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P-Tensor Product in Compressed Sensing
Haipeng Peng, Yaqi Mi, Lixiang Li , H. Eugene Stanley, and Yixian Yang

Abstract—The dimension matching is a tough problem in the
vector and matrix computations. In the traditional mode, there
is only one way to calculate the angle between the 1-D plane and
the 3-D vector, it is the projection. However, there are a number
of lines on the plane, and taking only the projection to represent
the plane is kind of a narrow choice. Furthermore, in the matrix
multiplication, the dimension restriction is strict. In order to solve
these problems, this paper defines a new model called P-tensor
product (PTP), which cannot only define the inner product of two
vectors with unmatched dimensions but also give a new way to
solve the problems in the matrix operations. Aiming at decreas-
ing the large storage space of the random matrix in compressed
sensing (CS), the PTP can reconstruct a high-dimensional matrix
by using a matrix, which can be chosen as any kind of matrix.
Similar with the traditional CS, we analyze some reconstruction
conditions of PTP-CS such as, the spark, the coherence, and
the restricted isometry property. The theorems proposed in this
paper have a broad sense, and they possess a good universal-
ity for various tensor product CS methods. The experimental
results demonstrate that our PTP-CS model can not only give
more choices to the types of Kronecker matrix and decrease
the storage space of the traditional CS but also maintain the
considerable recovery performance. Besides, the proposed PTP-
CS model can improve the signal transmission efficiency in the
Internet of Things.

Index Terms—Compressed sensing (CS), Internet of Things
(IoT), matrix, tensor product, vector.

I. INTRODUCTION

IN THE conventional data sampling system, the classical
Nyquist–Shannon sampling theorem states that if the signal

is of limited bandwidth and its sampling frequency is twice as
the highest frequency, then the original continuous signal can
be completely reconstructed from its samples. As a new signal
processing technology, the compressed sensing (CS) breaks
through the limitation of the Nyquist–Shannon theorem and it
has attracted much attention [1]–[3]. In view of the sparsity
of the signal, the CS can obtain the valid information through
a nonadaptive sampling method and reconstruct the original
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Fig. 1. Structure of WSN. The user can send the data information to the
administration node by the computer. Then the administration node can send
the data to the Internet, the satellite, or the mobile communication network.
Subsequently, the data may be sent to the sensor nodes in the sensing field
through the gateway node.

signal by a nonlinear method. For the signal processing, the CS
can remove the redundancy, save the vital information of the
image and further reduce the dimension of the data [4]. The CS
provides a useful way in signal encryption, which is necessary
for virtual property security. Furthermore, the CS can be used
in many fields, such as, radar imaging [5], magnetic resonance
imaging [6], and multileaks identification [7].

As a significant concept in recent years, the Internet of
Things (IoT) has attracted quiet a lot of attention. The IoT can
collect large numbers of information on time during the con-
nection procedure. It includes the sensing layer, the network
layer and the application layer. The wireless sensor network
(WSN) is a part of sensing layer, and it can collect a large
amount of data and transmit them. However, the sensors in
the WSN have limited energy. Therefore, transmitting a large
amount of data in an efficient way is a problem that requires
an urgent solution. The CS can solve this problem well, i.e., it
can distort the redundant data and transmit the signal fast [8].
As is shown in Fig. 1, the data information from the user are
sent to the sensor nodes in the sensing field. During this pro-
cedure, the data should be transmitted to the administration
node and some networks, the satellite, the gateway node, the
Internet, and the mobile communication network. If the data
needed to be transmitted is extremely large, then it would cost
a lot of time and energy. Especially for the sensor with limited
energy, a large amount of data is likely to be transmitted unsuc-
cessfully. In the traditional CS, although the signal can be
compressed before transmission, the storage space needed by
the measurement matrix is quiet big. Hence, reducing the stor-
age space of the measurement matrix in the CS is an important
topic in the field of WSN.

In the CS, the design of the measurement matrix also gain-
ing popularity. The key procedure of CS is to “compress”
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the original signal to a lower-dimensional space by multi-
plying it with the measurement matrix, which should ensure
less data collection, higher adaptability, easier implementation,
and better optimization. In view of the above requirements,
Do et al. [9] proposed the structurally random matrix (SRM).
Although the SRM can improve the quality of the compres-
sion, it is hard to be implemented because of its high complex-
ity. Gan [10] proposed a block CS model called Bayesian CS,
which divided the image into B × B nonoverlapping blocks.
Then each block was observed by an orthonormal and inde-
pendent identically distributed (i.i.d) Gaussian matrix [11].
In this way, the storage space of the measurement matrix is
reduced and the speed of CS is improved. Peng et al. [12]
proposed an effective method based on Chaotic CS (CCS),
which only stored the matrix generation parameters so as to
save the storage space. It is found that the random matrix
is highly adaptable, and is easily obtained when it is chosen
as the measurement matrix. However, the size of the origi-
nal signal is comparatively large. Furthermore, the restriction
of the traditional matrix multiplication is severely significant.
For instance, the traditional multiplication among the matrices
should satisfy the condition of dimension matching or com-
plete the operation by an intermediate matrix. That is, the
random measurement matrix requires a large storage space.
Therefore, it is important to break the limitation of the matrix
multiplication.

In view of the dimension matching problem,
Zheng et al. [13] proposed a new framework called shift-
invariant dictionary learning, which mainly focused on global
patterns rather than shift-invariant local patterns. In 2008,
Cheng et al. [14]–[16] proposed a matrix product called the
semi-tensor product (STP), which has been widely used in
various fields, such as Boolean networks [17] and linear
algebra [18]. Especially, Xie et al. [19] applied the STP
into the CS called semi-tensor product CS (STP-CS), which
had broken through the restriction of the traditional CS on
matrix dimension matching and obtained good results in the
decrement of the matrix storage space. When STP-CS was
applied to IoT, Peng et al. [20] obtained a good performance
in the encryption and saved the storage space of the secret
key. However, the STP has an evident limitation in the
calculation of the inner product between two vectors with
different dimensions, i.e., the definition of the inner product
between two vectors is a vector rather than a certain number.
Furthermore, it does not define the angle between them.
Therefore, there is an urgent requirement to develop new
definitions of these concepts for the vectors with different
dimensions, i.e., it is important that the concept or the model
of STP should be extended to a more general case.

In this paper, we propose a new matrix operation called
P-tensor product (PTP), which is more flexible and more
general in solving the problem of the dimension matching
between two matrices. In the definition of PTP, the matrix with
smaller size can be enlarged to a larger size by making the
Kronecker product with matrix P, which can be chosen as any
kind of matrix rather than only the identity matrix. Moreover,
we extend the PTP to other vector operations, such as the
inner product and the included angle between two vectors
with unmatched dimensions. It breaks through the traditional

Fig. 2. CS using the PTP. The original image x is compressed by the mea-
surement matrix, which is a product of two matrices. In the CS, By making
the PTP of the matrix P, the original low-dimensional measurement matrix �
can be enlarged to a high-dimensional matrix, so that the storage space which
is required by the measurement matrix is reduced. After transmitting in the
signal channel, the image is reconstructed.

concept of the angle between two vectors under different
dimensional spaces, and we define a new inner product and
an angle between two vectors with different dimensions in
P-transform (i.e., the transform uses the matrix or vector
P to make two matrices or vectors that have the matched
dimensions and then continue the next step, such as the
multiplication between the matrices and the calculation of the
inner product).

When PTP is applied into CS, the proposed model PTP-CS
provides a method to observe the high-dimensional original
signal by the low-dimensional random matrix. Hence, the stor-
age space of the random matrix is reduced significantly. As is
shown in Fig. 2, the original image x will multiply the (�⊗P).
Here, the (� ⊗ P) is the PTP of the original measurement
matrix �. In this way, the PTP-CS has more choices of the
matrix P than the STP-CS and it has the opportunity to adjust
the properties of the final measurement matrix. The storage
spaces of PTP-CS and STP-CS have little difference. After
the compression by the measurement matrix, the image will
be transmitted on the signal channel to the terminal. Then the
signal can be reconstructed by the proposed recovery algorithm
based on the iteratively reweighted least squares (IRLSs). As
a method of signal processing, similar with [20], the PTP-
CS can be used in IoT and it provides a more efficient way
for the communication theory. Compared to the existing CS
schemes, the PTP-CS has a lower requirement of the storage
space and it can get a similar as well as more stable recovery
result. Furthermore, the conditions of the measurement matrix
are analyzed in a broad sense, and we give three theorems
of PTP-CS, which can be used to analyze other existing CS
models, for example, the STP-CS. The advantages of PTP and
PTP-CS are listed as follows.

1) New Tensor Product Model Overhead: We define a
new inner product operation and a new angle between
two vectors with unmatched dimensions in P-transform.
Meanwhile, the PTP can break through the restrictions
of the traditional matrix multiplication and the STP
operation.

2) Good Universality and Low Storage: The theorems of
the PTP-CS can be used in a broad sense. They can be
used to analyze other CS models and optimize the com-
pression method. Moreover, through the PTP-CS, the
low-dimensional measurement matrix can be extended
to the high-dimensional matrix and then can be used to
compress the signal.

3) New Reconstruction Model: In view of the PTP-CS, we
propose a new model based on the IRLSs. It is found



3494 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

that the proposed model has a good performance in the
signal reconstruction.

II. FUNDAMENTAL KNOWLEDGE

A. Compressive Sensing

Suppose x ∈ Rn×1 is a k-sparse discrete signal in the orthog-
onal basis �, � ∈ Rm×n is the measurement matrix, and it
is dependent with �, the normalized model of CS can be
denoted as

y = �x (1)

where m < n, y ∈ Rm×1, x is sparse or sparse on an orthogonal
basis, that is,

x = �s (2)

where � ∈ Rn×n is also called the sparse matrix. Obviously,
for x in the time or space domain and s in the � domain, x
and s can represent the signal equivalently [21]. The signal
x is k-sparse, that is, there are k nonzero rows in s (k � n).
From (1) and (2), we get

y = �x = ��s = �s (3)

where � = �� is called the sensing matrix. CS includes
three parts, i.e., the signal sparse representation, the design of
measurement matrix, and the reconstruction algorithm. Now
we begin to illustrate these three aspects.

