arXiv:1610.08230v1 [g-fin.ST] 26 Oct 2016

Short term prediction of extreme returns based on the recoerinterval analysis

Zhi-Qiang Jiang®, Gang-Jin Wan®, Askery Canabarf, Boris Podobnik, Chi Xie®, H. Eugene Stanléy
Wei-Xing Zhou?*

aDepartment of Finance, East China University of Science EBewhnology, Shanghai 200237, China
bBusiness School and Center of Finance and Investment MarergeHunan University, Changsha 410082, China
¢Boston University, Boston, MA 02215, USA
duniversidade Federal de Alagoas, 57309-005, Arapiraca-Biazil
€Zagreb School Economics and Management, 41000 Zagrebti€roa

Abstract

Being able to predict the occurrence of extreme returns poitant in financial risk management. Using the distri-
bution of recurrence intervals—the waiting time betweensazutive extremes—we show that these extreme returns
are predictable on the short term. Examining a range fbémint types of returns and thresholds we find that recur-
rence intervals follow @-exponential distribution, which we then use to theordtijcderive the hazard probability
W(At|t). Maximizing the usefulness of extreme forecasts to defmemimized hazard threshold, we indicates a
financial extreme occurring within the next day when the hdipaobability is greater than the optimized threshold.
Both in-sample tests and out-of-sample predictions inditaat these forecasts are more accurate than a benchmark
that ignores the predictive signals. This recurrencewaldinding deepens our understanding of reoccurring ex¢rem
returns and can be applied to forecast extremes in risk nesmegt.
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1. Introduction

Predicting such extreme financial events as market crabheg,failures, and currency crises is of great importance
to investors and policy markers because they destabileérthncial system and can greatly shrink asset value. Much
research has been carried out in an attempt to detect thelyindevulnerabilities and the common precursors to
financial extremes. A number offtérent models have been developed to predict the occurréfinaicial distresses
including those using probability (Martin, 1977; Canbaalei2005; Barrell et all, 2010; Tinoco and Wilson, 2013;
Li and Wang, 2014; Laina et al., 2015), signal approachesxiisky et al., 1998; Edison, 2003; Duan and Bgjona,
2008;| Christensen and Li, 2014) and intelligence (KumarRaw,[2007] Demyanyk and Hasan, 2010). A faster-
than-exponential increase in price accompanied by aat@igrprice oscillations indicates the presence of bubbles
(Sornette, 2003; Sornette and Cauwels, 2015). The behafidrese bubbles can be characterized using the log-
period power-law singularity (LPPLS) model, which is calgabf accurately forecasting a bubble’s tipping point
(Sornette et all, 2009; Jiang et al., 2010; Sornette et@GL5P

Recent research on the occurrence of financial extremes ratideomarket dynamics around financial crashes
has enabled us to better forecast emerging financial cridescan understand the occurrence pattern of extremes
by determining the distribution of waiting times betweemsecutive financial extremes (the “recurrence intervals”)
and charting the memory behavior within the occurring extgs.| Bogachev and Bunde (2009); Jiang et al. (2016)
built an early warning model of this waiting time distribori to predict the probability that extremes will occur
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within a given time period. Following a financial crisis thadncial system gradually transitions back to a stasis
(Bussiere and Fratzscher, 2006). This relaxation behdoilmwing a financial market crash is similar to the after-
shocks following an earthquake (Lillo and Mantegna, 2008eBen et all, 2010). Sornette (2003) indicates that a
possible theoretical explanation for bursts of specugimbbles is a positive herding behavior of traders thatesus
local self-excited crashes (Gresnigt etlal., 2015). This iaccordance with the phenomenon that extremes cluster
and are interdependent. Gresnigt etlal. (2015) show thabajppately 76—85% of occurring extremes are triggered
by other extremes, and they develop an early warning modetriats financial crashes as earthquakes and compute
the probability that an extreme event will occur within ata@r time period.

Here we extend the probabilistic framework for extremenetpresented in Jiang et al. (2016) to predict extremes
by using the conditional probability of an future extrememwithin a fixed time frame in which Type 1 and Type 2
errors are balanced in current market state. The contoibsif our works are in four ways.

(i) We identify extremes by locating the threshold at the imiiim KS value between the empirical and fitting
distributions of the extreme values.

(i) We classify the returns as either extreme or non-exérémquantifying the extreme threshold, and we assume
that the extremes are independent. This simplifies the rimgdaehd reduces the computational complexity
when estimating parameters but provides an adequate penfime when doing out-of-sample prediction.

(iif) We define a hazard probability that is dependent on tis&ridution formula of recurrence intervals between
extremes, and this translates the problem into finding alsl@idistribution form for recurrence intervals. Unlike
the Hawkes point process, our modeling framework is eagypdament.

