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Abstract

Being able to predict the occurrence of extreme returns is important in financial risk management. Using the distri-
bution of recurrence intervals—the waiting time between consecutive extremes—we show that these extreme returns
are predictable on the short term. Examining a range of different types of returns and thresholds we find that recur-
rence intervals follow aq-exponential distribution, which we then use to theoretically derive the hazard probability
W(∆t|t). Maximizing the usefulness of extreme forecasts to define an optimized hazard threshold, we indicates a
financial extreme occurring within the next day when the hazard probability is greater than the optimized threshold.
Both in-sample tests and out-of-sample predictions indicate that these forecasts are more accurate than a benchmark
that ignores the predictive signals. This recurrence interval finding deepens our understanding of reoccurring extreme
returns and can be applied to forecast extremes in risk management.
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1. Introduction

Predicting such extreme financial events as market crashes,bank failures, and currency crises is of great importance
to investors and policy markers because they destabilize the financial system and can greatly shrink asset value. Much
research has been carried out in an attempt to detect the underlying vulnerabilities and the common precursors to
financial extremes. A number of different models have been developed to predict the occurrence of financial distresses
including those using probability (Martin, 1977; Canbas etal., 2005; Barrell et al., 2010; Tinoco and Wilson, 2013;
Li and Wang, 2014; Lainà et al., 2015), signal approaches (Kaminsky et al., 1998; Edison, 2003; Duan and Bajona,
2008; Christensen and Li, 2014) and intelligence (Kumar andRavi, 2007; Demyanyk and Hasan, 2010). A faster-
than-exponential increase in price accompanied by accelerating price oscillations indicates the presence of bubbles
(Sornette, 2003; Sornette and Cauwels, 2015). The behaviorof these bubbles can be characterized using the log-
period power-law singularity (LPPLS) model, which is capable of accurately forecasting a bubble’s tipping point
(Sornette et al., 2009; Jiang et al., 2010; Sornette et al., 2015).

Recent research on the occurrence of financial extremes and on the market dynamics around financial crashes
has enabled us to better forecast emerging financial crises.We can understand the occurrence pattern of extremes
by determining the distribution of waiting times between consecutive financial extremes (the “recurrence intervals”)
and charting the memory behavior within the occurring extremes. Bogachev and Bunde (2009); Jiang et al. (2016)
built an early warning model of this waiting time distribution to predict the probability that extremes will occur
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within a given time period. Following a financial crisis the financial system gradually transitions back to a stasis
(Bussiere and Fratzscher, 2006). This relaxation behaviorfollowing a financial market crash is similar to the after-
shocks following an earthquake (Lillo and Mantegna, 2003; Petersen et al., 2010). Sornette (2003) indicates that a
possible theoretical explanation for bursts of speculating bubbles is a positive herding behavior of traders that causes
local self-excited crashes (Gresnigt et al., 2015). This isin accordance with the phenomenon that extremes cluster
and are interdependent. Gresnigt et al. (2015) show that approximately 76–85% of occurring extremes are triggered
by other extremes, and they develop an early warning model that treats financial crashes as earthquakes and compute
the probability that an extreme event will occur within a certain time period.

Here we extend the probabilistic framework for extreme returns presented in Jiang et al. (2016) to predict extremes
by using the conditional probability of an future extreme event within a fixed time frame in which Type 1 and Type 2
errors are balanced in current market state. The contributions of our works are in four ways.

(i) We identify extremes by locating the threshold at the minimum KS value between the empirical and fitting
distributions of the extreme values.

(ii) We classify the returns as either extreme or non-extreme by quantifying the extreme threshold, and we assume
that the extremes are independent. This simplifies the modeling and reduces the computational complexity
when estimating parameters but provides an adequate performance when doing out-of-sample prediction.

(iii) We define a hazard probability that is dependent on the distribution formula of recurrence intervals between
extremes, and this translates the problem into finding a suitable distribution form for recurrence intervals. Unlike
the Hawkes point process, our modeling framework is easy to implement.

(iv) Instead of using a predefined threshold of hazard probability, we predict extremes when the hazard probability
exceeds an optimized hazard threshold, obtained by maximizing a usefulness function that takes into account
an investor’s preference for either Type 1 or Type 2 errors.

We organize the paper as follows. In Section 2 we present a brief review of recurrence interval analysis and early
warning models. In Section 3 we provide the dataset. In Section 4 we describe the Model and Methods. In Section
5 we present the results of our recurrence interval analysisfor different subperiods. In Section 6 we document and
discuss the performance of our out-of-sample predictions.In Section 7 we present our conclusions.

2. Literature review

2.1. Recurrence intervals analysis

Recurrence intervals, defined as the time periods between consecutive extreme events, have been a topic of exten-
sive research across many fields, financial markets in particular. The primary contribution of the published research
is an understanding of the statistical regularities in recurrence intervals. The memory behavior in the underlying
process strongly affects the distribution form of recurrence intervals (Chicheportiche and Chakraborti, 2013, 2014).
The interval distribution is exponential if the process hasno memory. Incorporating a long memory into the under-
lying process greatly alters the recurrence interval distribution. For example, the stretched exponential and Weibull
recurrence interval distribution are analytically and numerically confirmed in a process with a long linear memory
(Santhanam and Kantz, 2008). When a process has a long nonlinear memory (a multifractual process), the recurrence
intervals are power-law distributed (Bogachev et al., 2007).

There is extensive literature that examines the empirical distribution of recurrence intervals in financial markets.
The distribution form is found to be dependent on data source, data type, and data resolution. For example, recurrence
interval distributions with a power-law tail are found in the daily volatilities in the Japanese market (Yamasaki et al.,
2005), in the minute volatilities in the Korean (Lee et al., 2006) and Italian markets (Greco et al., 2008), in the daily
returns in the US stock markets (Bogachev et al., 2007; Bogachev and Bunde, 2009), in the minute returns in the
Chinese markets (Ren and Zhou, 2010a), and in the minute volume in the US (Li et al., 2011) and Chinese markets
(Ren and Zhou, 2010b). In addition, stretched recurrence interval distributions are also observed in the financial
volatility at different resolutions in a range of different markets (Wang and Wang, 2012; Xie et al., 2014; Jiang etal.,
2016). Theq-exponential distribution has also been observed in the recurrence intervals between losses in financial
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returns (Ludescher et al., 2011; Ludescher and Bunde, 2014), and the corresponding distribution in the Chinese stock
index future market is a stretched exponential (Suo et al., 2015).

In addition to the inconsistent findings on the distributionof empirical recurrence intervals, the existence of scal-
ing behaviors in the recurrence interval distribution for the extremes filtered by different thresholds is under debate.
Analyzing the distribution of recurrence intervals has indicated that the extreme event filtering threshold should in-
fluence the recurrence interval distribution (Xie et al., 2014; Chicheportiche and Chakraborti, 2014; Suo et al., 2015;
Jiang et al., 2016). This indication was supported when the estimated distributional parameters were found to be
strongly dependent on the thresholds when the recurrence intervals are fitted by such distribution functions as the
stretched exponential distribution (Xie et al., 2014; Suo et al., 2015; Jiang et al., 2016) and theq-exponential distribu-
tion (Ludescher et al., 2011; Chicheportiche and Chakraborti, 2014; Jiang et al., 2016). Ludescher et al. (2011) and
Ludescher and Bunde (2014) propose that the distribution ofrecurrence intervals depends only on the mean recurrence
intervalτQ, and not on a specific asset or on the time resolution of the data.

Only a limited amount of research has used recurrence interval analysis to assess and manage risks in financial
markets. An improved method for estimating the value at risk(VaR) based on the recurrence interval is significantly
more accurate than traditional estimates based on the overall or local return distributions (Bogachev and Bunde, 2009;
Ludescher et al., 2011). Another way of predicting extremesusing statistics of recurrence intervals is also superior
to the precursory pattern recognition technique when the underlying process is multifractal (Bogachev and Bunde,
2009). Defining a conditional loss probability as the inverse of the expected waiting time before observing another
extreme determined by the latest recurrence interval, Ren and Zhou (2010a) finds that the risk of extreme loss events
is high if the latest recurrence interval is long or short. Inall of these studies, however, only in-sample tests are
conducted, and a good performance in in-sample tests cannotensure good results in out-of-sample tests. In contrast,
Jiang et al. (2016) recently found that the extreme predicting method using recurrence interval analysis does provide
good predictions in out-of-sample tests.