1) Signal Sparse Representation: The sparsity is that there
are many zero elements in the signal so that the signal can be
sampled and compressed effectively in the transform domain.
Suppose the signal x is k-sparse, then we can construct the
original signal from k values of these m measurements, where
x ∈ Rn and k� m < n. Due to the sparsity in a certain orthog-
onal basis, the discrete cosine transform (DCT) matrices and
the discrete wavelet transform (DWT) matrices are often used
as the sparsity matrix. In 2008, Rauhut et al. [22] decomposed
the sparse signals by constructing the redundant dictionaries,
and the CS was generalized from the orthogonal basis space
to the redundant dictionary.

In the practice, DCT and DWT are easy to be implemented.
In this paper, we use the DWT matrix as the sparsity matrix.

2) Conditions of Measurement Matrix: The design of mea-
surement matrix has attracted much attention in recent years.
The measurement matrix � ∈ Rm×n (m < n) measures
the original signal x to obtain the vector y. For a k-sparse
signal x, in order to ensure the accuracy of the recovery,
the matrix � must satisfy the following restricted isometry
property (RIP) [23] denoted by δ�k , i.e.,

(
1− δ�k

)‖x‖22 ≤ ‖�x‖22 ≤
(
1+ δ�k

)‖x‖22 (4)

where δ�k ∈ (0, 1). The sufficient condition to recover the sig-
nal is δ2k <

√
2− 1 [24]. Cai et al. [25] gave its exact value

δk < 0.307. The commonly used measurement matrices are
Gaussian matrix [26], Bernoulli matrix, Toeplitz matrix [27],
the chaotic matrix [28], etc. In addition, the random matrix,
such as Gaussian matrix and Bernoulli matrix, can satisfy
RIP with a high probability [3]. Candes and Tao [29] proved
that the i.i.d Gaussian random matrix was a universal � in
CS whereas it was uncertain and wasted the storage space.

Therefore, how to reduce the required space of CS is an
important problem to be solved.

Due to the difficulty of RIP verification, the performance of
the � is usually evaluated by the spark property, namely, the
solution of the minimum of linear correlation vectors in the
matrix. As for the k-sparse signal x, if and only if spark(�) >
2k can we obtain the exact approximation of the signal with a
minimization l0-norm optimization problem. Another impor-
tant property is the coherence [30]. The coherence coefficient
μ(�) shows the redundancy of the information in �. The
coherence coefficient is denoted as

μ(�) = max
1≤i 	=j≤n

∣∣〈ϕi, ϕj
〉∣∣

‖ϕi‖2
∥
∥ϕj
∥
∥

2

(5)

where ϕi is the ith column of �. Evidently, ‖ϕi‖2 = 1,
μ ∈ [

√
[n− m]/[m(n− 1)], 1], and the lower boundary of the

coherence is called the Welch bound [3], [31]–[33]. μ can mea-
sure the similarity between two column vectors. If μ is large,
at least two column vectors are similar to each other. On the
contrary, if μ is small, the columns of � are almost orthogo-
nal. Other low-rank approaches (for example, the non-negative
method) are widely studied in recent years [34]–[38].

The conditions of � include three aspects, i.e., simple to
achieve, low storage and good adaptability. In this paper, we
propose a new model PTP-CS, which can reduce the memory
space required by � and is easier to be implemented. In addi-
tion, it ensures a good observational performance and has a
good adaptability by our simulation results.

3) Reconstruction: The reconstruction algorithms include
the greedy iterative algorithm and the algorithms based on
Bayesian framework as well as convex optimization. The
greedy iterative algorithm aims to find each nonzero coeffi-
cient through local optimization in each iteration, including
matching pursuit (MP) [39], orthogonal MP (OMP) [40],
stagewise OMP (StOMP) [41], and other various improved
algorithms of OMP [42]. Although these algorithms have
fast speeds to reconstruct the signal, they have a dramatic
demand of the measurement matrix. Meanwhile, they may be
unsuitable for some CS models, i.e., they cannot give sta-
ble recovery performances. The algorithms based on Bayesian
framework mainly consider about the time correlation of the
signal and they have high accuracies, such as BCS [43],
expectation-maximization [44], sparse Bayesian learning[45],
and so on. The convex optimization algorithm turns the
nonconvex problem into the convex problem to recover the
original signal. The typical method is basis pursuit, which is
based on the minimal l1-norm. Chen et al. [46] gave the solv-
ing process in detail. Moreover, there is another method called
FOCUSS [47], [48] based on lρ-norm (0 < ρ < 1) [49]. In
this paper, we mainly focus on the reconstruction algorithms
based on the convex optimization.

For the reconstruction algorithms based on the convex
optimization, the problem of recovering the k-sparse signal
x from the observed value y, namely, the solution of the
nonzero sparse minimization problem, can be transformed into
the following l0-minimization:

x∗ = arg min
x
‖x‖0 subject to y = �x. (6)
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The l0-norm is NP-hard while the l1-norm is convex.
Therefore, the solution of (6) is converted to obtain the
following l1-minimization when � satisfies RIP:

x∗ = arg min
x
‖x‖1 subject to y = �x. (7)

In the STP-CS model, Wang et al. [50] used the IRLSs
minimization [51], [52] to reconstruct the signal and obtained
a good result. Different from the STP-CS reconstruction model
in [50], in this paper, we propose a new reconstruction model
based on lρ-norm (0 < ρ < 1) which combines the IRLS.
It can be seen that the proposed reconstruction model can be
applied well to PTP-CS.

B. Kronecker and Tensor Products

The Kronecker product is a special type of tensor product.
Definition 1 [53]: Let the matrices � ∈ Rm×n, P ∈ Rp×q,

� = [ϕ1, . . . , ϕn], then the Kronecker product of � and P is
defined as

�⊗ P = (ϕ1P, . . . , ϕnP) =
⎛

⎝
ϕ11P ϕ12P ··· ϕ1nP
ϕ21P ϕ22P ··· ϕ2nP
...

...
. . .

...
ϕm1P ϕm2P ··· ϕmnP

⎞

⎠.

(8)

Thus, � ⊗ P is a matrix with size mp × nq, i.e., Rm×n ×
Rp×q → Rmp×nq.

Property 1: Let � ∈ Rm×n, P ∈ Rp×q, then

�⊗ P = (�⊗ Ip
) · (In ⊗ P). (9)

Property 2: If � and P are both invertible matrices, then

(�⊗ P)−1 = �−1 ⊗ P−1. (10)

Property 3: The transposed matrix of the Kronecker
product is

(�⊗ P)T = �T ⊗ PT . (11)

The tensor product is always used in the high-dimensional
space, and it is a multilinear mapping for n vector spaces,
namely

T : T I1 × T I2 × · · · × T In → T I1×I2×···×In . (12)

The tensor product can be used for Tucker decomposi-
tion [54], [55], which is a high-dimensional principle compo-
nent analysis. Actually, the Kronecker product is also called
tensor product most of the time due to a little difference
between them. Aiming at the first-order tensor and the second-
order tensor, we mainly focus on the vector and the matrix
tensor products in this paper and consider the Kronecker
product and the tensor product, on the whole, are same.

C. Generalized Permutation Matrix

Definition 2: If there is only one nonzero element 1 in each
row and each column, then the square matrix is called the
permutation matrix.

The permutation matrix D has the following properties [56].
1) (Du×v)

T = Dv×u.
2) DTD = DDT = I.
3) DT = D−1.

From the above properties 2) and 3) of the permutation
matrix D, we can find that the permutation matrix is the
orthogonal matrix.

Definition 3: If there is only one nonzero element in each
row and each column, then the square matrix is called the
generalized permutation matrix which is denoted by g.

Obviously, it has the same properties with the permutation
matrix. Furthermore, a square matrix is g if and only if it can
be represented as a product of a permutation matrix and a
nonsingular diagonal matrix, that is,

g = D ·� (13)

where � is a nonsingular diagonal matrix.

III. P-TENSOR PRODUCT COMPRESSED SENSING

A. P-Tensor Product Model

The concept of PTP is a new mathematical matrix opera-
tion, which can break through the limitation of the dimensions
of two vectors or matrices. Above all, it gives a more accurate
definition of the inner product of two vectors with unmatched
dimensions, and then we define the angle between them under
the P-transform. Here, we give the standard definition of
the PTP.

Definition 4: Let α = [a1, a2, . . . , an] be a n-dimensional
row vector, and let λ = [b1, b2, . . . , bp]T be a p-dimensional
column vector. If n is a factor of p, i.e., p = t × n, P ∈ Rt×t,
then we have

α
P
�λ =

n∑

k=1

(akP)λk ∈ Rt×1 (14)

where α
P
�λ is called the PTP of the vectors α and λ. Here,

λ = (λ1, λ2, . . . , λn), λi ∈ Rt×1, i = 1, 2, . . . , n. Otherwise, if
p is a factor of n, i.e., n = t × p, then we have

λ
P
�α =

p∑

k=1

αk(bkP) ∈ R1×t. (15)

Similarly, λ
P
�α is also the PTP of α and λ. Here, α =

(α1, α2, . . . , αp), αi ∈ R1×t, i = 1, 2, . . . , p.
Definition 5: Let α = [a1, a2, . . . , an] be a n-dimensional

row vector, and let λ = [b1, b2, . . . , bp]T be a p-dimensional
column vector. If n is a factor of p, i.e., p = t × n, P ∈ R1×t,
then we have

〈α, λ〉P :=
n∑

k=1

(akP)λk (16)

where 〈α, λ〉P is called the P-inner product of the vectors
α and λ.