(iv) Instead of using a predefined threshold of hazard pritibglve predict extremes when the hazard probability
exceeds an optimized hazard threshold, obtained by maxignizusefulness function that takes into account
an investor’s preference for either Type 1 or Type 2 errors.

We organize the paper as follows. In Section 2 we presenehieniew of recurrence interval analysis and early
warning models. In Section 3 we provide the dataset. In 8e@iwe describe the Model and Methods. In Section
5 we present the results of our recurrence interval anafgsidifferent subperiods. In Section 6 we document and
discuss the performance of our out-of-sample predictibmSection 7 we present our conclusions.

2. Literaturereview

2.1. Recurrence intervals analysis

Recurrence intervals, defined as the time periods betwessecative extreme events, have been a topic of exten-
sive research across many fields, financial markets in péaticThe primary contribution of the published research
is an understanding of the statistical regularities in remce intervals. The memory behavior in the underlying
process stronglyfeects the distribution form of recurrence intervals (Chjpbrtiche and Chakrabarti, 2013, 2014).
The interval distribution is exponential if the process hasmemory. Incorporating a long memory into the under-
lying process greatly alters the recurrence interval ihistion. For example, the stretched exponential and Weibul
recurrence interval distribution are analytically and ruitelly confirmed in a process with a long linear memory
(Santhanam and Kaniz, 2008). When a process has a long eantiremory (a multifractual process), the recurrence
intervals are power-law distributed (Bogachev et al., 3007

There is extensive literature that examines the empirisailidution of recurrence intervals in financial markets.
The distribution form is found to be dependent on data squiat type, and data resolution. For example, recurrence
interval distributions with a power-law tail are found iretHaily volatilities in the Japanese market (Yamasaki et al.
2005), in the minute volatilities in the Korean (Lee etlaD0#) and Italian markets (Greco et al., 2008), in the daily
returns in the US stock markels (Bogachev et al., 2007; Bumaand Bunde, 2009), in the minute returns in the
Chinese markets (Ren and Zhou, 2010a), and in the minuteneoin the US|(Li et al), 2011) and Chinese markets
(Ren and Zhau, 2010b). In addition, stretched recurrent\al distributions are also observed in the financial
volatility at different resolutions in a range offiirent markets (Wang and Wang, 2012; Xie et al., 2014; Jianf,et
2016). Theg-exponential distribution has also been observed in therrence intervals between losses in financial
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returnsi(Ludescher etlal., 2011; Ludescher and Bunde, 28ad)the corresponding distribution in the Chinese stock
index future market is a stretched exponential (Suo et @L5p

In addition to the inconsistent findings on the distributidrempirical recurrence intervals, the existence of scal-
ing behaviors in the recurrence interval distribution toe extremes filtered by fiierent thresholds is under debate.
Analyzing the distribution of recurrence intervals hasi¢ated that the extreme event filtering threshold should in-
fluence the recurrence interval distribution (Xie etlal.120Chicheportiche and Chakraborti, 2014; Suo et al.,|2015;
Jiang et al., 2016). This indication was supported when #tienated distributional parameters were found to be
strongly dependent on the thresholds when the recurreteesats are fitted by such distribution functions as the
stretched exponential distributian (Xie et al., 2014; Stialg2015| Jiang et al., 2016) and tipexponential distribu-
tion (Ludescher et al., 2011; Chicheportiche and Chaktaii¥14; Jiang et all, 2016). Ludescher etial. (2011) and
Ludescher and Bunde (2014) propose that the distributioeairrence intervals depends only on the mean recurrence
intervalrg, and not on a specific asset or on the time resolution of thee dat

Only a limited amount of research has used recurrence gitanalysis to assess and manage risks in financial
markets. An improved method for estimating the value at (i&R) based on the recurrence interval is significantly
more accurate than traditional estimates based on thelbwel@cal return distributions (Bogachev and Buhde, 2009;
Ludescher et al., 2011). Another way of predicting extrenm@ng statistics of recurrence intervals is also superior
to the precursory pattern recognition technique when thderying process is multifractal (Bogachev and Bunde,
2009). Defining a conditional loss probability as the ineeo$ the expected waiting time before observing another
extreme determined by the latest recurrence interval, Rdrzhou (2010a) finds that the risk of extreme loss events
is high if the latest recurrence interval is long or short. alhof these studies, however, only in-sample tests are
conducted, and a good performance in in-sample tests cansate good results in out-of-sample tests. In contrast,
Jiang et al.|(2016) recently found that the extreme prediatethod using recurrence interval analysis does provide
good predictions in out-of-sample tests.