2.2. Early warning model of financial crisis
Such events as market crashes, currency crises, and bank failures are financial crisis in which the value of assets

or the equity of financial institutions shrinks rapidly. Financial crises shock the real-world economy and can cause re-
cessions or depressions if left unchecked. To reduce investor losses and shocks to the economy and to reduce financial
turbulence, much effort has gone into predicting financial extremes. There is a plethora of literature on forecasting
financial crises, especially currency crises and bank failures, and most of the research relies on the early warning
model (EWM) (Kumar and Ravi, 2007; Demyanyk and Hasan, 2010). The EWM identifies the leading indicators of
emerging financial problems and uses such techniques as logit (or probit) regressions and intelligence approaches to
translate them into the hazard probability of crises occurring in the future, which is used as an early warning signal
that indicates whether a crisis is imminent.

Compared to the vast EWM research predicting bank failures and currency crisis, early warning models to monitor
stock markets and provide warning signals of market extremes have received little attention. The contributions of the
existing literature are as follows.

A number of indicators are able to warn of incoming financial extremes. Coudert and Gex (2008) show that
risk aversion indicators are useful in predicting stock market crises, but not currency crises. Chen (2009) finds
that such macroeconomic indicators as yield curve spreads and inflation rates can be used to predict stock mar-
ket recessions. Alessi and Detken (2011) show that a global measure of liquidity can predict asset price booms.
Herwartz and Kholodilin (2014) show that the price-to-bookratio can predict emerging price bubbles. Li et al. (2015)
show that such variables of index futures and options as the VIX, open interest, dollar volume, put option price, and put
option effective spread can predict equity market crises. Chang et al.(2015) define the average value at risk (AVaRs)
based on the ARMA-GARCH model with standard infinitely divisible innovations as an early warning indicator and
find that AVARs can predict both extreme events and highly volatile markets. By constructing two investment net-
works based on the cross-border equity and a long-term debt securities portfolio, Joseph et al. (2014) identify two
network-based indicators (algebraic connectivity and edge density) that could have predicted the 2008 global finan-
cial crisis. Minoiu et al. (2015) show that the interconnectedness in the global network of financial linkages could
have predicted the financial crises that occurred during the1978–2010 period.

Composite indices averaged from crisis-related variableshave been proposed to predict financial crises. Oh et al.
(2006) propose a daily financial condition indicator, market volatility, to determine whether a stock market is unstable
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or not. Kim et al. (2009) define and propose a stock market instability index based on the difference between the
current market condition and the past conditions when the market was stable. Son et al. (2009) propose a model to
predict stock market collapse that signals when a massive selling by global institutional investors occurs. Ahn et al.
(2011) integrate all crisis-related variables into a monthly financial market condition indicator and find that by using
a support vector machine the indicator can detect market crises. Yoon and Park (2014) use a market instability index
to capture risk warning levels, quantify the instability level of the current market, and predict its future behavior.

There is a pattern of price trajectories that signals near-future market crashes. Sornette (2003) develops a log-
periodic power law singularity (LPPLS) model for detectingbubbles by combining (i) the economic theory of rational
expectation bubbles, (ii) the effect on the market of imitation and herding behaviors among investors and traders,
and (iii) the mathematical and statistical physics of bifurcations and phase transitions. The faster-than-exponential
(power law with finite-time singularity) increase in asset prices accompanied by accelerating oscillations is the main
diagnostic that indicates bubbles (Sornette et al., 2009; Jiang et al., 2010; Sornette et al., 2015). Kurz-Kim (2012)
also corroborate that the LPPLS pattern can be used as an early warning signal for market crashes. In addition,
Yan and van Tuyll van Serooskerken (2015) convert the price series into networks using a visible graph alogorithm
and use the degree-of-price network to measure the magnitude of the faster-than-exponential growth of stock prices,
and to predict imminent financial extreme events. On averagethis indicator performs better than the LPPLS pattern-
recognition indicator.

The patterns of financial crises are modeled to predict financial extreme events. Jiang et al. (2016) uncover the
distribution pattern of waiting time between consecutive market extremes and use it to define a hazard probability that
subsequent extremes will occur within a certain time period. They find that this hazard probability performs well in
out-of-sample predictions. As an analogue to the seismic activity around earthquakes, Gresnigt et al. (2015) adopt
an epidemic-type aftershock sequence model (a type of mutually self-exciting Hawkes point process) to capture the
occurring dynamics of stock market crashes, which can serveas an early warning model for predicting the probability
of medium-term crashes.

3. Data sets

We analyze the daily Dow Jones Industrial Average (DJIA) index from 16 February 1885 to 31 December 2015. The
logarithmic return of the DJIA index over a time scale of one day is defined

r(t) = ln I (t) − ln I (t − 1). (1)

Figures 1(a) and 1(b) show plots of the logarithmic DJIA and its return, respectively. The DJIA index grows from
30.92 on 16 February 1885 to 17425.03 on 31 December 2015 witha total logarithmic return greater than 6. Although
the index exhibits a rising trend throughout sample period,there are falling trends and range-bounds in different
subperiods. Figure 1 shows six turbulent periods (highlighted in shadow), the Wall Street crash of 1929–1932, the oil
crisis of 1973–1975, the Black Monday crash of 1987–1989, the dot-com bubble of 2000–2003, the subprime crisis
2007–2009, the 2008 financial crisis, and the European sovereign debt crisis 2011–2015.

4. Model and Methods

4.1. Identifying extreme returns

An extreme value is usually defined as a peak above a threshold(POT) (Ren and Zhou, 2010b; Alessi and Detken,
2011; Christensen and Li, 2014; Sevim et al., 2014; Suo et al., 2015) that ism times the sample standard deviation.
The parameterm is a predefined value (see a summary in Table 1 of Sevim et al. (2014)). Although identifying
extreme events in terms of POT is widely applied in empiricalanalysis, the POT has drawbacks. A smallmvalue will
produce many “extreme values,” not all of which are truly extreme, and a largemvalue will indicate genuine extremes
but not necessarily include all of them.

According to extreme value theory, the distribution of extreme values differs from that of non-extreme values.
Finding the extreme values is equivalent to finding a group ofdata (x ≥ xt) that satisfies the extreme value distribution
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Figure 1: (color online). Plots of the logarithmic DJIA index ln I(t) and it’s difference, returnr(t). (a) lnI(t). (b) r(t).
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1/γ is simply the tail exponent of the sample distribution.
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Figure 2: (color online). Determining the extreme value thresholdxt for negative, positive, and absolute returns. (a) Plots of the tail exponents 1/γ
as a function of the sorted returns. (b) Plots of the KS statistics dKS with respect to the sorted returns. The KS statistics is defined as the maximum
absolute difference between the empirical and fitting tail distributions.

We estimate the shape parameterγ using the Hill estimator (Hill, 1975), which is a non-parametric method. For a
given sample{x1, x2, · · · , xn}, we sort the data in ascending order,

x(1) ≤ x(2) ≤ · · · ≤ x(n). (3)

Theγ value given by the Hill estimator is

γ =
1
k

k
∑

i=1

[

log x(n+1−k) − log x(k)
]

, (4)
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wherexk corresponds to the extreme value thresholdxt that will be determined.
One way to find thresholdxt is by (i) estimating the value ofγ with respect to all possible values ofxt, and (ii) plot-

ting 1/γ againstxt to find a range ofxt values within which the estimated 1/γ values are stable (Pozo and Amuedo-Dorantes,
2003; Reboredo et al., 2014). In practice, this “stable behavior” between 1/γ andxk is difficult to quantify. For ex-
ample, Fig. 2(a) uses DJIA returns to illustrate the estimated 1/γ as a function of the sorted DJIA (negative, positive,
and absolute) returns. The 1/γ values strongly fluctuate and there is no stable range. An alternative approach is to
use KS statistics to measure the agreement between the empirical and fitting tail distributions. KS statistics quantify
the maximum absolute difference between both distributions. The most suitable threshold xt is associated with the
best fits to the tail distribution, which has the smallest KS statistical values (Clauset et al., 2009; Jiang et al., 2013).
Figure 2(b) shows the plots of the KS statisticsdKS with respect to the sorted (negative, positive, and absolute) returns.
The significant low point in each curve allows us to more easily determine the extreme value thresholdxt.