Definition 6: The cosine value of the angle between the
vectors α and λ is

cos (α, λ)P =
〈α, λ〉P

‖P‖ · ‖α‖ · ‖λ‖ (17)

where cos (α, λ)P is called the cosine value of the vectors
α and λ in the P-transform, i.e., this transform uses the
matrix or vector P to make two matrices or vectors having
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the matched dimensions and then continue toward the next
step, such as the multiplication between the matrices and the
calculation of the inner product.

Equation (17) gives a new way to calculate the angle of
two vectors with different dimensions. For example, let α =
(1 1), λ = (1 0 0 1)T , P = (1 0), then 〈α, λ〉P = 1
and cos (α, λ)P = 1/2. 〈α, λ〉P = 1 is called the inner prod-
uct of the vectors α and λ under the P-transform, and the
cos (α, λ)P = 1/2 is called the cosine value of the vectors α
and λ under the P-transform.

By the above new definitions of the inner product and the
angle between two vectors, we can further get the included
angle between two vectors with different dimensions. For
example, the traditional angle between a line and a plane can
only be obtained by the vertical projection. Let a plane γ be
x = 1, the vector

−→
OA = (1 1 1) is a ray from the origin

to the point A, then the angle between the
−→
OA and the plane

γ requires to be changed to the angle between
−→
OA and the

projection line, which is projected to γ . However, by the P-
transform, we can extend the dimension of x = 1 and get a line
on the plane γ by x⊗P, where P = (0 1 2)T . By (17), we
can get the cosine value of

−→
OA and x = 1 in the P-transform.

As is shown in Fig. 3, the line l1 is the traditional projection
of the line l in plane γ . Meanwhile, we can define other lines
on plane γ by a proper P to get the angle between the plane
and the line. The P-angle is a new definition for two vectors
which have unmatched dimensions. If n = p, it is the inner
product of the traditional vector.

Evidently, the inner product defined in the STP is different
from the traditional inner product. As is mentioned in [19],
the inner product of two vectors is also a vector rather than
a certain value. So it cannot be used to calculate the cosine
value of the vectors, which is not defined in the STP. It seems
like a special inner product with the vector form and has no
relationship with the calculation of the angle between two vec-
tors. Therefore, the PTP is a good way to calculate the inner
product, the cosine value and the angle between two vectors
with unmatched dimensions.

Definition 7: Let � ∈ Rm×n, x ∈ Rp×q, the least common

multiple of n and p is t, i.e., t = lcm{n, p}. Note that y = � P
�x

is the PTP of � and x, so we have

yij = 〈�i, xj〉
P (18)

where �i is the ith row of � with dimension n, xj is the jth
column of x with dimension p, i = 1, 2, . . . ,m, j = 1, 2, . . . , q.

Evidently, y is a matrix made up by m × q blocks. If P =
I1×1, then it is the traditional multiplication. Furthermore, the
PTP of two matrices can be defined in another way as

�
P
� x = (�⊗ Pl×t/n

) · (x⊗ Pt/p×h
)

(19)

where l and h are random positive integers. Now we take P
as a square matrix for convenience. Remark that � �t x is
n = tp and � ≺t x is p = tn, where t is a positive integer. So
the PTP of two matrices can be written as

�
P
� x =

{
�(x⊗ P), � �t x

(�⊗ P)x, � ≺t x.
(20)

Fig. 3. P-angle of the vectors with different dimensions. The red line l1 with
the mark square (�) is the traditional projection of the black line l under the
plane γ . Three different lamp bulbs represent different lights, including the
green line l2 with the mark star (�), the blue line l3 with the mark triangle
(�), and the yellow line l4 with the mark circle (◦). These dotted lines with
different marks on the plane γ are the projections of three lights with different
colors. All of the projections can be defined by our method.

Suppose F, G, and Q are matrices with proper dimensions,
some rules among them can be given as follows.

Property 4: The distributive rule is given as
⎧
⎨

⎩
F

P
�(lG± hQ) = lF

P
�G± hF

P
�Q,

(lF ± hG)
P
�Q = lF

P
�Q± hG

P
�Q.

l, h ∈ R (21)

Property 5: The associative rule is given as
(

F
P1
�G

)
P2
�Q = F

P1
�

(
G

P2
�Q

)
. (22)

Property 6: F
P
�G and G

P
�F have the same eigenvalues, and

tr(F
P
�G) = tr(G

P
�F).

Property 7: If PT = P, then we have
(

F
P
�G

)T

= GT P
�FT . (23)

Property 8: If F, G, and P are invertible, then we have
(

F
P
�G

)−1

= G−1P−1

� F−1. (24)

In the above analyses, we only focus on the left matching
of the matrices. Similar with (20), the right form of PTP can
be defined as

�
P
�x =

{
�(P⊗ x), � �t x

(P⊗�)x, � ≺t x.
(25)

In order to distinguish these two types of PTP, we denote

�
P
�x as the right PTP and we denote �

P
�x as the left PTP.

The right PTP can satisfy Properties 4–8 as mentioned above.
Furthermore, let � ∈ Rm×n, x ∈ Rp×q, if � �t x, then we can
get the relationships of these two types of PTP as follows:

�
P
�x = �� W[p,t]

P
�x � W[t,q] (26)

and

�
P
�x = �� W[t,p]

P
�x � W[q,t]. (27)
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Oppositely, if � ≺t x, the corresponding properties can be
obtained similarly. In (26) and (27), W[p,t] is the transposition
matrix, and it can be defined as follows.

Definition 8: Let W[p,t] ∈ Rpt×pt, each row and each column
of the matrix W are labeled by the double indices (i, j), the
columns are arranged by Id(i, j; p, t) and the rows are arranged
by Id(J, I; t, p). The element in the [(I, J), (i, j)] is

W[(I,J),(i,j)] =
{

1, I = i and J = j

0, else.
(28)

Evidently, WT
[p,t] = W−1

[p,t] = W[p,t].
If P = I, it is the STP.
Furthermore, when we take the product operation of the

traditional product and Kronecker product or PTP, Kronecker
product cannot satisfy the associative rules, which is incon-
venient for the theoretical studies, i.e., for the matrices F, G,
and Q with proper dimensions, we have

(F ⊗ G) · Q 	= F ⊗ (G · Q) (29)

while the PTP can satisfy the associative rules, i.e.,
(

F
P
�G

)
· Q = F

P
�(G · Q). (30)

This property of PTP is convenient for the applications, and
PTP can overcome the insufficiencies of Kronecker product.
When PTP is applied to the PTP-CS, we can get the definition
of PTP-CS as follows:

y = � P
�x (31)

where � is the original measurement matrix and x is a k-sparse
signal. The matrix P can be any kind of invertible matrices.
Here, we adopt the matrix P as the Gaussian random matrix
and the generalized permutation matrix. The Gaussian ran-
dom matrix is subject to normal distribution with mean 0 and
variance 1.

B. Spark

As is mentioned in Section II, the spark is an important
property in the CS. So we give a corollary of the spark in the
PTP-CS, and further give a theorem with a detailed proof.

Corollary 1: If P is an invertible matrix and spark(�) >
2[kn/q], then for each measurement y ∈ Rmq/n, there is at

most one k-sparse signal x ∈ Rq so that y = � P
�x, where [ · ]

is a floor function.
Here, the floor function is an integer-valued function in

which the fractions are rounded down. So we can get the
maximal integer that is not bigger than the input value.

Theorem 1: Let P is an invertible matrix, for each measure-
ment y ∈ R(mq/n), if there is at most one signal x ∈ k so that

y = � P
�x, then spark(�) > 2[kn/q].

Proof: For (31), we have

y mq
n ×1 =

(
�m×n ⊗ P q

n× q
n

)
· xq×1. (32)

By the definition of the tensor product, (32) can be con-
verted as

y mq
n ×1 =

[(
�m×n ⊗ I q

n

)
·
(

In ⊗ P q
n

)]
· xq×1. (33)

Note that P′q×q = In⊗P(q/n). Equation (33) can be written as

y =
(
�⊗ I q

n

)
· P′ · x. (34)

If P is invertible, by Property 2 we obtain

P′−1 = I−1 ⊗ P−1. (35)

Evidently, P′ is also invertible, thus

P′−1y = P′−1 ·
(
�⊗ I q

n

)
· P′ · x. (36)

Note that T = P′−1 · (� ⊗ I[q/n]) · P′, Y = � ⊗ I[q/n], we
can get T ∼ Y .

Because T ∼ Y , T and Y has the same linear correlation.
For the right part of (36), similar with [19], we can prove
spark(�) > 2[kn/q] by contradiction. Note that τ = 2[kn/q],
then spark(�) ≤ τ . � = (ϕ1, ϕ2, . . . , ϕm), where ϕi is the
column vector with dimension n. Hence, there is a nonzero
vector x ∈ τ such that

∑τϕixi
i=1 = 0 by using the definition of

the sparsity.
Note

�⊗ I q
n
=
(
β0

1 , β
1
1 , . . . , β

q
n−1

1 , . . . , β0
n , . . . , β

q
n−1

n

)
(37)

where βi is a column vector with dimension mq/n. By inserting
((q/n)− 1) zero vectors into ϕi, we can get

βi =
(
ϕi1, 0, . . . , 0
︸ ︷︷ ︸

,
︷ ︸︸ ︷
ϕi2, 0, . . . , 0, . . . , ϕim, 0, . . . , 0

︸ ︷︷ ︸

)T

. (38)

β
j
i is obtained by moving the first element to the (j+1)th ele-

ment of each bracketed part, where j = 0, 1, 2, . . . , (q/n) − 1.
Obviously, for any j we have

τ∑

i=1

β
j
i xi = 0. (39)

By (37) and (39), we obtain
(
�⊗ I q

n

)
· (x1, . . . , x1, . . . , xτ , . . . , xτ , 0, . . . , 0)T = 0 (40)

where xi = (x1, . . . , xτ ), i = 1, 2, . . . , τ , and the number of
each element is q/n.