2.2. Early warning model of financial crisis

Such events as market crashes, currency crises, and bamkgare financial crisis in which the value of assets
or the equity of financial institutions shrinks rapidly. Bircial crises shock the real-world economy and can cause re-
cessions or depressions if left unchecked. To reduce inMestses and shocks to the economy and to reduce financial
turbulence, muchféort has gone into predicting financial extremes. There isthplta of literature on forecasting
financial crises, especially currency crises and bankrisluand most of the research relies on the early warning
model (EWM) (Kumar and Ravi, 2007; Demyanyk and Hasan, 20T EWM identifies the leading indicators of
emerging financial problems and uses such techniques dagdogirobit) regressions and intelligence approaches to
translate them into the hazard probability of crises odngrin the future, which is used as an early warning signal
that indicates whether a crisis is imminent.

Compared to the vast EWM research predicting bank failundsarrency crisis, early warning models to monitor
stock markets and provide warning signals of market extsgmage received little attention. The contributions of the
existing literature are as follows.

A number of indicators are able to warn of incoming financigre@mes.| Coudert and Gex (2008) show that
risk aversion indicators are useful in predicting stock kearcrises, but not currency crises._Chen (2009) finds
that such macroeconomic indicators as yield curve spreadsrdlation rates can be used to predict stock mar-
ket recessions| Alessi and Detken (2011) show that a glolealsare of liquidity can predict asset price booms.
Herwartz and Kholodilin (2014) show that the price-to-boatio can predict emerging price bubbles. Li €tlal. (2015)
show that such variables of index futures and options as tKedpen interest, dollar volume, put option price, and put
option dfective spread can predict equity market crises. Chang 2@l5) define the average value at risk (AvVaRs)
based on the ARMA-GARCH model with standard infinitely dille innovations as an early warning indicator and
find that AVARs can predict both extreme events and highlatii®l markets. By constructing two investment net-
works based on the cross-border equity and a long-term @ebtises portfolio| Joseph etlal. (2014) identify two
network-based indicators (algebraic connectivity andeedignsity) that could have predicted the 2008 global finan-
cial crisis. | Minoiu et al.|(2015) show that the interconmelttess in the global network of financial linkages could
have predicted the financial crises that occurred durind #78—2010 period.

Composite indices averaged from crisis-related variaide® been proposed to predict financial crises. Ohl et al.
(2006) propose a daily financial condition indicator, masi@atility, to determine whether a stock market is unstabl
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or not. |[Kim et al. [(2009) define and propose a stock markealilitty index based on the filerence between the
current market condition and the past conditions when thiketavas stable. _Son etlal. (2009) propose a model to
predict stock market collapse that signals when a massilregsby global institutional investors occurs. Ahn e1 al.
(2011) integrate all crisis-related variables into a mgntimancial market condition indicator and find that by using
a support vector machine the indicator can detect markstsriyoon and Park (2014) use a market instability index
to capture risk warning levels, quantify the instabilitydéof the current market, and predict its future behavior.

There is a pattern of price trajectories that signals neturé market crashes. Sornefte (2003) develops a log-
periodic power law singularity (LPPLS) model for detectmgobles by combining (i) the economic theory of rational
expectation bubbles, (ii) theffect on the market of imitation and herding behaviors amorgstors and traders,
and (iii) the mathematical and statistical physics of liftions and phase transitions. The faster-than-expaienti
(power law with finite-time singularity) increase in assdtes accompanied by accelerating oscillations is the main
diagnostic that indicates bubbles (Sornette et al., [20@8gkt al.| 2010; _Sornette et al., 2015). Kurz-Kim (2012)
also corroborate that the LPPLS pattern can be used as anveamhing signal for market crashes. In addition,
Yan and van Tuyll van Serooskerken (2015) convert the peces into networks using a visible graph alogorithm
and use the degree-of-price network to measure the magnituithe faster-than-exponential growth of stock prices,
and to predict imminent financial extreme events. On avetfsigendicator performs better than the LPPLS pattern-
recognition indicator.

The patterns of financial crises are modeled to predict fiahegtreme events. Jiang et al. (2016) uncover the
distribution pattern of waiting time between consecutigrket extremes and use it to define a hazard probability that
subsequent extremes will occur within a certain time periboey find that this hazard probability performs well in
out-of-sample predictions. As an analogue to the seisntigitgcaround earthquakes, Gresnigt et al. (2015) adopt
an epidemic-type aftershock sequence model (a type of niyisedf-exciting Hawkes point process) to capture the
occurring dynamics of stock market crashes, which can sexam early warning model for predicting the probability
of medium-term crashes.