For sake of comparison, we also use the quantiles of 95%, 97.5%, and 99% to define the extremes. Definitions
based on the quantile are common in the analysis of value-at-risk (VaR). Gresnigt et al. (2015) also define the 95%
quantile of returns and the 95% quantile of negative returnsas extremes and crashes.

4.2. Determining hazard probability
By taking into consideration only the time in which extremesoccur, we base our prediction of extreme returns on
the hazard probabilityW(∆t|t), which measures the probability that following an extremereturn occurring att time
in the past there is an additional waiting time∆t before another extreme return occurs. Sornette and Knopoff (1997)
and Bogachev et al. (2007) theoretically derived the hazardprobabilityW(∆t, t) using the distribution of recurrence
intervals between extreme events,

W(∆t|t) =

∫ t+∆t

t
p(τ)dτ

∫ ∞

t
p(τ)dτ

, (5)

wherep(τ) is the probability distribution of the recurring intervals. Once we have the distribution form ofp(τ), the
formula forW(∆t|t) can be derived from Eq. (5).

Although the recurrence intervals of Poisson processes areexponentially distributed (Yamasaki et al., 2005; Bogachev et al.,
2007; Chicheportiche and Chakraborti, 2014), which generates a constant hazard probability when∆t is given, fi-
nancial processes always exhibit such non-Poissonian characteristics as long-term dependence and multifractality in
volatilities (Calvet and Fisher, 2002), medium-term dependence (e.g., momentum and contrarian behaviors (Chan et al.,
1996; Shi et al., 2015)), and multiscaling behaviors in returns (Calvet and Fisher, 2002), which leads to that the re-
currence intervals are no longer exponentially distributed, and that the derivation of the close distribution form forthe
recurrence intervals is obstructed (Chicheportiche and Chakraborti, 2013). The non-Poissonian features also result
in a controversial situation in the empirical analysis of the distribution formula of recurrence intervals. For exam-
ple, the reported distributions range from a power-law distribution with an exponential cutoff (Yamasaki et al., 2005;
Lee et al., 2006; Greco et al., 2008; Ren and Zhou, 2010a) to a stretched exponential distribution (Wang and Wang,
2012; Suo et al., 2015; Jiang et al., 2016), from aq-exponential distribution (Ludescher et al., 2011; Ludescher and Bunde,
2014; Chicheportiche and Chakraborti, 2014) to aq-Weibull distribution (Reboredo et al., 2014). Here we employ
three common functions to fit the recurrence interval distributions. The three formulas are the stretched exponential
distribution,

p(τ) = aexp
[

−(bτ)µ
]

, (6)

theq-exponential distribution,
p(τ) = (2− q)λ[1 + (q− 1)λτ]−

1
q−1 , (7)

and the Weibull distribution,

p(τ) =
α

β

(

τ

β

)α−1

exp

[

−

(

τ

β

)α]

, (8)

By putting the three probability distributions Eqs. (6)–(8) into Eq. (5), we obtain the hazard probabilityWsE for
the stretched exponential distribution,

WsE(∆t|t) =

bµ
a − Γl

(

1
µ
, (bt)µ

)

− Γu

(

1
µ
, [b(t + ∆t)]µ

)

Γu

(

1
µ
, (bt)µ

) , (9)
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the hazard probabilityWqE(∆t|t) for q-exponential distribution,

WqE(∆t|t) = 1−

[

1+
(q− 1)λ∆t

1+ (q− 1)λt

]1− 1
q−1

, (10)

and the hazard probabilityWW(∆t|t) for Weibull distribution,

WW(∆t|t) = 1− exp

[(

t
β

)α

−

(

t + ∆t
β

)α]

, (11)

whereΓl(s, x) andΓu(s, x) are lower and upper incomplete gamma functions. For fixed∆t, all three hazard probabilities
decrease ast increases, which explains the clustering of extremes in financial returns and volatilities.

To use the hazard probabilityW(∆t|t) to predict the extremes we must set a hazard thresholdwt to trigger the
early warning indicator of an approaching extreme event. Ifthe hazard probabilityW(∆t|t) is greater than the hazard
thresholdwt, an alarm that an extreme return will occur during the next∆t time is activated. The hazard threshold
wt is not an arbitrary given value but—depending on the risk level preferences of investors—is optimized to balance
between false alarms and not detecting events.

4.3. Evaluating predicting signals
The hazard probabilityW(∆t|t) becomes a binary extreme forecast that equals one whenW(∆t|t) exceeds the hazard
thresholdwt and equals zero otherwise. When comparing the forecasted extremes with the actual events we see (i)
correct predictions of an extreme return occurring, (ii) correct predictions of a non-extreme return occurring, (iii)
missed events, and (iv) false alarms. By counting how many times each outcome occurs we can compute a range of
evaluation measurements including the correct predictionrate, the false alarm rate, and the accuracy. Our primary
interest here is correct prediction rateD and false alarm rateA, which are defined as

D =
n11

n01 + n11
, A =

n10

n00 + n10
, (12)

wheren11 is the number of extreme returns that are correctly predicted,n00 the number of non-extreme returns that are
correctly predicted,n01 the number of missed events, andn10 the number of false alarms. Following Gresnigt et al.
(2015), we use the Hanssen-Kuiper skill score (KSS) to assess the validity of extreme forecasts. The KSS is the
differenceD − A between the correct prediction rate and the false alarm rate. The KSS encompasses both missing
occurrence errors and false alarms errors. Decreasing these two errors increases the value of KSS.

Our goal is to find a balanced signal for investors when they prefer either Type 1 and Type 2 errors and to take
into account whether they use or discard the predictive signals. Following Alessi and Detken (2011) we define a loss
function when a hazard probability threshold is added issueextreme forecasts,

L(θ) = θ(1− D) + (1− θ)A, (13)

where 1− D is the ratio of missing events (Type 1 errors) andA is the ratio of false alarms (Type 2 errors). The
parameterθ is the investor preference for avoiding either Type 1 or Type2 errors (El-Shagi et al., 2013).

We further define the usefulness of extreme forecasts as

U(θ) = min(θ, 1− θ) − L(θ), (14)

where min(θ, 1− θ) is the loss faced by investors when they ignore the predictive signals, andU(θ) is the extent
to which the extreme forecasting model offers better performance than no model at all (Betz et al., 2014). Extreme
forecasts are useful whenU(θ) > 0, which means that losses using the forecasts are lower thanwhen the forecasts are
ignored. The usefulness definition here ignores any influence from the data imbalance, i.e., that non-extreme events
occur much more frequently than extreme events (Sarlin, 2013; Betz et al., 2014).

Given hazard probabilityW(∆t|t), we need a hazard thresholdwt that maximizes usefulnessU(θ) (Duca and Peltonen,
2013; Babeckỳ et al., 2014; Betz et al., 2014). Christensenand Li (2014) optimizes the threshold by minimizing the
noise-to-signal ratioD/A. When we optimize the usefulness there is a marginal rate of substitution between Type 1
and Type 2 errors, but this marginal rate is not clear in the optimization of the noise-to-signal ratio, and this can result
in an unacceptable level of Type 1 and Type 2 errors (Alessi and Detken, 2011; El-Shagi et al., 2013; Babeckỳ et al.,
2014).
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4.4. Estimating distributional parameters

By introducing the stretched exponential function of Eq. (6) into the probability density function
∫ +∞

0
p(τ)dτ = 1, we

obtain
a
µb
Γ(

1
µ

) = 1, (15)

whereΓ(x) is the Gamma function. Podobnik et al. (2009) and Bogachev and Bunde (2009) describe the one-to-one
correspondence between the average recurrence intervalτQ and the percentage of extremes,

τQ =
1

∫ +∞

m
pr (r)dr

=
1

1−
∫ m

−∞
pr (r)dr

=
1

1− Q
, (16)

whereQ is the quantile that is used to define the extreme values. For this equation to be valid, the extremes must be
positive. When extremes are negative, we convert them into positives by multiplying by−1. Chicheportiche and Chakraborti
(2014) find that the average recurrence interval is universal irrespective of the dependence structure of the underlying
process. From the definition of expectation, the average recurrence interval can also be writtenτQ =

∫ +∞

0
τp(τ)dτ.