Let X = (x1, . . . , x1, . . . , xτ , . . . , xτ , 0, . . . , 0)T , then X ∈
(τq/n). There exist X1,X2 ∈ (τq/2n) so that X = X1 − X2.
Because τ is an even integer, we have (�⊗I(q/n))·(X1−X2) =
0 and ��X1 = ��X2. In addition, (τq/2n) = (kn/q)(q/n) ≤
k, X1,X2 ∈ k. It is obvious that this conclusion contradicts
the assumption, so we have spark(�) > 2(kn/q). As a result,
we prove the theorem that if P is invertible and there is at

most one signal x ∈ k such that y = � P
�x, then spark(�) >

2(kn/q).

C. Coherence

The coherence is another important condition of the mea-
surement matrix. Here, we give a theorem of the coherence
in the PTP-CS, and further we give a detailed mathematical
proof.

Theorem 2: μ(�⊗ P q
n
) = max{μ(�),μ(P(q/n))}.
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Proof: Let �⊗ P(q/n) = C, by (5) we have

μ(C) = max
1≤i 	=j≤n

∣∣〈ci, cj
〉∣∣

‖ci‖2
∥∥cj
∥∥

2

. (41)

By (8), we have

(�⊗ P q
n
) =

⎛

⎜⎜⎜
⎝

ϕ11P ϕ12P · · · ϕ1nP
ϕ21P ϕ22P · · · ϕ2nP
...

...
. . .

...

ϕm1P ϕm2P · · · ϕmnP

⎞

⎟⎟⎟
⎠
. (42)

Note that P(q/n) = (p1, p2, . . . , p(q/n)), where pi is a column
vector with dimension (q/n) and i = 1, 2, . . . , (q/n), then (42)
can be expended as

�⊗ P q
n

=

⎛

⎜
⎜
⎝

ϕ11p1 ··· ϕ11p q
n

ϕ12p1 ··· ϕ12p q
n
··· ϕ1np1 ··· ϕ1np q

n
ϕ21p1 ··· ϕ21p q

n
ϕ22p1 ··· ϕ22p q

n
··· ϕ2np1 ··· ϕ2np q

n

...
. . .

...
...

. . .
...

. . .
...

. . .
...

ϕm1p1 ··· ϕm1p q
n
ϕm2p1 ··· ϕm2p q

n
··· ϕmnp1 ··· ϕmnp q

n

⎞

⎟
⎟
⎠.

(43)

Select two different column vectors from � ⊗ P(q/n) ran-
domly and calculate their inner product. There are q columns
in the � ⊗ P(q/n), so the selection can be denoted as C2

q
by the theory of permutation and combination, i.e., there
exists ([q(q− 1)]/2) cases in the selection and we can obtain
([q(q− 1)]/2) values of inner products. Finally, we can find
the maximum of the ([q(q− 1)/2) values of inner prod-
ucts. Here, suppose ci = (ϕ1epf , ϕ2epf , . . . , ϕmepf ) and cj =
(ϕ1dpr, ϕ2dpr, . . . , ϕmdpr)

T , the inner product of the column
vectors ci and cj is the maximum of all ([q(q− 1)]/2) inner
products, and their inner product is defined as

〈
ci, cj

〉 = ϕ1epf · ϕ1dpT
r + ϕ2epf · ϕ2dpT

r

+ · · · + ϕmepf · ϕmdpT
r . (44)

Let �m×n = (ϕ1, ϕ2, . . . , ϕn) where ϕj is a column vector
with dimension m and j = 1, 2, . . . , n. Extracting the common
factor, we have

〈
ci, cj

〉 = 〈ϕe, ϕd〉 ·
〈
pf , pr

〉
. (45)

By (45), (41) can be converted as

μ(C) = max
1≤(e,d) 	=(f ,r)≤n

∣
∣〈ϕe, ϕd〉 ·

〈
pf , pr

〉∣∣

‖ϕe‖2 · ‖ϕd‖2 ·
∥∥pf

∥∥
2 · ‖pr‖2

. (46)

According to the definition of the coherence, we should
discuss the following three cases of (46).

1) e 	= d, f 	= r

μ(C) = μ(�) · μ(P). (47)

2) e = d, f 	= r.
We can easily get ([|〈ϕe, ϕd〉|]/[‖ϕe‖2 · ‖ϕd‖2]) = 1, so

μ(C) = max
1≤f 	=r≤n

∣
∣〈pf , pr

〉∣∣
∥∥pf

∥∥
2 · ‖pr‖2

. (48)

3) e 	= d, f = r.

Similarly, we have

μ(C) = max
1≤e 	=d≤n

|〈ϕe, ϕd〉|
‖ϕe‖2 · ‖ϕd‖2

. (49)

Because the coherence of any matrix satisfies μ ∈
[
√

[n− m]/[m(n− 1)], 1], we should eliminate case 1) e 	=
d, f 	= r, which is defined by (47). In a word, μ(�⊗P(q/n)) =
max{μ(�),μ(P(q/n))}.

In [19], the coherence is also analyzed, which is

μ(�⊗ I q
n
) = μ(�). (50)

In the PTP-CS, if the matrix P is the identity matrix, namely,
P = I, then μ(�⊗ P(q/n)) can be transformed as

μ(�⊗ P q
n
) = μ(�⊗ I q

n
)

= max{μ(�),μ(I q
n
)}

= μ(�). (51)

Equation (51) implies that the coherence of the measure-
ment matrix in STP-CS is a special case of the coherence in
PTP-CS. It proves that the PTP-CS is a generalization of the
STP-CS once again, and the PTP-CS provides more choices
for the measurement matrix. So it has a better universality in
the CS.

By [57], we have the relation between the spark and
the coherence of an arbitrary matrix � as spark(�) ≥
1 + (1/μ(�)). So we can get the following corollary by
Theorem 2.

Corollary 2: If k < (1/2)(1+ [1/μ(�)]) and k < (1/2)(1+
[1/μ(P)]), then for each measurement vector y ∈ Rm there

exists at most one signal x ∈ k such that y = � P
�x.

D. RIP

Here, we will present a theorem of the RIP in the PTP-CS.
Lemma 1 [58]: If the matrices X1,X2, . . . ,XM sat-

isfy the RIP of the sequence k, which is denoted as
δk(X1), δk(X2), . . . , δk(XM), then

δk(X1 ⊗ X2 ⊗ · · · ⊗ XM) ≤
M∏

i=1

(1+ δ(Xi))− 1. (52)

Theorem 3: Suppose the measurement matrix � satisfies the
RIP of a sequence k, which is denoted as δ�k (0 < δ�k < 1),
meanwhile, the matrix P satisfies δP

k (0 < δP
k < 1). Then

�⊗ Pq/n satisfies δ
�⊗Pq/n
k , and we have

δ
�⊗Pq/n
k ≤ (1+ δ�k

) · (1+ δP
k

)− 1 (53)

namely,

δ
�⊗Pq/n
k ≤ δ�k · δP

k + δ�k + δP
k . (54)

E. Reconstruction

We will give a new algorithm by the IRLSs [46] based on
lρ-minimization. Because of the discontinuity of l0-norm [59],
it is an NP-hard problem to get the l0-minimization directly. As
for the signal reconstruction, the authors in [60]–[62] recov-
ered the signal by getting the l1-minimization and using the
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IRLSs minimization. In the iteration process, we get the vec-
tor weight of next iteration by convex optimization, and it
runs until it satisfies the stopping criterion. Compared with
the l1-norm, the lρ-norm can obtain a more accurate result
with less measurements. Also, if there is some noise in the
signal, the lρ-norm can keep a good performance in the
reconstruction [63].

Here, we begin to present more details about the proposed
reconstruction algorithm based on the IRLS in the sense
of PTP. Let the measurement matrix � ∈ Rm×n(m < n).
Obviously, � is row full rank denoted as rank(�) = m. ‖x‖0 is
the l0-norm of x ∈ Rq, then ‖x‖0 < k. We obtain the following
equation of the linear system:

y = � P
�x (55)

where y ∈ R(mn/q). Because m < n, (55) has infinitely
many solutions for any y. Let the set of all solutions be
f (y) = �−1(y).

Based on the lρ-minimization with 0 < ρ < 1, we optimize
the above problem, and let ‖x‖ρ be the lρ-norm of x. Then

arg min
x
‖x‖ρ =

( q∑

i=1

|xi|ρ
) 1
ρ

. (56)

The approximate solution of lρ-minimization can be con-
sidered as

arg min
x
‖x‖ρ = 1

ρ

( q∑

i=1

x2
i + σ 1+ρ

) ρ
2

. (57)

In the iteration process, we define the function for the lρ-
minimization as

Lρ(x,w, σ ) = ρ

2

[ q∑

i=1

x2
i wi +

q∑

i=1

(
σ 2wi + 2− ρ

ρ
w

ρ
ρ−2
i

)]

.

(58)

In (58), note w is the weight vector and w ∈ Rq. Let the
initial value of w be w(0) = (1, . . . , 1), σ0 = 1. The update
equation of w is

w(n)i =
((

x(n)i

)2 + σ 1+ρ
n

) 2−ρ
ρ

. (59)

So we can obtain

x(n+1) = arg min
x∈f (y)

Lρ
(

x(n),w(n), σn

)
. (60)

In the iteration process, σn can be updated as

σn+1 = min

(

σn,
r
(
x(n+1)

)
k+1

q

)

(61)

where k is an RIP sequence that the signal x can satisfy, in
other words, it can be considered as the sparsity of the signal
x. r(x) is the absolute value of each component in the vector
x, and it obeys the descending order, namely, r(x)1 ≥ r(x)2 ≥
· · · ≥ r(x)q ≥ 0. r(x(n+1))k+1 is the (k + 1)th component of
x(n+1) and it is sorted by the decreasing order. The terminal

Algorithm 1 PTP-CS Reconstruction Algorithm
Input: Signal x.
Initialize: w(0) = (1, · · · , 1), σ0 = 1, x(0) = (1, · · · , 1)
Output: The original signal x

1) Set x as k-sparse, x ∈ Rq, y ∈ Rmn/q as the measurement
vector

2) for each column i in y
3) while σ satisfies the condition, we set

4) update w(n)i ← ((x(n)i )2 + σ 1+ρ
n )

2−ρ
ρ ;

5) get Hn ← 1
w(n)i

;

6) update x(n+1)← (�
P
�HT)T · [� P

�(�
P
�HT)T ]−1 · y;

7) update σn+1 ← min(σn,
r(x(n+1))k+1

q );
8) end while
9) return x(n+1)

10) end for

condition of the iteration is σn = 0, and we can get the sparse
solution.