3. Data sets

We analyze the daily Dow Jones Industrial Average (DJIAkttom 16 February 1885 to 31 December 2015. The
logarithmic return of the DJIA index over a time scale of oag & defined

() = Ini(t) - Inl(t - 1). (1)

Figured(a) and 1(b) show plots of the logarithmic DJIA asdeéturn, respectively. The DJIA index grows from
30.92 on 16 February 1885 to 17425.03 on 31 December 2013udttal logarithmic return greater than 6. Although
the index exhibits a rising trend throughout sample pertbdre are falling trends and range-bounds ifiedent
subperiods. Figuilg 1 shows six turbulent periods (highdidlin shadow), the Wall Street crash of 1929-1932, the oil
crisis of 1973-1975, the Black Monday crash of 1987-1989diht-com bubble of 2000-2003, the subprime crisis
2007-2009, the 2008 financial crisis, and the European smyredebt crisis 2011-2015.

4, Model and Methods

4.1. Ildentifying extreme returns

An extreme value is usually defined as a peak above a threfR@I@) (Ren and Zhou, 2010b; Alessi and Detken,
2011;[ Christensen and Lli, 2014; Sevim €etlal., 2014; Suog2@l5) that ism times the sample standard deviation.
The parametem is a predefined value (see a summary in Table L of Sevim et@L.4§2 Although identifying
extreme events in terms of POT is widely applied in empirégadlysis, the POT has drawbacks. A snallalue will
produce many “extreme values,” not all of which are trulyrerte, and a large value will indicate genuine extremes
but not necessarily include all of them.

According to extreme value theory, the distribution of erte values diers from that of non-extreme values.
Finding the extreme values is equivalent to finding a grougedd & > x;) that satisfies the extreme value distribution
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Figure 1: (color online). Plots of the logarithmic DJIA indi | (t) and it's diference, returm(t). () Inl(t). (b) r(t).

(Cumperayot and Kouwenberg, 2013)
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whereG(x) is the cumulative distribution of the generalized extrerakie distribution, ang, o, andy are location,
scale, and shape parameters, respectivelyxaigithe extreme value threshold. The inverse of the shapenedea
1/y is simply the tail exponent of the sample distribution.
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Figure 2: (color online). Determining the extreme valuegoldx; for negative, positive, and absolute returns. (a) Plothetail exponents /iy
as a function of the sorted returns. (b) Plots of the KS siedidks with respect to the sorted returns. The KS statistics is dédfas the maximum
absolute dierence between the empirical and fitting tail distributions

We estimate the shape parametersing the Hill estimatoi_(Hill, 1975), which is a non-paranemethod. For a
given sampléxy, X, - - -, Xn}, we sort the data in ascending order,

X1 £ X2) <+ £ X 3)
They value given by the Hill estimator is
1 k
Y= ; [l0g Xn+1-1) = l0g X1, (4)
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wherex, corresponds to the extreme value threshelthat will be determined.

One way to find threshold is by (i) estimating the value ofwith respect to all possible valuesxf and (ii) plot-
ting 1/y againsix to find a range ok; values within which the estimatedjlvalues are stable (Pozo and Amuedo-Dorantes,
2003; Reboredo et al., 2014). In practice, this “stable bieinabetween ¥y andx is difficult to quantify. For ex-
ample, Fig[2(a) uses DJIA returns to illustrate the es@udly as a function of the sorted DJIA (negative, positive,
and absolute) returns. Thelvalues strongly fluctuate and there is no stable range. Asnraltive approach is to
use KS statistics to measure the agreement between theieahaird fitting tail distributions. KS statistics quantify
the maximum absolute filerence between both distributions. The most suitable lbld; is associated with the
best fits to the tail distribution, which has the smallest K&istical values (Clauset etlal., 2009; Jiang et al., 2013)
Figurd2(b) shows the plots of the KS statistilzgg with respect to the sorted (negative, positive, and abspiaturns.
The significant low point in each curve allows us to more gatgtermine the extreme value threshgid

For sake of comparison, we also use the quantiles of 95%%@7ahd 99% to define the extremes. Definitions
based on the quantile are common in the analysis of valuistatVaR). Gresnigt et all (2015) also define the 95%
guantile of returns and the 95% quantile of negative retasnsxtremes and crashes.

4.2. Determining hazard probability

By taking into consideration only the time in which extrenoesur, we base our prediction of extreme returns on
the hazard probabilityV(At|t), which measures the probability that following an extrengieirn occurring at time

in the past there is an additional waiting timebefore another extreme return occurs. Sornette and Ki¢h@o7)
and/ Bogachev et al. (2007) theoretically derived the hapasbability W(At, t) using the distribution of recurrence
intervals between extreme events,

Jt\t+At p(‘r) dr

J7 p()ar
wherep(t) is the probability distribution of the recurring intergalOnce we have the distribution form pfr), the
formula forW(At|t) can be derived from Eq.X(5).