For the stretched exponential distribution, we have

a
µb2
Γ(

2
µ

) = τQ. (17)

By solving Eqs. (15) and (17) and usingµ andτQ for the stretched exponential distribution, parametersa andb
are

a =
µΓ(2/µ)
Γ(1/µ)2τQ

, b =
Γ(2/µ)
Γ(1/µ)τQ

. (18)

This strategy reduces the number of estimated parameters from three to one.
The mean of theq-exponential distribution is 1/[λ(3− 2q)]. For there to be a mean,q must be less than 3/2. Then

the parameterλ can be found usingq andτQ,

λ =
1

τQ(3− 2q)
. (19)

The expectation for the Weibull distribution isβΓ(1+1/α). Similarly, theβ can be expressed in terms ofα andτQ,

β =
τQ

Γ(1+ 1
α
)
. (20)

We need to estimate only one parameter for the three distributions when they are used to fit the recurrence intervals.
We adopt the maximum likelihood estimation (MLE) to estimate the distributional parameters. The logarithmic
likelihood functions are the stretched exponential distribution

ln LsE = n ln a−
n

∑

i=1

(bτi)
µ, (21)

theq-exponential distribution

ln LqE = n ln[λ(2− q)] −
1

q− 1

n
∑

i=1

ln[1 + (q− 1)λτi], (22)

and the Weibull distribution

ln LW = n ln
α

β
+

n
∑

i=1

[

(α − 1) ln
τi

β
−

(

τi

β

)α]

, (23)

in whichn is the number of recurrence intervals.
Taking the stretched exponential distribution as an example, the logarithmic likelihood function lnLsE is a one-

variable function ofµ. Although usually we can solve the equation by taking the first order derivative of lnLsE with
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respect toµ to find the solution that maximizes the likelihood, here the analytical expression of the derivative of lnLsE

with respect toµ is more difficult to obtain. We thus discretizeµ in the (0, 1) range with a step of 10−6 and calculate
the logarithmic likelihood function for each discrete value of µ. Theµ associated with the maximum value of lnLsE

is the maximum likelihood estimation. In the same way we estimate the parametersq ∈ (1, 1.5) andα ∈ (0, 1) for the
q-exponential and Weibull distributions, respectively.

5. Recurrence interval analysis

In order to test the validity of our extreme-return-prediction model, we use the data before each turbulent period to
calibrate the model and each turbulent period that follows for out-of-sample forecasting. We obtain six in-sample cal-
ibrating periods: 1885–1928, 1885–1972, 1885–1986, 1885–1999, 1885–2006, and 1885–2010 Their out-of-sample
predicting periods are 1929–1932, 1973–1975, 1987–1989, 2000–2003, 2007–2009, and 2011–2015, respectively. In
each in-sample calibrating period, we identify the extremevalue thresholdxt and extract the extreme values associated
with xt. We also locate the extreme values based on the quantile thresholds of 95%, 97.5%, and 99%. For each group
of extreme values, we estimate the waiting time between consecutive extreme values, i.e., the recurrence interval.
We take positive, negative, and absolute returns into account in our analysis because they may have connections with
specific trading strategies. The investors holding long positions in the market are more sensitive to extreme negative
returns and those holding short positions less sensitive.

Table 1 lists the recurrence intervals for different thresholds from different calibrating periods. Note that unlike the
observations from the quantile threshold, the observations from the extreme value threshold do not increase monoton-
ically as the calibration periods are expanded. The sharp decease in the number of recurrence intervals, for example
from Panel B to Panel C for positive returns and from Panel C toPanel D for absolute returns, indicates that there is
a dramatic increase in the extreme value threshold, suggesting that the market after 1973 became more volatile [see
Fig. 1(b)]. The mean values of the recurrence interval are strongly influenced by the extreme values, as indicated by
the large gap between the means and medians. Because the skewness is positive and the kurtosis is much greater than
3, the recurrence intervals also exhibit a right-skewed andfat-tailed distribution. This affirms the finding that the recur-
rence intervals obey a stretched exponential (Xie et al., 2014; Suo et al., 2015; Jiang et al., 2016) or aq-exponential
distribution (Ludescher et al., 2011; Ludescher and Bunde,2014; Chicheportiche and Chakraborti, 2014).

We see a significantly positive autocorrelation of lag 1 in the 95% column in Panel A and significant Ljung-Box
Q statistics at the 0.01 level for the three types of returns.In addition the autocorrelation of lag 5 is also positive when
returns are positive. This indicates that there are autocorrelations at short and long lags in the recurrence intervals
at the 95% quantile threshold. In the 99% column the autocorrelations are close to 0 and the Ljung-Box Q statistics
are insignificant for positive, negative, and absolute returns, suggesting that there are no correlations in the recurrence
intervals. The results in both columns also show that the autocorrelation of recurrence intervals gradually decreases
to insignificance when the quantile threshold increases from 95% to 99%, which is also seen in the columns ofxt

and 97.5% quantile. In Panels B through F, the autocorrelation coefficients at Lags 1 and 5 are all positive and
statistically significant, indicating the presence of strong autocorrelations in the recurrence intervals. In addition, the
Ljung-Box Q statistics of lag 30 are statistically significant at the 1% level, implying that significant autocorrelations
are also prevalent when recurrence interval lags are longer. These results are supported by the long-memory behavior
results of a detrended fluctuation analysis (DFA) of the recurrence intervals (Ren and Zhou, 2010b; Xie et al., 2014;
Suo et al., 2015).

The recurrence intervals are fitted by the stretched exponential distribution,q-exponential distribution, and Weibull
distribution in each in-sample calibrating period. Figure3 shows the probability distribution of the recurrence intervals
between the negative extreme events in the 99% quantile during the 1928 to 1985 in-sample calibrating period. The
best fits to the three fitting distributions are also plotted as solid curves for comparison. Note that the stretched
exponential distribution gives the best fit. Note also that the stretch exponential fits are most likely, which also agrees
with the distribution of recurrence intervals between the negative and absolute extreme returns in the Chinese markets
and the US markets (Wang et al., 2009; Ren and Zhou, 2010a; Xieet al., 2014; Suo et al., 2015). Because all the
distribution curves are very similar, we do not show the recurrence intervals in other calibrating periods.

Table 2 shows the estimated parameters of three fitting distributions of the recurrence intervals obtained from
different return types and different thresholds. To assess the validity of the distributional fits, the logarithmic likeli-
hoods are also listed. The likelihoods of the distribution with the maximum value are show in bold to indicate that
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Figure 3: (color online). Distribution of the recurrence intervals. This figure presents the empirical distributions of the recurrence intervals
between negative extreme returns in the quantile of 99% and the best fits to the three distributions, stretched exponential distribution,q-exponential
distribution, and Weibull distribution. The analysis is performed in the period from 1885 to 1928.

the corresponding distribution gives the best fit. Panel A shows that the best recurrence interval fits transition from
the q-exponential distribution to the stretched exponential distribution as the threshold is increased. This distribu-
tion transition behavior is also seen in the recurrence intervals in the minute volatilities in the Chinese stock markets
(Jiang et al., 2016). Note that in Panels B–F the maximum likelihood comes from theq-exponential distribution for
all the recurrence interval fits. Ludescher et al. (2011) andLudescher and Bunde (2014) also found that the recurrence
intervals between extreme loses are captured by theq-exponential distribution. The possible explanation for the lack
of maximum likelihoods for the stretched exponential distribution in Panels B–F is that the 99% quantile threshold is
not sufficiently large for a distribution transition from aq-exponential to a stretched exponential to occur.

Table 2 shows a monotonic trend between the estimated parameters and the quantile thresholds for each type of
returns, such thatµ andα decrease andq increases as the quantile threshold increases. Our resultssupport the depen-
dence of the recurrence interval distribution on the quantile threshold (Xie et al., 2014; Chicheportiche and Chakraborti,
2014; Suo et al., 2015; Jiang et al., 2016). For the same quantile threshold and the same type of return, we also find
that the estimated distributional parameters are close to each other in Panels B–F, which indicates that the recurrence
interval distribution depends solely on the quantile (Ludescher et al., 2011; Ludescher and Bunde, 2014; Jiang et al.,
2016).

When we obtain the distribution parameters, we can then find the theoretical curve of the hazard function for the
WsE, WqW, andWW by putting the parameters into the theoretical formula for hazard probabilityW(∆t|t) given by
Eqs. (9), (10), and (11) for the stretched exponential distribution,q-exponential distribution, and Weibull distribution,
respectively. On the other hand, using Eq. (5) we can evaluate the empirical hazard functionWemp,

Wemp(∆t|t) =
#(t < τ ≤ t + ∆t)

#(τ > t)
, (24)

where the denominator #(τ > t) is the number of recurrence intervals with values greater thant, and the numerator
#(t < τ ≤ t + ∆t) the number of recurrence intervals within the range of (t, t + ∆t].