Let Hn ∈ Rq be a diagonal matrix, and we have

Hi,i = 1

w(n)i

(62)

where Hi,i represents the ith diagonal element of matrix H,
and i = 1, 2, . . . , q. Equations (56)–(62) are the main process
of IRLS cited in [51].

In conclusion, we can get the solution of (55) as follows:

x(n+1) = H · (�⊗ P)T · [(�⊗ P) · H · (�⊗ P)T ]−1 · y. (63)

Based on Properties 2 and 3, (63) can be converted as

xn+1 =
{[

H · (�⊗ P)T
]T}T ·

{
(�⊗ P) · {[H · (�⊗ P)T

]T }T
}−1 · y

(64)

xn+1 = [(�⊗ P) · HT ]T ·
{
(�⊗ P) · [(�⊗ P) · HT ]T

}−1 · y (65)

x(n+1) =
(
�

P
�HT

)T

·
[

�
P
�

(
�

P
�HT

)T
]−1

· y. (66)

In order to reconstruct the original signal x, the key point
is to get the matrix Hn in the IRLS. According to above
derivation process, we find that the Hn can be obtained by
using (59), (61), (62), (66). As a result, we summarize the
main process of the reconstruction method in Algorithm 1.

According to [51], for the nth iteration in Algorithm 1 with
n ≥ 0, we have

Lρ(x(n),w(n), σn)

= ρ

2

[ q∑

i=1

(
x(n)i

)2
w(n)i +

q∑

i=1

(
σ 2w(n)i +

2− ρ
ρ

(
w(n)i

) ρ
ρ−2
)]

(67)

where w(n)i > 0, (x(n)i )2 ≥ 0, σn > 0. Similarly, we can get
the monotonicity of Lρ(x(n),w(n), σn) by [51] as follows:

Lρ(x(n+1),w(n+1), σn+1)

≤ Lρ(x(n+1),w(n), σn+1)

≤ Lρ(x(n+1),w(n), σn)

≤ Lρ(x(n),w(n), σn)
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where 0 < ρ < 1, and the algorithm is converged, namely

lim
n→∞

(
x(n) − x(n+1)

)
= 0. (68)

F. Compressed Sensing of High-Dimensional Signal

The high-dimensional signal, for example, the video signal,
is different from the traditional image signal. The video adds
the time dimension to the signal flow. In brief, the video signal
is composed in a manner of frame-by-frame. So when it comes
to compressing the video signal, we should focus on compress-
ing every frame image in the video. There are some methods to
process the video signal, for instance, the Kronecker product in
CS can be suitable for various types of signal structures [58].
Moreover, the generalized tensor compressive sensing (GTCS)
gave a further study of the Kronecker product in CS [64], [65],
and Friedland et al. proposed a unified framework for CS with
higher order tensors. The GTCS not only keeps the intrinsic
structure of the tensor data, but also has a lower computational
complexity for the signal reconstruction.

The Kronecker product [58] can expand the sparse basis to
a high-dimensional one as

� = �1 ⊗�2 ⊗ · · · ⊗�N

= {ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψN, ψi ∈ �N, 1 ≤ i ≤ N} (69)

where ψi is a sparse basis of the video signal. Suppose that
the video signal is X, whose size is N1×N2×N3. According
to the form of the sparse basis defined in (69), we can expand
the video signal X as

vec(X) =
(

vec(U1)
T , . . . , vec

(
UN3

)T)T ∈ RN1·N2·N3 (70)

where vec(Ui) is the expansion of the ith frame image.
Therefore, the Kronecker product in CS can be expressed as

Y =

⎛

⎜⎜⎜
⎝

y1
y2
...

yN3

⎞

⎟⎟⎟
⎠
=

⎛

⎜⎜⎜
⎝

�N3 0 · · · 0
0 �N3 · · · 0
...

...
. . .

...

0 0 · · · �N3

⎞

⎟⎟⎟
⎠
· vec(X). (71)

Lemma 2 [58]: Let �i, �i be the bases or frames for RNi

where i = 1, . . . ,N, then

μ(�1 ⊗ · · · ⊗�N, �1 ⊗ · · · ⊗�N) =
N∏

i=1

μ(�i, �i). (72)

By (72), we can see that the Kronecker product only focuses
on compressing the whole video signal rather than every frame
image. For each frame of the video signal, the storage space
of the measurement matrix is very large. So for the high-
dimensional signal, the PTP-CS provides a method to save the
storage of each measurement matrix. In the Kronecker CS, the
measurement matrix �i (i = 1, 2, . . . ,N) can be expressed as
(�′i ⊗ Pi) (i = 1, 2, . . . ,N), where �′i can be enlarged by
making the tensor product with the matrix P. Then by using
the PTP-CS, similarly with Lemma 2, we give the following
theorem.

Theorem 4: Let �i, �i be the bases or frames for RNi , and
�i = (�′i ⊗ Pi), i = 1, . . . ,N, then μ{(�′1 ⊗ P1) ⊗ · · · ⊗

(�′N ⊗ PN),�1 ⊗ · · · ⊗�N} =
N∏

i=1

μ
(
�′i ⊗ Pi, �i

)
. (73)

Proof: The proof is omitted since it is similar with that
of Lemma 2.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of PTP-CS in signal
recovery, we compare the PTP-CS with the traditional CS, i.e.,
the measurement matrix � has the matching dimension with
the dimension of the signal, and the recovery method is OMP.
Furthermore, we pay more attention to compare the difference
between PTP-CS and STP-CS. Meanwhile, we analyze the
time and the storage complexity of the PTP-CS model. In addi-
tion, we choose the original matrix � of PTP-CS as Gaussian
matrix in the following experiments. We will analyze the
proposed model by visual comparison and give more recovery
performances of the signals. In the following experiments, we
denote the image compression ratio m/n as θ and we define
the dimension reduction multiples of the measurement matrix
� as η.

For image signals, we choose different types of pictures with
different sizes to test the performance of the proposed model.
The recovery performance of the image signal is evaluated by
peak signal to noise ratio (PSNR), which is defined as

PSNR = 10 lg

[(
2ξ − 1

)2

MSE

]

(74)

where ξ is the bit of each pixel and it is selected as 8 com-
monly, that is, the gray scale is 255. In this experiment, we
set ξ = 8. The mean square error (MSE) is used to measure
the error between the original image and the recovered image.
Its mathematical definition is

MSE = 1

m× n

m−1∑

i=0

n−1∑

j=0

(O(i, j)− R(i, j))2 (75)

where m, n denote the width and the height of the image,
O(i, j) is the gray value of the original image, and R(i, j) is
the gray value of the recovered image. For 1-D signal, we will
analyze the relationship between the recovery performance and
the dimension of the measurement matrix.

The recovery performance of the signal can be measured as
the following relative error:

ε =
∥∥x′ − x

∥∥
2

‖x‖2 (76)

where x is the original signal, x′ is the recovered signal and
‖ · ‖2 is the l2-norm of vector.

In terms of signal recovery, the IRLS based on lρ-
minimization has a good reconstruction performance when ρ
is fairly large. Therefore, we set ρ = 0.8 in the experiments.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Recovered images by different CS models. The original image is
the image Lena which is the same as that in Fig. 2. The size of the original
image is 256 × 256. (a) PTP-CS method, where the original measurement
matrix � and the matrix P are adopted as Gaussian matrix. (b) PTP-CS, where
the original measurement matrix � is selected as Gaussian matrix and the
matrix P is adopted as the generalized permutation matrix. (c)–(f) Traditional
CS method. The sparse images observed by the Gaussian matrix, the Bernoulli
matrix, the Toeplitz matrix, and the chaotic matrix, respectively. The sizes of
these different types of measurement matrices are 192 × 256, and the recovery
method is OMP.

A. Visual Comparison

Suppose that the compression ratio θ equals to 0.75, i.e.,
for a picture with size 256 × 256, the dimension of the
measurement matrix is 192 × 256. η (the dimension reduc-
tion multiples of the measurement matrix �) equals to 4,
i.e., for a 192 × 256-dimensional matrix, the dimension of
this matrix is reduced to be 48 × 64. That is, the stor-
age space needed by the measurement matrix is reduced
dramatically.

In the experiment, first, we use the DWT to make the orig-
inal image be sparse. Then for the traditional CS, the sparse
image is observed by Gaussian matrix [26], Bernoulli matrix,
Toeplitz matrix [27], and the chaotic matrix [28] in turn and it
is reconstructed by OMP at last. In the PTP-CS, we select the
original measurement matrix � as Gaussian random matrix,
then enlarge its dimension by �⊗P, and reconstruct it by our
model finally. Fig. 4 shows the visual results of our model and
the traditional four CS models.

Evidently, in aspect of visual results in Fig. 4, the PTP-
CS has the same performance as the traditional CS when P is
selected as different types of matrices. For each type of the CS
model, we run the experiment for 50 times to obtain the mean
values of PSNR. And we get the mean values of PSNR that are
36.9440, 37.0238, 30.8170, 30.8917, 31.3666, and 30.9748. In
which the first two values belong to the PTP-CS, where P is
a Gaussian matrix and P is a generalized permutation matrix,
respectively. Moreover, the last four values belong to the tra-
ditional CS in which the measurement matrix is a Gaussian
matrix, a Bernoulli matrix, a Toeplitz matrix, and a chaotic
matrix, respectively. The sizes of these different types of mea-
surement matrices are 192 × 256. In conclusion, the PTP-CS
can ensure a similar performance with a PSNR value higher
than 30 dB.