Although the recurrence intervals of Poisson processes@nentially distributed (Yamasaki et al., 2005; Bogaadteal.
2007;. Chicheportiche and Chakraborti, 2014), which gdrera constant hazard probability whanis given, fi-
nancial processes always exhibit such non-Poissoniaactegistics as long-term dependence and multifractadity i
volatilities (Calvet and Fisher, 2002), medium-term degence (e.g., momentum and contrarian behaviors (Chan et al.
1996; Shi et all, 2015)), and multiscaling behaviors in netUCalvet and Fisher, 2002), which leads to that the re-
currence intervals are no longer exponentially distridugand that the derivation of the close distribution formtfoe
recurrence intervals is obstructed (Chicheportiche arak@borti, 2013). The non-Poissonian features also result
in a controversial situation in the empirical analysis o thistribution formula of recurrence intervals. For exam-
ple, the reported distributions range from a power-lawritistion with an exponential cutb(Yamasaki et all, 2005;
Lee et al.| 2006; Greco etlal., 2008; Ren and Zhou, 2010a) teetrised exponential distribution (Wang and Wang,
2012] Suo et all., 2015; Jiang et al., 2016), frogpexponential distribution (Ludescher et al., 2011; Ludesand Bunde,
2014;| Chicheportiche and Chakrabarti, 2014) tg-¥/eibull distribution (Reboredo etal., 2014). Here we eoypl
three common functions to fit the recurrence interval digtions. The three formulas are the stretched exponential
distribution,

W(ATlt) = (5)

p(r) = aexp[-(br)], (6)
theg-exponential distribution,
p(r) = (2- )1 + (q - 1)Ar] "+, (7)
and the Weibull distribution, .
=55 () | ©

By putting the three probability distributions Eqsl (6)-{&o Eq. [3), we obtain the hazard probabiltye for
the stretched exponential distribution,

b _ 1y (L, (bty) - Ty (2, [(t + ALY

WeelAtl) = = r Zl (bé:) )
u Il’

6
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the hazard probabilite(At|t) for g-exponential distribution,

L (q- 1)aat [Fa
Wee(Atlt) = 1 [1 MY , (10)
and the hazard probabilityiy (At|t) for Weibull distribution,
t\" [(t+ AL\
Wi (Att) = 1 — exp[(g) —( 5 ) ] (11)

wherel'|(s, X) andly(s, X) are lower and upper incomplete gamma functions. For fixedll three hazard probabilities
decrease asincreases, which explains the clustering of extremes imé&i@returns and volatilities.

To use the hazard probabili/(At|t) to predict the extremes we must set a hazard threshotd trigger the
early warning indicator of an approaching extreme everthdfhazard probabilityV(At|t) is greater than the hazard
thresholdw;, an alarm that an extreme return will occur during the mextime is activated. The hazard threshold
W; is not an arbitrary given value but—depending on the riskli@veferences of investors—is optimized to balance
between false alarms and not detecting events.

4.3. Evaluating predicting signals

The hazard probabilityV(At|t) becomes a binary extreme forecast that equals one WH{att) exceeds the hazard
thresholdw; and equals zero otherwise. When comparing the forecastesheas with the actual events we see (i)
correct predictions of an extreme return occurring, (iijreot predictions of a non-extreme return occurring, (iii)
missed events, and (iv) false alarms. By counting how manggieach outcome occurs we can compute a range of
evaluation measurements including the correct predictit®, the false alarm rate, and the accuracy. Our primary
interest here is correct prediction rddeand false alarm ratd, which are defined as

L N1o

=—\ A= ——7——| (12)
No1 + N11 Noo + N1o

wheren;; is the number of extreme returns that are correctly predijctg the number of non-extreme returns that are
correctly predictedng; the number of missed events, ang the number of false alarms. Following Gresnigt et al.
(2015), we use the Hanssen-Kuiper skill score (KSS) to astesvalidity of extreme forecasts. The KSS is the
differenceD — A between the correct prediction rate and the false alarm fite KSS encompasses both missing
occurrence errors and false alarms errors. Decreasing teserrors increases the value of KSS.

Our goal is to find a balanced signal for investors when thejepreither Type 1 and Type 2 errors and to take
into account whether they use or discard the predictiveadigri-ollowing Alessi and Detkeh (2011) we define a loss
function when a hazard probability threshold is added iestieeme forecasts,

L(6) = 6(1 - D) + (1 - )A, (13)

where 1- D is the ratio of missing events (Type 1 errors) ahdk the ratio of false alarms (Type 2 errors). The
parameted is the investor preference for avoiding either Type 1 or TR@erors|(El-Shagi et al., 2013).
We further define the usefulness of extreme forecasts as

U(6) = min(g, 1 - 6) — L(6), (14)

where ming, 1 — 6) is the loss faced by investors when they ignore the prediciignals, andl (6) is the extent
to which the extreme forecasting modefers better performance than no model atlall (Betz let al., R OExdtreme
forecasts are useful wh&h(6) > 0, which means that losses using the forecasts are lowemthan the forecasts are
ignored. The usefulness definition here ignores any infledéram the data imbalance, i.e., that non-extreme events
occur much more frequently than extreme events (Sarlin3d2Bétz et al., 2014).