Figure 4 shows a plot of the hazard probabilityW(∆t|t) as a function of the elapsing timet for the extreme negative
returns obtained from the 99% quantile threshold when∆t = 1. It shows the empirical hazard probability estimated
from the real data (filled markers) and the analytical hazardprobabilities obtained from the theoretical equations (solid
curves). Note that although all the theoretical lines do notoverlap on the same curve they all decrease with respect to
the elapsing timet, as does the empirical hazard probability. The statistics are poor and the empirical hazard probabil-
ity strongly oscillates, but for a given value oft the analytical hazard probability values are comparable tothose of the
empirical hazard probability, suggesting that the analytical hazard probabilities agree with the empirical hazard proba-
bility. These decreasing patterns in the hazard probability are also seen in energy futures (Xie et al., 2014), spot index
and index futures (Suo et al., 2015), and stock returns (Ren and Zhou, 2010a; Jiang et al., 2016), indicating that the
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Figure 4: (color online). Plots of hazard probabilityW(∆t|t) with ∆t = 1. The hazard events correspond to the extreme negative returns obtained
from the quantile threshold of 99%. The analysis is performed in the period from 1885 to 1928.

probability of observing a follow-up extreme return decreases as timet elapses. This reveals the existence of extreme
return clustering and a potential dependent structure in the triggering processes of the extreme returns, which supports
the argument that “many extreme price movements are triggered by previous extreme movements” and that “larger
extremes occur more often after big events or frequent events than after tranquil periods” (Gresnigt et al., 2015). This
is caused by the positive herding behavior of investors and the endogenous growth of instability in financial markets
(Jiang et al., 2010; Gresnigt et al., 2015). Because the results are all similar, we do not show the hazard probabilities
W(∆t|t) for different thresholds and other types of return.

6. Predicting extreme returns

Using hazard probabilities and an optimized hazard threshold, we build a model to predict the occurrence of positive,
negative, and absolute extreme returns in financial marketswithin a given time period. The hazard probabilities
are specified by the distribution parameter of the recurrence intervals between extreme events in the return history.
The indicators of incoming extreme events are generated when the hazard probability exceeds the optimized hazard
threshold, and this maximizes the usefulness of these extreme forecasts. We perform out-of-sample tests to evaluate
the predictive power of this extreme-return-prediction model as follows.

1. We mark extreme events according to a specified extreme value or quantile threshold during a given in-sample
calibrating period.

2. Fitting the recurrence intervals between the marked extreme events, we estimate the stretched exponential dis-
tribution,q-exponential distribution, or Weibull distribution parameters.

3. Using the estimated distribution parameters in the in-sample calibrating period, we determine the hazard prob-
ability W(∆t|t) and find the optimized hazard thresholdwt by maximizing the usefulnessU(θ).

4. Using the distribution parameters and optimized hazard threshold from the in-sample calibrating period, we
forecast the indicators of incoming extreme events within time period∆t and evaluate the forecasting signals.

To find the optimized hazard threshold, we vary the hazard threshold in [0, 1] to obtain all possible pairs of
(A,D). Plotting A with respect toD, we obtain the well-known “receiver operator characteristic” (ROC) curve
(Bogachev and Bunde, 2009). Using the ROC curve we measure the validity of the predicting power of early warning
models. Figure 5 shows the ROC predictive curves of extreme negative returns for in-sample tests and out-of-sample
tests. The in-sample (out-of-sample) period is from 1885 to1928 (from 1929 to 1932). The diagonal line is a random
guess. Note that the ROC curves of the three fitting distributions are overlap exactly on the same curve for in-sample
and out-of-sample tests, suggesting that the results do notdepend on the distribution formula used to fit the recurrence
intervals. All ROC curves are above the random guess line, indicating that both in-sample and out-of-sample tests

11



have a better predictive power than a random guess. Note alsothat the out-of-sample curves are lower than the in-
sample curves, which confirms the observation that out-of-sample predictions are usually worse than in-sample tests
(Lang and Schmidt, 2016). Because they all exhibit very similar patterns, we do not show the ROC curves obtained
from different thresholds and different types of extreme returns.
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Figure 5: (color online). ROC curves of in-sample tests and out-of-sample predictions. The extreme returns correspondto the negative returns in
the quantile of 99%. The in-sample period covers from 1885 to1928. The out-of-sample period spans from 1929 to 1932.

Because all three fitting distributions give the same ROC curve, we evaluate only the in-sample and out-of-sample
performance of the extreme return prediction model for theq-exponential distribution. We find the optimized hazard
threshold, which maximizes the usefulness in the in-samplecalibrating period, and estimate such performance mea-
surements as the rate of correct predictions, the false alarm rate, the usefulness, and the KSS score during in-sample
and out-of-sample periods. The results are shown in Table 3.

First, we observe that all usefulnessU values are positive except in the positive returns in the 97.5% quantile in
Panel A and in the 95% quantile in Panel B, indicating that when missing-event and false-alarm errors are weighted
equally our model provides more accurate results than the benchmark of ignoring the forecasting signals. Second, ex-
cluding the above two exceptions all KSS scores are greater than 0, which corresponds to random guessing, indicating
that the rate of correct predictions exceeds that of false alarms. Third, note that in most of the results, theU and KSS
scores of in-sample performance are larger than those of out-of-sample performance, which is in consistent with the
observation that out-of-sample predictions are inferior to the in-sample tests. We do find one exception in Panel E and
nine exceptions in Panel F in which the out-of-sample predictions surpass the in-sample tests, and this indicates the
predictive power of the testing model. The results also imply that the more data available for the in-sample tests, the
better the performance of out-of-sample predictions, and this is further supported by the predictions during two recent
turbulent periods, which were better than predictions during other periods. Fourth, note that the predictions of the
extreme returns in the 99% quantile produce a lower false alarm rate and a higher correct prediction rate than those in
the 95% and 97.5% quantiles, and this produces high usefulness and KSS scores. The results imply that the extreme
events with a high quantile can be predicted more accurately. Table 1 shows the statistics of Ljung-Box Q tests that
exhibit a decreasing pattern as quantile thresholds increase in all panels, indicating that increasing the quantile thresh-
old could decrease the memory strength in the extremes. We neglect the potential dependence structure in the extreme
series in our model because the larger the quantile threshold, the weaker the memory in extremes and the better the
forecasting performance. Compared to the model based on theHawkes processes (Gresnigt et al., 2015) our model
has the advantage of fewer model parameters, easier estimating methods, and a faster prediction implementation.

7. Conclusion

We have performed a recurrence interval analysis of financial extremes in the DJIA index during the period from
1885 to 2015. We determine the extreme returns according to anewly proposed extreme identifying approach, as well
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as quantile thresholds. With the extreme identifying approach we are able to locate the optimal extreme threshold
associated with the minimum KS statistics of tail distributions. We find that the recurrence intervals, which are the
periods of time between the successive extremes of different types of returns and thresholds, follow aq-exponential
distribution. This allows us to analytically derive the hazard probabilityW(∆t|t) that within the time interval∆t since
the last extreme event that occurred at timet we will observe the next extreme event. The analyticalW(∆t|t) value
agrees well with the empirical hazard probability estimated from real data.

Using the hazard probability, we develop an extreme-return-prediction model for forecasting imminent financial
extreme events. When the hazard probability is greater thanthe hazard threshold, this model can warn when an
extreme event is about to occur. The hazard threshold is obtained by maximizing the usefulness of extreme forecasts.
Both in-sample tests and out-of-sample predictions revealthat the signals generated by our prediction model are
better statistically than the benchmark of neglecting these signals and that the input distribution formula used to fit the
recurrence intervals has no influence on the final outcome of our early warning model. Although in most cases the
predictive performance of in-sample tests are better than that of out-of-sample predictions, expanding the in-sample
calibrating period could yield out-of-sample predictionsthat are better than in-sample tests. In addition, increasing
the extreme-extracting threshold could improve the predictive power of our model in both in-sample tests and out-
of-sample predictions. Our results may shed new light the occurrence of extremes in financial markets and on the
application of recurrence interval analysis to forecasting financial extremes.
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Table 1: Descriptive statistics of the recurrence intervals. This table reports number of observations (obsv), mean, median, standard deviation
(stdev), skewness (skew), kurtosis (kurt), autocorrelation (rho), Ljung-Box Q test statistic (LBQ) of the return intervals between the extreme events,
defined by the extreme value thresholdsxt and quantile thresholds (95%, 97.5%, and 99%). The autocorrelation coefficients are calculated at lag 1
and 5. The Ljung-Box Q tests are conducted at lag 30. Panels A–F present the results from different in-sample calibrating periods.

