and elderly female groups are not statistically
different from each other. The a exponents of the elderly
male group are significantly different from the young male
„pË0.02…, young female „pË0.01…, and elderly female „p
Ä0.03… groups.

TABLE 2. Individual DFA exponents.

Young female group Young male group Elderly female group Elderly male group

Age a Age a Age a Age a

23 0.660 34 0.651 77 0.589 73 0.555
28 0.646 31 0.680 73 0.622 81 0.527
21 0.694 23 0.680 73 0.710 76 0.514
30 0.735 21 0.602 71 0.618 71 0.572
32 0.693 30 0.589 74 0.672 68 0.689
23 0.649 23 0.654 73 0.644 83 0.565
28 0.587 26 0.693 75 0.698 70 0.601
27 0.748 31 0.667 85 0.734 77 0.624
25 0.730 21 0.820 70 0.603 71 0.565
21 0.845 21 0.783 73 0.777 77 0.768

mean 6 SD 0.7060.07 0.6860.07 0.6760.06 0.6060.08
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DISCUSSION

The results of this study are notable because they: ~1!

provide a new and easily applied algorithm for the de-
tection of breathing cycle time series from noisy respi-
ratory signals; ~2! present consistent evidence for the
presence of long-range ~fractal! correlations in human
respiratory dynamics, extending over hundreds of breath-
ing cycles; and ~3! present evidence that these correla-
tions may degrade in elderly men. To our knowledge this
is the first study specifically addressing possible long-
range correlation properties in breath-to-breath dynam-
ics in healthy adults and their possible alterations with
aging.

The complex, nonstationary characteristics of these
respiratory signals create important technical challenges
related to reliably quantifying their behavior in the clini-
cal setting. Therefore, it may be difficult to detect subtle
changes in the dynamics of real-world data by power
spectrum methods. Of note, in contrast to DFA, neither
of the spectral analysis methods showed significant age
or gender differences in the fractal scaling exponents.
This apparent discrepancy is likely to be related to two
factors: ~1! The b exponent derived from the Fourier
transfer has been shown in previous studies to be less
accurate than the DFA measurement for quantifying
long-range correlations10,37 @Fig. 2~d!#. ~2! Fourier analy-
sis requires stationarity, which is likely to be an invalid
assumption for the IBI time series. In contrast, the DFA
takes into account certain types of nonstationary proper-
ties in the data.

A previous study by Hughson et al.15 using spectral
analysis techniques, did raise the possibility of ‘‘fractal
and/or deterministic chaos’’ in breathing dynamics of
healthy young men (n58), but concluded that the ‘‘evi-
dence is not strong.’’ The present analysis was facilitated
by the development of a new signal processing algorithm
that does not alter the underlying dynamics of the respi-
ration signal, and by employing a detrended fluctuation
~fractal! analysis method.29

Fractal properties have been observed in the fluctua-
tions of the depth of breathing ~tidal volume! in anesthe-
tized adult rats.13 In lambs, respiratory dynamics also
acquire fractal scaling properties during fetal
development.36 This presumably reflects the maturation
of central nervous system respiratory control centers,
chemoreflexes, pulmonary stretch reflexes, and neurohu-
moral influences that affect respiratory behavior over the
short and long term. Aging is associated with neuronal
dropout, loss of central signal integration, stiffening of
the pulmonary parenchyma, and reduced chemoreceptor
sensitivity.22

The loss of long-range correlations ~multiscale orga-
nization! in breathing dynamics in humans is consistent
with these physiologic alterations. Our findings lend pre-

liminary support to this hypothesis in elderly men, but
not women. These gender differences are not likely at-
tributable to underlying differences in cardiovascular
health, as both groups were carefully screened with non-
invasive tests to help exclude clinically relevant cardio-
vascular disease. Since women experience greater lon-
gevity than men, these results may reflect subtle intrinsic
gender differences in the rate at which physiological sys-
tems undergo degradative change.32 Whether this rate of
physiological aging is primarily related to genetic or
environmental factors remains to be determined. Further
studies, at rest and with exercise, are needed to confirm
our findings, and to determine whether women also un-
dergo the loss of long-range respiratory correlations at a
later age.

The finding of long-range correlations extending over
hundreds of breathing cycles in healthy subjects also
poses a challenge to ongoing efforts to model respiration
dynamics. Previous studies have shown that beat-to-beat
fluctuations of the healthy sinus rhythm also display
long-range ~fractal! correlations.17,29 In humans, fractal
and nonlinear heart rate complexity also appears to de-
grade with age.17,18,21 Although the underlying mecha-
nisms for the observed scaling behavior of breathing and
heart rate dynamics, and other biologic signals,1,8,10,17

remain to be fully understood, the interaction over mul-
tiple time scales of different control and feedback sys-
tems probably plays an important role.9,23 However,
these fractal correlation properties, and their changes
with aging, are not explained by current models of neu-
roautonomic control.

Finally, the results of this study may also have prac-
tical implications for the design of ventilators. A recently
described conceptual model has predicted that the addi-
tion of random noise to mechanical ventilation might
improve gas exchange and prevent further lung injury,35

a finding supported by some experimental data.20,27

Whether a fractal pattern of respiratory variability, incor-
porating long-range correlations, will be of clinical value
in further improving mechanical ventilation remains to
be tested in experimental and clinical settings.
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