Given hazard probabilitW(At|t), we need a hazard thresheldthat maximizes usefulnesH6) (Duca and Peltonen,
2013; Babecky et al., 2014; Betz et al., 2014). ChristemsehlLi (2014) optimizes the threshold by minimizing the
noise-to-signal rati®/A. When we optimize the usefulness there is a marginal ratatadtgution between Type 1
and Type 2 errors, but this marginal rate is not clear in therdpation of the noise-to-signal ratio, and this can resul
in an unacceptable level of Type 1 and Type 2 errors (Alessietken, 2011; El-Shagi etlal., 2013; Babecky et al.,
2014).



4.4. Estimating distributional parameters
By introducing the stretched exponential function of Eq.ig8o the probability density functioyf;w p(r)dr =1, we
obtain

Ardy-og (15)
pb

wherel'(x) is the Gamma function. Podobnik et al. (2009) and BogachevBande|(2009) describe the one-to-one
correspondence between the average recurrence intgraald the percentage of extremes,

1 _ 1 B 1
Fopndr 1= [T prydr - 1-Q°

whereQ is the quantile that is used to define the extreme values.hetjuation to be valid, the extremes must be
positive. When extremes are negative, we convert them giipes by multiplying by-1.|Chicheportiche and Chakrabbrti
(2014) find that the average recurrence interval is universspective of the dependence structure of the undeglyin
process. From the definition of expectation, the averagerreace interval can also be writteg = fO+°° Tp(r)dr.

For the stretched exponential distribution, we have

TQ = (16)

ST =ro. (17)
By solving Egs.[(1b) and{17) and usipgandrq for the stretched exponential distribution, parameteasidb
are
_ M@ o @) (18)
F/pPrg’ ~ TA/Wrq

This strategy reduces the number of estimated parametendfiree to one.
The mean of thg-exponential distribution is /{A(3 — 2q)]. For there to be a meag,must be less thary3. Then

the parametet can be found using andrq,

1

The expectation for the Weibull distributiong$'(1 + 1/«). Similarly, thes can be expressed in termsoéindrg,

TQ
r(1+1)

B= (20)

We need to estimate only one parameter for the three distsitsmwhen they are used to fit the recurrence intervals.
We adopt the maximum likelihood estimation (MLE) to estim#te distributional parameters. The logarithmic
likelihood functions are the stretched exponential disttion

n
InLse = nlna— Z(bﬂ)“, (21)
i-1
the g-exponential distribution
1 n
InLge = nin[A(2 - —_— n[l+ (g- 1)At], 22
G [(q)]q;[(qm (22)
and the Weibull distribution |
T
InL _nIn—+ - 1In—— —1 1, 23
w dfe-n 3] (23)

in which n is the number of recurrence intervals.
Taking the stretched exponential distribution as an exanthke logarithmic likelihood function Ibsg is a one-
variable function ofu. Although usually we can solve the equation by taking the éirder derivative of In.gg with
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respect tq to find the solution that maximizes the likelihood, here thalgtical expression of the derivative ofllige
with respect tqu is more dfficult to obtain. We thus discretizein the (Q 1) range with a step of 18 and calculate
the logarithmic likelihood function for each discrete valof u. Theu associated with the maximum value ofLg:
is the maximum likelihood estimation. In the same way wenesté the parametecse (1, 1.5) anda € (0, 1) for the
g-exponential and Weibull distributions, respectively.

5. Recurrenceinterval analysis

In order to test the validity of our extreme-return-preiistmodel, we use the data before each turbulent period to
calibrate the model and each turbulent period that follaw®tt-of-sample forecasting. We obtain six in-sample cal-
ibrating periods: 1885-1928, 1885-1972, 1885-1986, 18839, 1885—2006, and 1885—2010 Their out-of-sample
predicting periods are 1929-1932,1973-1975, 1987-128®-2003, 2007—-2009, and 2011-2015, respectively. In
each in-sample calibrating period, we identify the extrealae threshola; and extract the extreme values associated
with x;.. We also locate the extreme values based on the quantikhtbics of 95%, 97.5%, and 99%. For each group
of extreme values, we estimate the waiting time betweenemirisze extreme values, i.e., the recurrence interval.
We take positive, negative, and absolute returns into addowur analysis because they may have connections with
specific trading strategies. The investors holding longtjpos in the market are more sensitive to extreme negative
returns and those holding short positions less sensitive.