Negative return Positive return Absolute return
xt 95% 97.5% 99% xt 95% 97.5% 99% xt 95% 97.5% 99%

Panel A: in-sample calibrating period (1885 – 1928)
obsv 278.0 652.0 326.0 130.0 477.0 652.0 326.0 130.0 145.0 652.0 326.0 130.0
mean 46.950 20.0 40.0 100.0 27.363 20.0 40.0 100.0 90.014 20.0 40.0 100.0
median 12.0 6.500 11.0 21.0 12.0 9.0 16.0 23.500 12.0 5.0 6.500 12.0
stdev 91.524 38.122 78.407 173.978 44.790 32.100 78.043 184.695 182.677 46.844 94.819 201.517
skew 4.713 6.703 5.131 3.859 3.782 4.286 6.067 3.677 3.704 9.852 6.000 3.402
kurt 33.706 80.856 43.300 24.150 20.607 27.888 55.805 20.586 20.540 157.674 57.471 16.804
rho(1) 0.120∗∗ 0.121∗∗∗ 0.140∗∗ 0.070 0.257∗∗∗ 0.218∗∗∗ 0.081 −0.028 0.105 0.143∗∗∗ 0.090 0.082
rho(5) −0.064 0.062 −0.053 −0.054 0.083∗ 0.112∗∗∗ 0.142∗∗ −0.086 −0.040 0.005 0.041 −0.058
Q(30) 48.876∗∗ 66.026∗∗∗ 36.545 18.890 131.947∗∗∗ 143.181∗∗∗ 41.158∗ 14.910 18.024 53.899∗∗∗ 30.233 10.549
Panel B: in-sample calibrating period (1885 – 1972)
obsv 2032.0 1254.0 627.0 250.0 1171.0 1254.0 627.0 250.0 2546.0 1254.0 627.0 250.0
mean 12.349 20.0 40.0 100.0 21.430 20.0 40.0 100.0 9.856 20.0 40.0 100.0
median 4.0 5.0 6.0 8.0 7.0 7.0 8.0 12.0 3.0 3.0 4.0 6.0
stdev 22.546 43.451 110.804 251.118 48.351 43.793 105.520 281.113 23.928 59.488 138.074 276.742
skew 5.010 5.606 7.684 4.409 8.208 7.289 6.213 6.072 7.690 7.306 7.189 4.007
kurt 41.635 47.837 84.779 26.219 110.246 83.273 50.569 50.613 89.933 73.524 65.717 19.536
rho(1) 0.193∗∗∗ 0.295∗∗∗ 0.140∗∗∗ 0.532∗∗∗ 0.310∗∗∗ 0.303∗∗∗ 0.193∗∗∗ 0.215∗∗∗ 0.219∗∗∗ 0.194∗∗∗ 0.075∗ 0.311∗∗∗

rho(5) 0.112∗∗∗ 0.098∗∗∗ 0.245∗∗∗ 0.090 0.117∗∗∗ 0.106∗∗∗ 0.131∗∗∗ 0.309∗∗∗ 0.158∗∗∗ 0.085∗∗∗ 0.110∗∗∗ 0.407∗∗∗

Q(30) 843.689∗∗∗ 755.150∗∗∗ 206.777∗∗∗ 111.717∗∗∗ 753.825∗∗∗ 733.710∗∗∗ 432.781∗∗∗ 82.437∗∗∗ 1153.606∗∗∗ 585.612∗∗∗ 225.441∗∗∗ 110.987∗∗∗

Panel C: in-sample calibrating period (1885 – 1986)
obsv 716.0 1431.0 715.0 286.0 1360.0 1431.0 715.0 286.0 2822.0 1431.0 715.0 286.0
mean 39.989 20.0 40.0 100.0 21.053 20.0 40.0 100.0 10.146 20.0 40.0 100.0
median 7.0 5.0 7.0 8.0 8.0 7.0 9.0 12.0 3.0 4.0 4.0 6.0
stdev 99.845 43.138 99.905 253.139 46.590 44.787 102.571 272.215 24.320 58.219 128.684 270.823
skew 5.139 5.507 5.135 4.222 8.144 8.664 6.099 5.977 7.815 7.182 6.986 3.832
kurt 34.807 45.983 34.762 24.000 111.272 124.207 50.108 50.643 93.261 72.012 66.050 18.315
rho(1) 0.242∗∗∗ 0.284∗∗∗ 0.242∗∗∗ 0.565∗∗∗ 0.296∗∗∗ 0.259∗∗∗ 0.196∗∗∗ 0.221∗∗∗ 0.233∗∗∗ 0.205∗∗∗ 0.098∗∗∗ 0.213∗∗∗

rho(5) 0.176∗∗∗ 0.117∗∗∗ 0.174∗∗∗ 0.307∗∗∗ 0.114∗∗∗ 0.130∗∗∗ 0.136∗∗∗ 0.271∗∗∗ 0.148∗∗∗ 0.075∗∗∗ 0.080∗∗ 0.237∗∗∗

Q(30) 276.588∗∗∗ 667.824∗∗∗ 277.421∗∗∗ 249.183∗∗∗ 791.779∗∗∗ 736.976∗∗∗ 450.736∗∗∗ 101.007∗∗∗ 1277.446∗∗∗ 597.888∗∗∗ 238.276∗∗∗ 182.886∗∗∗

Panel D: in-sample calibrating period (1885 – 1999)
obsv 782.0 1595.0 797.0 319.0 1448.0 1595.0 797.0 319.0 1421.0 1595.0 797.0 319.0
mean 40.816 20.0 40.0 100.0 22.043 20.0 40.0 100.0 22.462 20.0 40.0 100.0
median 8.0 6.0 7.0 8.0 8.0 8.0 9.0 13.0 4.0 4.0 4.0 5.0
stdev 97.920 41.851 96.353 248.548 47.351 43.650 99.684 270.301 62.523 56.713 127.547 270.274
skew 5.055 5.511 5.155 4.210 7.660 8.550 6.076 5.746 6.589 7.148 7.004 3.903
kurt 34.510 46.938 35.971 23.986 99.818 124.073 50.734 46.911 60.862 72.525 65.444 18.877
rho(1) 0.256∗∗∗ 0.278∗∗∗ 0.252∗∗∗ 0.548∗∗∗ 0.327∗∗∗ 0.259∗∗∗ 0.228∗∗∗ 0.199∗∗∗ 0.203∗∗∗ 0.214∗∗∗ 0.089∗∗ 0.206∗∗∗

rho(5) 0.176∗∗∗ 0.131∗∗∗ 0.189∗∗∗ 0.273∗∗∗ 0.142∗∗∗ 0.139∗∗∗ 0.131∗∗∗ 0.326∗∗∗ 0.081∗∗∗ 0.082∗∗∗ 0.148∗∗∗ 0.203∗∗∗

Q(30) 277.454∗∗∗ 675.904∗∗∗ 303.462∗∗∗ 254.647∗∗∗ 849.279∗∗∗ 790.724∗∗∗ 467.774∗∗∗ 102.416∗∗∗ 677.953∗∗∗ 657.786∗∗∗ 195.112∗∗∗ 154.916∗∗∗

Panel E: in-sample calibrating period (1885 – 2006)
obsv 834.0 1683.0 841.0 336.0 1539.0 1683.0 841.0 336.0 1518.0 1683.0 841.0 336.0
mean 40.380 20.0 40.0 100.0 21.882 20.0 40.0 100.0 22.185 20.0 40.0 100.0
median 8.0 6.0 8.0 8.0 8.0 8.0 9.0 13.0 4.0 4.0 4.0 6.0
stdev 95.125 41.361 94.757 241.773 46.746 43.235 102.416 265.009 60.659 56.179 124.604 264.232
skew 5.213 5.472 5.240 4.322 7.580 8.417 6.467 5.925 6.795 7.162 7.148 3.985
kurt 36.645 46.813 36.980 25.403 99.236 122.461 56.734 50.015 64.680 72.654 68.333 19.714
rho(1) 0.258∗∗∗ 0.295∗∗∗ 0.254∗∗∗ 0.536∗∗∗ 0.337∗∗∗ 0.286∗∗∗ 0.282∗∗∗ 0.199∗∗∗ 0.206∗∗∗ 0.221∗∗∗ 0.102∗∗∗ 0.204∗∗∗

rho(5) 0.178∗∗∗ 0.105∗∗∗ 0.193∗∗∗ 0.278∗∗∗ 0.151∗∗∗ 0.141∗∗∗ 0.081∗∗ 0.251∗∗∗ 0.083∗∗∗ 0.091∗∗∗ 0.058∗ 0.204∗∗∗