TABLE I
PSNRS OF IMAGE RECOVERY FOR DIFFERENT TYPES OF

MATRICES WITH DIFFERENT η

B. Quantitative Analysis of 2-D Image

In order to verify the effect of η and the choice of matrix P,
we set θ as 0.25, 0.5, 0.75 for the image with size 256 × 256,
and we select η as 1, 2, 4, 8, 16. If η = 1, it converts to the
traditional CS. In every experiment, � is Gaussian matrix and
P is Gaussian matrix or g (i.e., the generalized permutation
matrix). We also take the image Lena as the experimental
image, whose size is 256 × 256, and we repeat the experiment
for 50 times. In order to investigate the performance of the
PTP-CS method, Fig. 5 shows the PSNRs of two types of P
with different η and θ , η in Fig. 5(a)–(e) equals to 1, 2, 4,
8, and 16, respectively, the matrix P in the left five pictures
of Fig. 5 is Gaussian matrix and in the right five pictures of
Fig. 5 it is g. Obviously, we can see from Fig. 5 that the PSNR
is unstable with the increment of η, and the types of matrix P
have little influence on the recovery performance. Its reason
is that, as we have inferenced in Section II, the coherence
coefficient μ depends on the matrix with bigger size for these
two types of matrices in the tensor product. Since μ(g) is 0
calculated by (5), μ(� ⊗ g) only depends on μ(�) of the
Gaussian matrix which is subjected to the normal distribution
with mean 0 and variance 1. Meanwhile, it is clear that smaller
θ makes the result of the PSNR less stable.

Table I shows the maximum, the minimum, the mean val-
ues of PSNR for 50 experiments under different values of η
and θ , where g is Gaussian matrix and the generalized permu-
tation matrix, respectively. The method is PTP-CS. The first
column in Table I is the values of η, which are selected as 16,
8, 4, 2, 1, respectively. The second column in Table I is the
values of θ , which are set as 0.25, 0.5, 0.75 for each value
of η, respectively. The remaining six columns of Table I list
the maximum, the minimum, the mean values of PSNR cor-
responding to the values of η and θ when the matrix P is
Gaussian random matrix and g. Although in Fig. 5 the recov-
ery results of the image fluctuate significantly as η is big, we
can see from Table I that the minimum of η has a slightly
different result, and its big difference is about 5 dB.

In order to compare with the traditional semi-tensor CS [19],
in the PTP-CS, we set P as the identity matrix and we set � as
the Gaussian matrix, then we take the image Lena (256 × 256)
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(a)

(b)

(c)

(d)

(e)

Fig. 5. Value of PSNR varies with η and θ as well as two choices of P
in the 50 experiments. The method is PTP-CS. The original image is the
image Lena (256 × 256). The left five pictures are the results of P as the
Gaussian matrix, and the right five pictures are the results when P is selected
as the generalized permutation matrix. (a) η = 1, (b) η = 2, (c) η = 4,
(d) η = 8, and (e) η = 16. Three curves in each picture correspond to the
values of θ with 0.25, 0.5, and 0.75, respectively. The x-coordinate in each
picture represents the number of the experimental times. The y-coordinate
represents the value of PSNR in each experiment.

for the experiment. Here, we also take η as 1, 2, 4, 8, 16 and we
select θ as 0.25, 0.5, and 0.75, respectively, which is a similar
process with the above experiment. The experiment has been

TABLE II
VARIANCES OF THREE CS MODELS WITH DIFFERENT η AND θ

repeated for 50 times. We also record the values of PSNR for
the STP-CS method during 50 experiments. Then we calculate
the variances of STP-CS and PTP-CS in different values for η
and θ , which is shown in Table II. The first column of Table II
is the values of η (the dimension reduction multiples of the
measurement matrix �) which are selected as 16, 8, 4, 2, 1,
respectively. The second column of Table II is the values of θ
(the compression ratio of the image signal) which are set as
0.25, 0.5, 0.75 for each value of η, respectively. The remaining
three columns of Table II list the variances of PTP-CS as P
is Gaussian matrix and g, and the variances of STP-CS under
different values of η and θ .

From Table II, we can find that if the values of η are selected
as 2, 4, 8 in the PTP-CS method, STP-CS has a little big-
ger variance than PTP-CS, i.e., the PSNR values obtained
from STP-CS method have higher dispersion degree than those
obtained from the PTP-CS method, since the variance value
measures how far a set of (random) numbers are spread out
from their average value. That is, the randomness of the STP-
CS method is higher than that of the PTP-CS method. In order
to make the difference more clear, we record the PSNRs for 50
times in the experiments of STP-CS and PTP-CS. As is shown
in Fig. 6(d) and (e), we can easily find that the PTP-CS method
has a better performance in stability than the STP-CS method.

Meanwhile, in Fig. 6, we can compare the recovery perfor-
mances of the PTP-CS and the STP-CS from the visual aspect.
Fig. 6(a) is the original image Pepper with size 256 × 256,
Fig. 6(b) is the recovery image of PTP-CS and Fig. 6(c) is the
recovery image of STP-CS. θ is 0.75 in PTP-CS and STP-CS.
It seems that the PTP-CS has a better performance.

Actually, the reason why the PTP-CS has a better
performance than STP-CS can be explained by the theorems
given in Section II. The Gaussian matrix is a kind of random
matrix, which is different in each generation. The STP-CS only
expands the dimension of the original measurement matrix
without changing the properties of the matrix, including the
spark, the coherence, and so on. Therefore, the properties of
the final measurement matrix for the STP-CS only depend on
one random matrix. There is no doubt that the randomness of
STP-CS is stronger than that of PTP-CS. Unlike in the STP-
CS, both the original measurement matrix and P are Gaussian
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(e)(d)(c)(b)(a)

Fig. 6. Recovery results of the image Pepper (256 × 256) as η = 4, and two models are PTP-CS and STP-CS. In the PTP-CS, P is the Gaussian matrix.
(a) original image, (b) recovery image of PTP-CS when θ is 0.75, (c) recovery image of STP-CS when θ is 0.75, (d) three curves of PSNR in PTP-CS, these
curves correspond to different θ whose values are 0.25, 0.5, and 0.75, respectively, and each curve shows one value of PSNR in one experiment, and (e) three
curves of PSNR in STP-CS, and these curves correspond to different θ whose values are 0.25, 0.5, and 0.75, respectively.

matrices in the PTP-CS, and the coherence is impacted by two
matrices. So the randomness of PTP-CS is reduced to some
extent compared with STP-CS.

Moreover, we want to reduce the difference or the gap
between the original signal x and the reconstructed signal y,
in STP-CS, it can be denoted as

x∗STPCS = argmin||(�⊗ I)x− y||2. (77)

And in PTP-CS, it can be denoted as

x∗PTPCS = argmin||(�⊗ P)x− y||2. (78)

When the original measurement matrix � is known, the
(� ⊗ I) is known in STP-CS, whereas in PTP-CS the final
measurement matrix, i.e., the (� ⊗ P) is still unknown. So
the PTP-CS has the opportunity to adjust the coherence value
of the final measurement matrix. By some optimization algo-
rithms, the PTP-CS can find a better P to make its column
correlation smaller. In the near future, we will study its
optimization method to find better P.

Through Theorem 2 and the above experiments, the tensor
product of the measurement matrix can be generated by many
different kinds of matrices. The smaller the coherence μ is, the
better recovery results we can get. Hence, if we can calculate
the μ of two tensor matrices, we can predict the approximate
recovery result.

For various types of images, besides the image Pepper, we
choose the image Vampire with size 256 × 256 to simulate
additionally 50 times, for the sake of adding variation to the
analysis. Suppose η (i.e., the dimension reduction multiples
of the measurement matrix �) is 1 and 4, respectively. When
η is 1, the PTP-CS degenerates to the traditional CS. In this
experiment, let the original measurement matrix and P be the
Gaussian matrices. Fig. 7 shows the recovery images of the
image Vampire, where η is 4 and θ is 0.75, the method is
PTP-CS, and Fig. 7(c) also shows the fluctuations of PSNR,
respectively. It can be seen from Fig. 7 that from the visual
aspect, the PTP-CS performs well on various types of images.
For other types of images, we simulated for many times and
obtained similar results. Table III lists the maximum, the min-
imum and the mean values of PSNR for the image Vampire in
50 simulations in detail, where η has two values, i.e., 1 and 4.
We can see from Table III that although it is unstable when
η is 4, the maximum, the minimum, and the mean values of
PSNR are similar with those of the traditional CS.

(c)(b)(a)

Fig. 7. Recovery results of the image Vampire (256 × 256) as η = 4, where
P is the Gaussian matrix. (a) original image, (b) recovery image when θ (i.e.,
the compression ratio) is 0.75, and (c) three curves of PSNR, which corre-
spond to different θ whose values are 0.25, 0.5, and 0.75, respectively. The
x-coordinate in the (c) represents the number of the experimental times, and
the y-coordinate in the (c) represents the value of PSNR in each experiment.

TABLE III
PSNRS OF IMAGE Vampire WHEN θ AND η HAVE DIFFERENT VALUES

Meanwhile, we choose the images Cameraman, Baboo,
Barbara, and House (256 × 256) for the performance test.
Here, the P is g (i.e., the generalized permutation matrix), θ
is 0.75 and η is 4. The experiment repeats 50 times for each
image. As is shown in Fig. 8, four images in the top row are the
original images, four images in the middle row are the recov-
ery images with θ 0.75, and four pictures in the bottom row
show the curves of PSNR for each type of image under differ-
ent values of θ . Since the experiment is repeated 50 times for
each pictures, three curves in Fig. 8 (i)–(l) contain 50 points,
which are the values of PSNR in every experiment. In a word,
no matter what type or size the images are, the PTP-CS can
recover the image signal to a good extent compared with the
traditional CS.