Table1 lists the recurrence intervals foffdrent thresholds from fierent calibrating periods. Note that unlike the
observations from the quantile threshold, the observafiamm the extreme value threshold do not increase monoton-
ically as the calibration periods are expanded. The sharpad® in the number of recurrence intervals, for example
from Panel B to Panel C for positive returns and from Panel Bawel D for absolute returns, indicates that there is
a dramatic increase in the extreme value threshold, suggehiat the market after 1973 became more volatile [see
Fig.[d(b)]. The mean values of the recurrence interval aongty influenced by the extreme values, as indicated by
the large gap between the means and medians. Because theeskagvpositive and the kurtosis is much greater than
3, the recurrence intervals also exhibit a right-skewedfanthiled distribution. Thisidirms the finding that the recur-
rence intervals obey a stretched exponential (Xie let all428uo et al., 2015%; Jiang et al., 2016) ag-axponential
distribution (Ludescher et al., 2011; Ludescher and Buf@#&4; Chicheportiche and Chakraborti, 2014).

We see a significantly positive autocorrelation of lag 1 i@ % column in Panel A and significant Ljung-Box
Q statistics at the 0.01 level for the three types of retumaddition the autocorrelation of lag 5 is also positive whe
returns are positive. This indicates that there are auteladions at short and long lags in the recurrence intervals
at the 95% quantile threshold. In the 99% column the autetations are close to 0 and the Ljung-Box Q statistics
are insignificant for positive, negative, and absoluterretusuggesting that there are no correlations in the recoer
intervals. The results in both columns also show that thecautelation of recurrence intervals gradually decreases
to insignificance when the quantile threshold increase® 86% to 99%, which is also seen in the columnscof
and 97.5% quantile. In Panels B through F, the autocoroglatodficients at Lags 1 and 5 are all positive and
statistically significant, indicating the presence of sg@utocorrelations in the recurrence intervals. In addjtthe
Ljung-Box Q statistics of lag 30 are statistically signifitat the 1% level, implying that significant autocorrelago
are also prevalent when recurrence interval lags are lofigese results are supported by the long-memory behavior
results of a detrended fluctuation analysis (DFA) of the nemce intervals (Ren and Zhou, 2010b; Xie et al., 2014;
Suo et al., 2015).

The recurrence intervals are fitted by the stretched exg@mbdistribution,g-exponential distribution, and Weibull
distribution in each in-sample calibrating period. FigBshows the probability distribution of the recurrenceiinads
between the negative extreme events in the 99% quantilaglthre 1928 to 1985 in-sample calibrating period. The
best fits to the three fitting distributions are also plottedsalid curves for comparison. Note that the stretched
exponential distribution gives the best fit. Note also thatgtretch exponential fits are most likely, which also agjree
with the distribution of recurrence intervals between tegative and absolute extreme returns in the Chinese markets
and the US markets (Wang et al., 2009; Ren and Zhou, 2010stXik 2014 Suo et al., 2015). Because all the
distribution curves are very similar, we do not show the resnce intervals in other calibrating periods.

Table[2 shows the estimated parameters of three fittingildlisions of the recurrence intervals obtained from
different return types andftiérent thresholds. To assess the validity of the distrilmatidits, the logarithmic likeli-
hoods are also listed. The likelihoods of the distributidthwhe maximum value are show in bold to indicate that
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Figure 3: (color online). Distribution of the recurrenceeirvals. This figure presents the empirical distributiohghe recurrence intervals
between negative extreme returns in the quantile of 99%tentest fits to the three distributions, stretched expoaledistribution,g-exponential
distribution, and Weibull distribution. The analysis igfeemed in the period from 1885 to 1928.

the corresponding distribution gives the best fit. Panel éwshthat the best recurrence interval fits transition from
the g-exponential distribution to the stretched exponentiatriiution as the threshold is increased. This distribu-
tion transition behavior is also seen in the recurrencevate in the minute volatilities in the Chinese stock masket
(Jiang et al., 2016). Note that in Panels B—F the maximuntiiked comes from theg-exponential distribution for

all the recurrence interval fits. Ludescher etlal. (2011)lamtkscher and Bunde (2014) also found that the recurrence
intervals between extreme loses are captured by-teponential distribution. The possible explanation for tack

of maximum likelihoods for the stretched exponential disition in Panels B—F is that the 99% quantile threshold is
not suficiently large for a distribution transition fromcpexponential to a stretched exponential to occur.

Table[2 shows a monotonic trend between the estimated pwenand the quantile thresholds for each type of
returns, such that anda decrease angincreases as the quantile threshold increases. Our respi®rt the depen-
dence of the recurrence interval distribution on the quatitreshold.(Xie et al., 2014; Chicheportiche and Chakitiibo
2014; Suo et all, 2015; Jiang et al., 2016). For the same ipiimeshold and the same type of return, we also find
that the estimated distributional parameters are closadb ether in Panels B—F, which indicates that the recurrence
interval distribution depends solely on the quantile (Lsateer et all, 2011; Ludescher and Bunde, 2014; Jiang et al.,
2016).