Q(30) 304.082∗∗∗ 873.194∗∗∗ 304.969∗∗∗ 260.485∗∗∗ 980.303∗∗∗ 875.671∗∗∗ 491.718∗∗∗ 106.786∗∗∗ 743.033∗∗∗ 673.330∗∗∗ 200.311∗∗∗ 158.391∗∗∗

Panel F:in-sample calibrating period (1885 – 2010)
obsv 858.0 1734.0 867.0 346.0 924.0 1734.0 867.0 346.0 1540.0 1734.0 867.0 346.0
mean 40.425 20.0 40.0 100.0 37.538 20.0 40.0 100.0 22.523 20.0 40.0 100.0
median 7.0 6.0 7.0 8.0 9.0 8.0 9.0 12.0 4.0 4.0 4.0 5.0
stdev 111.346 42.218 109.226 259.435 97.671 43.424 104.937269.598 68.579 59.451 132.133 275.164
skew 7.095 5.598 7.081 4.464 6.397 8.211 6.287 5.680 8.097 7.761 6.888 3.898
kurt 71.630 49.644 72.329 26.510 56.115 117.442 52.915 46.183 91.999 83.058 61.436 18.701
rho(1) 0.146∗∗∗ 0.296∗∗∗ 0.161∗∗∗ 0.495∗∗∗ 0.308∗∗∗ 0.297∗∗∗ 0.302∗∗∗ 0.184∗∗∗ 0.218∗∗∗ 0.201∗∗∗ 0.112∗∗∗ 0.165∗∗∗

rho(5) 0.174∗∗∗ 0.088∗∗∗ 0.132∗∗∗ 0.234∗∗∗ 0.084∗∗ 0.138∗∗∗ 0.191∗∗∗ 0.218∗∗∗ 0.113∗∗∗ 0.099∗∗∗ 0.057∗ 0.249∗∗∗

Q(30) 227.668∗∗∗ 877.559∗∗∗ 215.488∗∗∗ 223.093∗∗∗ 552.569∗∗∗ 994.993∗∗∗ 465.599∗∗∗ 99.923∗∗∗ 565.484∗∗∗ 613.619∗∗∗ 218.575∗∗∗ 146.530∗∗∗
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Table 2: The estimated parameters and the maximum logarithmic likelihoods of the fits to the stretched exponential distribution, q-exponential
distribution, and Weibull distribution for recurrence intervals. The likelihoods with the maximum value are highlighted in bold. The recurrence
intervals are determined according to the extreme value thresholdsxt and quantile thresholds (95%, 97.5%, and 99%) in the negative, positive, and
absolute returns. Panels A–F present the results from different in-sample calibrating periods.

Negative return Positive return Absolute return
xt 95% 97.5% 99% xt 95% 97.5% 99% xt 95% 97.5% 99%

Panel A: in-sample calibrating period (1885 – 1928)
µ 0.350 0.461 0.360 0.280 0.513 0.573 0.451 0.307 0.227 0.383 0.284 0.215
ln LsE −1264.269 −2496.914−1434.225 −674.465 −2000.951−2553.728−1473.376 −680.297 −700.468 −2424.402−1365.008 −634.993
q 1.408 1.357 1.405 1.435 1.316 1.286 1.345 1.423 1.461 1.399 1.443 1.465
ln LqE −1266.953−2485.817 −1434.396 −684.927 −1996.519 −2544.451 −1471.303 −685.261 −711.080−2411.504 −1360.696 −647.154
α 0.625 0.718 0.634 0.563 0.757 0.802 0.708 0.587 0.498 0.651 0.556 0.483
ln LW −1275.718−2523.094−1448.428 −678.027 −2014.244−2571.295−1483.428 −684.853 −707.857−2458.188−1386.102 −641.552
Panel B: in-sample calibrating period (1885 – 1972)
µ 0.512 0.398 0.294 0.207 0.433 0.451 0.315 0.229 0.452 0.312 0.230 0.177
ln LsE −6870.875−4662.711−2602.562−1173.240 −4501.362−4759.720−2654.990−1205.945 −7787.724−4359.017−2384.191−1098.368
q 1.336 1.396 1.442 1.473 1.373 1.363 1.429 1.464 1.373 1.438 1.467 1.483
ln LqE −6805.955 −4610.407 −2571.429 −1165.118 −4463.297 −4718.507 −2632.444 −1200.464 −7624.907 −4248.552 −2312.401 −1081.346
α 0.758 0.663 0.563 0.465 0.692 0.706 0.585 0.492 0.704 0.577 0.487 0.422
ln LW −6957.774−4735.734−2650.054−1195.844 −4559.812−4820.370−2696.831−1226.002 −7951.129−4469.435−2453.110−1126.514
Panel C: in-sample calibrating period (1885 – 1986)
µ 0.302 0.409 0.302 0.208 0.449 0.463 0.325 0.229 0.464 0.322 0.237 0.179
ln LsE −3011.043−5359.481−3008.233−1348.487 −5236.811−5455.453−3056.744−1382.459 −8773.031−5036.183−2770.080−1272.260
q 1.437 1.388 1.437 1.473 1.362 1.354 1.424 1.464 1.365 1.433 1.465 1.482
ln LqE −2980.534 −5305.811 −2978.056 −1342.692 −5195.029 −5410.298 −3035.525 −1377.135 −8608.555 −4924.461 −2701.469 −1258.164
α 0.571 0.672 0.571 0.465 0.705 0.715 0.594 0.493 0.714 0.587 0.496 0.426
ln LW −3062.519−5438.722−3059.523−1373.600 −5300.912−5521.812−3101.494−1405.021 −8944.445−5155.682−2843.627−1302.926
Panel D: in-sample calibrating period (1885 – 1999)
µ 0.307 0.419 0.308 0.208 0.457 0.477 0.335 0.233 0.314 0.329 0.241 0.178
ln LsE −3325.185−6004.925−3375.885−1506.977 −5657.201−6104.959−3430.370−1552.323 −5155.298−5655.759−3115.198−1416.369
q 1.435 1.382 1.434 1.472 1.357 1.345 1.418 1.462 1.435 1.429 1.463 1.482
ln LqE −3298.423 −5953.468 −3348.336 −1501.836 −5615.392 −6055.245 −3408.686 −1548.247 −5054.298 −5540.644 −3047.366 −1403.017
α 0.577 0.681 0.578 0.467 0.711 0.726 0.604 0.498 0.581 0.595 0.502 0.424
ln LW −3378.117−6087.515−3429.832−1534.442 −5722.565−6175.819−3477.890−1576.590 −5271.119−5783.800−3193.905−1450.209
Panel E: in-sample calibrating period (1885 – 2006)
µ 0.310 0.422 0.311 0.214 0.455 0.472 0.334 0.235 0.318 0.331 0.241 0.181
ln LsE −3529.464−6339.332−3552.077−1598.990 −5994.090−6429.892−3604.772−1636.240 −5476.112−5959.563−3276.784−1502.338
q 1.434 1.381 1.433 1.470 1.359 1.350 1.419 1.461 1.434 1.429 1.463 1.481
ln LqE −3498.388 −6285.001 −3519.699 −1595.926 −5947.393 −6375.880 −3577.750 −1632.522 −5364.948 −5835.504 −3203.838 −1491.093
α 0.582 0.684 0.582 0.475 0.710 0.723 0.603 0.501 0.585 0.597 0.503 0.430
ln LW −3585.778−6425.731−3609.157−1626.494 −6064.641−6506.061−3656.471−1661.245 −5599.175−6094.643−3359.717−1536.739
Panel F: in-sample calibrating period (1885 – 2010)
µ 0.305 0.421 0.308 0.208 0.338 0.469 0.333 0.232 0.312 0.330 0.237 0.177
ln LsE −3616.004−6527.378−3651.908−1632.635 −3910.386−6620.877−3712.984−1682.142 −5558.880−6135.844−3356.883−1529.646
q 1.436 1.382 1.435 1.472 1.418 1.352 1.421 1.462 1.437 1.429 1.465 1.483
ln LqE −3577.687 −6465.676 −3613.537 −1625.505 −3875.292 −6562.953 −3680.043 −1677.062 −5441.337 −6002.342 −3273.580 −1512.333
α 0.574 0.682 0.577 0.466 0.606 0.720 0.601 0.497 0.577 0.595 0.497 0.422
ln LW −3678.097−6619.216−3714.149−1663.022 −3969.370−6701.078−3768.877−1708.772 −5688.562−6278.192−3446.235−1567.267
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Table 3: In-sample and out-of-sample performance of the extreme return predicting model. False alarm rates, correct predicting rate, usefulness,
and KSS score is listed for in-sample tests and out-of-sample predictions. The predictions that out-of-sample performances are better than in-sample
performances are highlighted in bold. The recurrence intervals are determined according to the extreme value thresholds xt and quantile thresholds
(95%, 97.5%, and 99%) in the negative, positive, and absolute returns. Panels A–F present the results from different in-sample calibrating periods
and out-of-sample predicting periods.