It is worth testing the performance of PTP-CS on vari-
ous types of images with different sizes. Therefore, we adopt
another image Lena with size 512 × 512. The original mea-
surement matrix and P are selected as the Gaussian matrix
for a case of study. Table IV lists the maximum, the mini-
mum and the mean values of PSNR of the image Lena (512
× 512) with different θ and η. Compared with the traditional
CS as η = 1, we can see from Table IV that the maximum and
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 8. Recovery results of the images Cameraman, Baboo, Barbara, and House (256 × 256) as η = 4, and P is the generalized permutation matrix. Four
original images (a)–(d) with sizes 256 × 256 are placed in the top row. (a) Cameraman, (b) Baboo, (c) Barbara, (d) House. The middle four images (e)–(h)
are the recovered images of these four original images in the first row. The value of θ in the images (e)–(h) is 0.75. The bottom four pictures (i)–(l) display
the values of PSNR under three values of θ for each type of image. There are three curves of PSNR in each picture, which correspond to different θ whose
values are selected as 0.25, 0.5, and 0.75, respectively. The x-coordinate in the (i)–(l) represents the number of the experimental times, and the y-coordinate
in the (i)–(l) represents the value of PSNR in each experiment. (i) PSNR curves of the image Cameraman, (j) PSNR curves of the image Baboo, (k) PSNR
curves of the image Barbara, and (l) PSNR curves of the image House.

TABLE IV
PSNRS OF THE IMAGE Lena(512 × 512) WITH DIFFERENT θ AND η

the mean values are quiet the same whereas the value of the
minimum has a small gap. Fig. 9 shows the recovery curves
for repeating 50 times as η = 8, and these three curves in
Fig. 9 correspond to three values of θ . As is shown in Fig. 9,
when the image has a bigger size, the PSNR curve is similar
with those of Fig. 5 when the dimension of the measurement
matrix is reduced. In conclusion, the PTP-CS performs well
for the images with different sizes.

Fig. 9. PSNR curves of the image Lena (512 × 512) as η = 8. Here, P
is the Gaussian matrix. From the top to the bottom, three values of θ are
0.25, 0.5, and 0.75, respectively. Each curve shows one value of PSNR in 50
experiments.

C. More Analyses for Reconstruction

In the CS, the recovery results may be diverting with differ-
ent kinds of measurement matrices and different values of θ
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(a) (b)

(c) (d)

Fig. 10. Effect of the row number of the measurement matrix on the image
recovery for the PTP-CS and the traditional CS with four values of η. We take
the image Lena for the experiment. The PSNR changes with the row number
of measurement matrices which are Gaussian, Bernoulli, Toeplitz, and chaotic
matrices. (a) η is 1, (b) η is 2, (c) η is 4, and (d) η is 8.

(i.e., the compression ratio). The compression ratio is related
with the row of the measurement matrix. Therefore, we adopt
four types of matrices and different θ to investigate the recov-
ery performance of PTP-CS, and we choose the image Lena
with size 256 × 256 for the experiment. We set P as the
Gaussian matrix, and we set the original measurement matrix
� as the Gaussian matrix, the Bernoulli matrix, the Toeplitz
matrix, and the chaotic matrix in turns. Fig. 10 gives the graph
of the relationship between PSNR and the row number of mea-
surement matrix. With the increment of the row number, the
compression ratio gradually becomes bigger. The x-coordinate
calibration of these four subfigures in Fig. 10 are different,
because the values of η as well as the column numbers in the
original measurement matrices are different, and the ranges of
the row numbers of the original measurement matrices are dif-
ferent. In order to show the variation of PSNR with the row
number of the measurement matrix clearly, the x-coordinate
calibration in Fig. 10(a) ranges from 100 to 250, in Fig. 10(b)
it ranges from 20 to 120, in Fig. 10(c) it ranges from 10 to
60, and in Fig. 10(d) it ranges from 5 to 30.

When the value of η (i.e., the dimension reduction multiples
of the measurement matrix �) is set as 1, as is shown in
Fig. 10(a), it degenerates to the traditional CS, four kinds of
matrices perform almost to be similar with the increment of
the row number. When η is 2, as is shown in Fig. 10(b),
these four matrices have different results when the row number
is less than 60, and the results of the Gaussian matrix are
the most stable. The result is the same if the row number is
more than 60, while the result of the chaotic matrix remains
unsatisfactory. When η is 4, as is shown in Fig. 10(c), the result
of the chaotic matrix is still worse than those of other matrices,
and the results of Gaussian and Bernoulli matrices are more
stable than that of Toeplitz matrix. When η is 8, as is shown in

Fig. 11. Recovery result by OMP. The original image is the image Lena
with 256 × 256 and η is 4. These three curves are the PSNR curves with
different θ , which correspond to different θ whose values are set as 0.25, 0.5,
and 0.75, respectively. The x-coordinate in the picture represents the number
of the experimental times, and the y-coordinate represents the value of PSNR
in each experiment.

Fig. 10(d), the chaotic matrix has a lower PSNR curve whereas
this curve is relatively flat. The performances of Gaussian,
Bernoulli, and Toeplitz matrices fluctuate greatly when their
row numbers are less than 15. When the row number is more
than 15, the result of the Gaussian matrix performs well. In a
word, the Gaussian matrix is the best matrix in comparison to
other three kinds of matrices. It yields a stable result in terms
of image recovery.

In order to investigate the performance of the reconstruction
method, P is selected as the Gaussian matrix with size 4 ×
4, i.e., η is 4, the size of the measurement matrix � is set
as 32× 64, and we use OMP to reconstruct the image Lena
(256× 256). The experiment has been repeated for 50 times,
and Fig. 11 shows these 50 values of PSNR in 50 experiments.
We can conclude from Fig. 11 that the OMP is not suitable for
PTP-CS since the OMP produces a worse result and a more
violent fluctuation. Hence, it is necessary to propose a new
reconstruction model for PTP-CS.

The CPU time of PTP-CS is shown in Fig. 12. We record
the CPU time of the whole process, including making the
original image sparse, obtaining the final measurement matrix
by PTP, compressing the original image and reconstructing
the image. Five pictures in each row of Fig. 12 have differ-
ent η (the dimension reduction multiples of the measurement
matrix �), which is selected as 1, 2, 4, 8, 16 from the left to
the right, respectively. We record the CPU times when P is
Gaussian matrix or g (i.e., the generalized permutation matrix).
The upper five pictures in Fig. 12 are the curves of the CPU
time as P is Gaussian matrix, and the bottom five pictures in
Fig. 12 are the curves of the CPU time as P is the generalized
permutation matrix g. Three curves in each picture represents
the variation of PSNR under three values of θ , i.e., 0.25, 0.5,
0.75. Because of the randomness of the original measurement
matrix, the CPU time fluctuates for different η. Therefore, we
will continue to study new reconstruction algorithm for further
optimization.
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Fig. 12. CPU time of PTP-CS. The original signal is the image Lena (256 × 256), and this experiment is performed under different values of η and θ ,
as well as two choices of P. The above five pictures (a)–(e) are the results of P selected as the Gaussian matrix, and the bottom five pictures (f)–(j) are the
results when P is selected as the generalized permutation matrix. Three curves in each picture correspond to different values of θ , whose values are 0.25,
0.5, and 0.75, respectively. The x-coordinate in each picture represents the number of the experimental times, and the y-coordinate represents the CPU time.
(a) and (f) η = 1. (b) and (g) η = 2. (c) and (f) η = 4. (d) and (i) η = 8. (e) and (j) η = 16.

D. Quantitative Analysis of Video Frames

As is mentioned in Section III, we can compress the video
signal by frames. We download a video and extract one frame
from each pair of frames in the video, and then compress
them by PTP-CS. Actually, two continuous frames are similar
to each other, and the gap matrix between them is sparse.
So for the video CS, first, we should obtain the gap matrix
between two frames. Second, dispose the first frame as the
regular process of CS, including making the image sparse and
measuring the image. Third, in view of the sparsity of the
gap matrix, we can measure the gap matrix directly without
the sparse process. After transmitting in the signal channel,
we can recover the first frame and the gap matrix, then the
second frame can be obtained by the first frame and the gap
matrix.

In the experiment, the size of two frames is 256 × 256, η is
4, the matrix P is g (i.e., the generalized permutation matrix),
and we repeat the experiment for 50 times. As is shown in
Fig. 13, Fig. 13(a) is the original image of the first frame,
Fig. 13(b) is its recovery image with θ 0.75, and Fig. 13(c) is
the PSNR curves for 50 experiments under different θ , whose
values are 0.25, 0.5, 0.75, respectively. Similarly, in Fig. 14,
Fig. 14(a) is the original image of the second frame, and
Fig. 14(b) is its recovery image with θ 0.75. For θ of the
second frame, for example, if θ is 0.75, then it means that the
compression ratio of the first frame and the gap matrix is 0.75
since they are adjacent or continuous frames. In fact, both
of these frames are highly similar to each other. Compared
Fig. 13(c) with Fig. 14(c), it is easy to notice that the PSNRs
of these two adjacent frames have little difference. Without
loss of generality, we can compress the whole video based
on the previous method. In this way, we just focus on com-
pressing gap matrices between the continual frames rather than
compressing and recovering every frame. Given that the gap

matrices are sparse, the time of making the gap matrices sparse
can be reduced. We can deduce that the PTP-CS can recover
the video image well.

In the video compression, the storage space of the mea-
surement matrix in PTP-CS is reduced significantly. In the
Kronecker product CS model, if the compression ratio θ is
0.75, then the size of the measurement matrix � is

� ∈ R192×256 (79)

which should match the dimension of the image size. However,
in the PTP-CS, the size of the original measurement matrix
can be

�′ ∈ R48×64 (80)

and the size of P is

P ∈ R4×4. (81)

From (79) to (81), it is easy to notice that the storage space
of PTP-CS is much less than that of the Kronecker product CS.