Negative return Positive return Absolute return
EVT 95% 97.5% 99% EVT 95% 97.5% 99% EVT 95% 97.5% 99%

Panel A: in-sample calibrating period (1885 – 1928)/ out-of-sample predicting period (1929 – 1932)
in: A 0.256 0.319 0.286 0.228 0.317 0.382 0.494 0.263 0.159 0.207 0.242 0.142
out: A 0.807 0.814 0.834 0.895 0.821 0.862 0.967 0.773 0.719 0.699 0.805 0.721
in: D 0.616 0.623 0.657 0.626 0.543 0.602 0.755 0.656 0.637 0.582 0.713 0.626
out: D 0.953 0.949 0.967 0.980 0.891 0.898 0.963 0.963 0.960 0.935 0.975 0.958
in: U 0.180 0.152 0.186 0.199 0.113 0.110 0.131 0.197 0.239 0.187 0.235 0.242
out: U 0.073 0.068 0.066 0.042 0.035 0.018 −0.002 0.095 0.121 0.118 0.085 0.119
in: KSS 0.361 0.304 0.372 0.398 0.226 0.220 0.261 0.393 0.4780.375 0.470 0.484
out: KSS 0.146 0.135 0.133 0.084 0.069 0.036 −0.005 0.190 0.241 0.236 0.170 0.238
Panel B: in-sample calibrating period (1885 – 1972)/ out-of-sample predicting period (1973 – 1975)

in: A 0.413 0.332 0.263 0.120 0.316 0.337 0.257 0.191 0.303 0.170 0.159 0.075
out: A 0.760 0.634 0.377 0.111 0.677 0.676 0.608 0.361 0.641 0.360 0.245 0.042
in: D 0.727 0.729 0.760 0.725 0.657 0.664 0.702 0.757 0.723 0.700 0.799 0.737
out: D 0.824 0.750 0.769 0.250 0.776 0.782 0.714 0.692 0.780 0.671 0.789 0.667
in: U 0.157 0.199 0.248 0.302 0.170 0.163 0.222 0.283 0.210 0.265 0.320 0.331
out: U 0.032 0.058 0.196 0.069 0.049 0.053 0.053 0.166 0.069 0.155 0.272 0.312
in: KSS 0.314 0.397 0.497 0.605 0.341 0.327 0.445 0.566 0.4200.531 0.640 0.663
out: KSS 0.064 0.116 0.392 0.139 0.099 0.106 0.107 0.331 0.139 0.311 0.545 0.624
Panel C: in-sample calibrating period (1885 – 1986)/ out-of-sample predicting period (1987 – 1989)

in: A 0.284 0.342 0.284 0.193 0.405 0.362 0.309 0.191 0.309 0.177 0.167 0.099
out: A 0.370 0.512 0.370 0.291 0.721 0.688 0.676 0.394 0.546 0.336 0.229 0.205
in: D 0.763 0.717 0.763 0.780 0.726 0.675 0.732 0.753 0.703 0.680 0.785 0.749
out: D 0.786 0.667 0.786 0.750 0.763 0.683 0.789 0.733 0.645 0.662 0.828 0.733
in: U 0.239 0.187 0.239 0.294 0.161 0.157 0.211 0.281 0.197 0.252 0.309 0.325
out: U 0.208 0.077 0.208 0.230 0.021 −0.003 0.057 0.169 0.050 0.163 0.299 0.264
in: KSS 0.479 0.375 0.478 0.587 0.321 0.313 0.423 0.562 0.3940.504 0.618 0.650
out: KSS 0.416 0.155 0.416 0.459 0.042 −0.005 0.113 0.339 0.099 0.325 0.599 0.529
Panel D: in-sample calibrating period (1885 – 1999)/ out-of-sample predicting period (2000 – 2003)

in: A 0.245 0.350 0.248 0.140 0.414 0.370 0.317 0.185 0.233 0.181 0.172 0.105
out: A 0.522 0.690 0.523 0.330 0.768 0.702 0.725 0.461 0.539 0.463 0.418 0.278
in: D 0.709 0.707 0.712 0.725 0.725 0.669 0.726 0.734 0.733 0.669 0.773 0.747
out: D 0.731 0.821 0.745 0.533 0.883 0.820 0.855 0.769 0.784 0.664 0.764 0.700
in: U 0.232 0.178 0.232 0.292 0.156 0.149 0.204 0.275 0.250 0.244 0.301 0.321
out: U 0.104 0.065 0.111 0.102 0.058 0.059 0.065 0.154 0.122 0.100 0.173 0.211
in: KSS 0.463 0.357 0.463 0.585 0.311 0.298 0.409 0.549 0.5000.487 0.601 0.642
out: KSS 0.209 0.130 0.223 0.204 0.115 0.118 0.130 0.308 0.244 0.201 0.345 0.422
Panel E: in-sample calibrating period (1885 – 2006)/ out-of-sample predicting period (2007 – 2009)

in: A 0.248 0.351 0.249 0.144 0.414 0.367 0.315 0.186 0.236 0.258 0.172 0.107
out: A 0.660 0.711 0.666 0.333 0.633 0.603 0.640 0.423 0.557 0.616 0.471 0.175
in: D 0.710 0.708 0.713 0.715 0.733 0.678 0.734 0.730 0.736 0.746 0.774 0.742
out: D 0.855 0.902 0.875 0.900 0.913 0.869 0.887 0.933 0.892 0.911 0.863 0.969
in: U 0.231 0.179 0.232 0.286 0.160 0.155 0.209 0.272 0.250 0.244 0.301 0.317
out: U 0.097 0.095 0.104 0.283 0.140 0.133 0.124 0.255 0.168 0.147 0.196 0.397
in: KSS 0.462 0.357 0.463 0.571 0.319 0.311 0.419 0.544 0.5000.489 0.603 0.634
out: KSS 0.195 0.191 0.209 0.567 0.279 0.266 0.247 0.510 0.335 0.294 0.392 0.793
Panel F: in-sample calibrating period (1885 – 2010)/ out-of-sample predicting period (2011 – 2015)

in: A 0.258 0.350 0.254 0.140 0.326 0.439 0.312 0.183 0.230 0.256 0.169 0.100
out: A 0.180 0.352 0.174 0.128 0.229 0.358 0.229 0.136 0.155 0.195 0.112 0.066
in: D 0.729 0.712 0.725 0.726 0.747 0.752 0.737 0.738 0.740 0.751 0.780 0.758
out: D 0.667 0.636 0.682 0.667 0.682 0.696 0.682 0.714 0.737 0.720 0.842 0.571
in: U 0.235 0.181 0.235 0.293 0.211 0.157 0.213 0.277 0.255 0.248 0.306 0.329
out: U 0.243 0.142 0.254 0.269 0.227 0.169 0.227 0.289 0.291 0.262 0.365 0.253
in: KSS 0.470 0.362 0.471 0.587 0.421 0.313 0.426 0.554 0.5100.495 0.611 0.658
out: KSS 0.486 0.285 0.508 0.538 0.453 0.338 0.453 0.578 0.582 0.525 0.730 0.505
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