E. Quantitative Analysis of 1-D Signal

Besides the 2-D image signal and high-dimensional video
signal, there is another common signal with one-dimension, for
example, the ECG signal in our daily life. In order to verify the
performance of PTP-CS for 1-D signals, we take a signal with
size 1 × 192, four kinds of measurement matrices are selected
as Gaussian matrix, Bernoulli matrix, Toeplitz matrix, and the
chaotic matrix. We can reduce the dimensions of the matrices
significantly. We set(�⊗ P), where P is adopted as Gaussian
matrix and g (i.e., the generalized permutation matrix), respec-
tively. The percentage of recovery is calculated by (76), and
if the reconstruction error is less than 0.002, then it can be
considered that the signal is reconstructed successfully. For a
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(c)(b)(a)

Fig. 13. Recovery results of the first frame (256 × 256), where P is the generalized permutation matrix. (a) image of the first frame, (b) its recovery
frame when θ is 0.75, and (c) three curves of PSNR, which correspond to different θ whose values are 0.25, 0.5, and 0.75, respectively. The x-coordinate in
(c) represents the number of the experimental times, and the y-coordinate in the (c) represents the value of PSNR in each experiment.

(c)(b)(a)

Fig. 14. Recovery results of the second frame (256 × 256) as η = 4, where P is the generalized permutation matrix. (a) image of the second frame,
(b) its recovery frame when θ is 0.75, and (c) three curves of PSNR, which correspond to different θ whose values are 0.25, 0.5, and 0.75, respectively. The
x-coordinate in (c) represents the number of the experimental times, and the y-coordinate in the picture (c) represents the value of PSNR in each experiment.

randomly selected vector x ∈ R192 with sparsity 25, let the
columns of measurement matrices n be equal to 192, 96, 64,
48, and we can get the relationship between m and the recovery
percentage.

After simulating the PTP-CS and the traditional CS for 1000
times, we draw the effect of m on the recovery percentage of
signal in Fig. 15. If n equals to 192, it corresponds to the
traditional CS. If n equals 96, 64, 48, it corresponds to the
PTP-CS. Evidently, if P is the Gaussian matrix, as is shown
in Fig. 15(a), the recovery percentage can reach 100% when
n is 192, and m is almost larger than 126. Meanwhile, when
n equals to 96, 64, 48 and m equals to 64, 50, 39, respec-
tively, the recovery percentage can reach 100%. If P is the
generalized permutation matrix, as is shown in Fig. 15(b), the
recovery percentage can reach 100% when n is 192, and m
is almost larger than 126. When the recovery percentage can
reach to 100%, n equals to 96, 64, 48 and m equals to 68, 49,
38, respectively. However, for Bernoulli matrix, the recovery
percentage will descend with fluctuation when m is too large.
Therefore, the PTP-CS achieves a similar result with the tradi-
tional CS in signal recovery, but it requires less storage space
than the traditional CS.

F. Comparison of Storage Space

The block CS (BCS) proposed by Gan [10] is an effective
method to reduce the storage space of the measurement matrix,

the image is divided into small blocks and the size of each
block is B×B. According to the previous PTP-CS model, i.e.,

y mq
n ×1 =

(
�m×n ⊗ P q

n× q
n

)
· xq×1 (82)

suppose xi is a vector and it represents the ith block of the
image y, then we have yi = �BCS · xi, where �BCS is φB×B2

with φB = (mB2/n), In BCS, �BCS is an orthonormal and
i.i.d Gaussian matrix [11]. In this way, the storage space of
the measurement matrix is reduced, and the speed of the com-
pression is improved. Equivalently, the measurement matrix
�BCS can be expressed as

�BCS = In ⊗�B =

⎛

⎜⎜⎜
⎝

�B 0 · · · 0
0 �B · · · 0
...

...
. . .

...

0 0 · · · �B

⎞

⎟⎟⎟
⎠
. (83)

Furthermore, for a k-sparse signal x ∈ Rq×1, the initial
measurement matrix �S ∈ Rm×n, and in STP-CS [19], the
measurement matrix �STPCS can be expressed as

�STPCS = �S ⊗ Iq/n =

⎛

⎜⎜
⎜
⎝

�S 0 · · · 0
0 �S · · · 0
...

...
. . .

...

0 0 · · · �S

⎞

⎟⎟
⎟
⎠

(84)



3508 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

(b)(a)

Fig. 15. Effect of m on the signal recovery for the PTP-CS and the traditional CS. Four kinds of measurement matrices are selected as Gaussian, Bernoulli,
Toeplitz, and chaotic matrices, respectively. (a) P is selected as Gaussian matrix. (b) P is selected as g.

(b)(a)

Fig. 16. Storage performance of CS, BCS, and PTP-CS. (a) Variation of measurement matrix entries in traditional CS is shown by the blue line marked
by the asterisk (∗). The variation of measurement matrix entries in BCS is shown by the green line marked by four kinds of signs. Here, B is the size of
each block, and the values of B are selected as 200, 400, 600, and 800, which are drawn by four green levels and marked by the star (�), the rhombus (�),
the dot (•) and the triangle (�), respectively. The variation of measurement matrix entries in PTP-CS is shown by the red line marked by the square (�).
(b) Variation of measurement matrix entries in traditional CS is shown by the blue line marked by the asterisk (∗). The variation of measurement matrix
entries in BCS is shown by the green line marked by the circle (◦). The variation of measurement matrix entries in PTP-CS is shown by the red line with
five kinds of signs. Here, n is the column number of the measurement matrix, and the values of n are set as 150, 180, 225, 300, and 450 which are drawn
by five red levels and marked with the square (�), the star (�), the rhombus (�), the dot (•), and the triangle (�), respectively.

where n is selected as a factor of q. The PTP CS can be
expressed as

�PTPCS = �P ⊗ P q
n
=

⎛

⎜⎜⎜
⎝

ϕ11P ϕ12P · · · ϕ1nP
ϕ21P ϕ22P · · · ϕ2nP
...

...
. . .

...

ϕm1P ϕm2P · · · ϕmnP

⎞

⎟⎟⎟
⎠

(85)

where �PTPCS is the measurement matrix, and �P is the initial
measurement matrix.

From (84) to (85), the STP-CS is similar with the BCS,
so does the PTP CS (PTP-CS). However, due to the incom-
mutability of the tensor product operation and various choices
of the matrix P, these three methods are exactly different.
Since the PTP-CS and the STP-CS use the same mechanism
to reduce the storage space, we decide to compare the stor-
age space reduction among the traditional CS, the BCS, and
the PTP-CS. By comparing the entry numbers of measurement
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matrices among the traditional CS, the BCS, and the PTP-CS,
we can easily find the way of saving the storage space for
the measurement matrix. Suppose that the original signal x is
an image with size q × q, obviously, for the traditional CS,
the size of the measurement matrix is m × q. In BCS, the
image is divided into small blocks with size B× B, and each
small block will be compressed by the measurement matrix
with size �mB/q� × B. In PTP-CS and STP-CS, the size of
the measurement matrix is mn2/q, where n is a factor of q. In
essence, BCS, STP-CS, PTP-CS can reduce the storage space
of the measurement matrix.

In Fig. 16(a) and (b), the original signal is an image with
size 900×900, and m (i.e., the row number of the measure-
ment matrix) is 190, Fig. 16(a) shows the effects of n (i.e.,
the column of the measurement matrix) and Fig. 16(b) shows
the effects of B (i.e., the size of the blocks) on the number of
entries in different measurement matrices. In Fig. 16(a), we
set B as 200, 400, 600, and 800, respectively. In Fig. 16(b),
we set n as 150, 180, 225, 300, and 450, respectively, which
can satisfy that n is the factor of q. The experimental results in
Fig. 16 shows that the traditional CS has the highest demand
of the storage space of the measurement matrix whereas the
PTP-CS and the BCS almost have the same performance.
Unfortunately, we can find that the entries of the measurement
matrix in PTP-CS are not less than those in BCS. Nevertheless,
if each of the block is large (i.e., the value of B is big), the
PTP-CS will have a better performance to save the storage
space of the measurement matrix. In fact, the size of each
block should not be too small. For the size of the block B
and the sparsity of the image signal k, it should satisfy that
B� k. For example, the energy of the image will be focused
on one corner after being made sparse, so the image cannot
be reconstructed if the block is small. All in all, the PTP-CS
seems to be better than other two CS methods.

V. CONCLUSION

In this paper, we define a new multiplication rule called
PTP and apply it to CS. First, we define a new inner prod-
uct and an included angle between two vectors with different
dimensions. Meanwhile, in view of the limitation of the matrix
multiplication, we use the matrix P to change the dimension
and give some basic properties of PTP. Second, in the CS,
we adopt the P as the Gaussian random matrix and the gen-
eralized permutation matrix in the design of the measurement
matrix to reduce the storage space of the measurement matrix.
In theoretical aspect, we make the quality analysis by spark,
coherence, and RIP in a broad sense, which can be used to
analyze other kinds of CS models. For the reconstruction algo-
rithm, we propose a new model based on the IRLSs which is
suitable for the proposed PTP-CS model. We can see from the
experimental results that the PTP-CS has a good performance
on the recoveries of 1-D and 2-D signals, as well as the frames
in the video signal. The PTP not only breaks the conventional
concept of the vector angle and improves the flexibility of the
matrix multiplication, but also significantly reduces the storage
space that the measurement matrix needed in CS. By taking
the randomness of P into consideration, in future work, we

will verify the performance of PTP-CS in signal transmission
encryption which will mainly focus on P and study the IoT
application. Then, we will complete the concept of the vector
relationship in P-transform. Furthermore, we will optimize the
reconstruction algorithm to reduce the CPU time.
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