When we obtain the distribution parameters, we can then fiadheoretical curve of the hazard function for the
Wse, Wow, andWiy by putting the parameters into the theoretical formula fazdrd probabilityW(At|t) given by
Egs. [9),[(ID), and(11) for the stretched exponentialibigtion, g-exponential distribution, and Weibull distribution,
respectively. On the other hand, using Eq. (5) we can evathatempirical hazard functioNemp,

#t<7<t+Al)
#(r > 1) ’

where the denominator #(> t) is the number of recurrence intervals with values gredtant, and the numerator
#(t < T <t + At) the number of recurrence intervals within the rangedf{ At].

Figurd4 shows a plot of the hazard probabilli§At|t) as a function of the elapsing timéor the extreme negative
returns obtained from the 99% quantile threshold whee: 1. It shows the empirical hazard probability estimated
from the real data (filled markers) and the analytical hapaptabilities obtained from the theoretical equation$dso
curves). Note that although all the theoretical lines doavetrlap on the same curve they all decrease with respect to
the elapsing timg, as does the empirical hazard probability. The statistiepaor and the empirical hazard probabil-
ity strongly oscillates, but for a given valuetahe analytical hazard probability values are comparabtledse of the
empirical hazard probability, suggesting that the anedythazard probabilities agree with the empirical hazaothpr
bility. These decreasing patterns in the hazard probghila also seen in energy futures (Xie etlal., 2014), spokinde
and index futures (Suo etlal., 2015), and stock returns (Rdrzhou, 2010¢; Jiang etlél., 2016), indicating that the
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Figure 4: (color online). Plots of hazard probability(At|t) with At = 1. The hazard events correspond to the extreme negativesetbtained
from the quantile threshold of 99%. The analysis is perfatinehe period from 1885 to 1928.

probability of observing a follow-up extreme return decesas time elapses. This reveals the existence of extreme
return clustering and a potential dependent structuredriggering processes of the extreme returns, which stppor

the argument that “many extreme price movements are trgghley previous extreme movements” and that “larger
extremes occur more often after big events or frequent sxtbah after tranquil periods” (Gresnigt et al., 2015). This

is caused by the positive herding behavior of investors aghdogenous growth of instability in financial markets

(Jiang et al, 2010; Gresnigt et al., 2015). Because thétseme all similar, we do not show the hazard probabilities
W(At|t) for different thresholds and other types of return.

6. Predicting extremereturns

Using hazard probabilities and an optimized hazard thidske build a model to predict the occurrence of positive,
negative, and absolute extreme returns in financial mamkiksén a given time period. The hazard probabilities
are specified by the distribution parameter of the recugeéntervals between extreme events in the return history.
The indicators of incoming extreme events are generated Wieehazard probability exceeds the optimized hazard
threshold, and this maximizes the usefulness of thesemagtferecasts. We perform out-of-sample tests to evaluate
the predictive power of this extreme-return-predictiordmiaas follows.

1. We mark extreme events according to a specified extrerue walquantile threshold during a given in-sample
calibrating period.

2. Fitting the recurrence intervals between the markedemédrevents, we estimate the stretched exponential dis-
tribution, g-exponential distribution, or Weibull distribution paraters.

3. Using the estimated distribution parameters in the mgda calibrating period, we determine the hazard prob-
ability W(At|t) and find the optimized hazard threshaldby maximizing the usefulneds$(d).

4. Using the distribution parameters and optimized haZargshold from the in-sample calibrating period, we
forecast the indicators of incoming extreme events witimretperiodAt and evaluate the forecasting signals.

To find the optimized hazard threshold, we vary the hazarestiold in [01] to obtain all possible pairs of
(A,D). Plotting A with respect toD, we obtain the well-known “receiver operator charact&itROC) curve
(Bogachev and Bunde, 2009). Using the ROC curve we measeikaltidity of the predicting power of early warning
models. Figurgl5 shows the ROC predictive curves of extrezgative returns for in-sample tests and out-of-sample
tests. The in-sample (out-of-sample) period is from 188828 (from 1929 to 1932). The diagonal line is a random
guess. Note that the ROC curves of the three fitting disiobgtare overlap exactly on the same curve for in-sample
and out-of-sample tests, suggesting that the results ddepand on the distribution formula used to fit the recurrence
intervals. All ROC curves are above the random guess lirdicéting that both in-sample and out-of-sample tests

11



have a better predictive power than a random guess. Notahasthe out-of-sample curves are lower than the in-

sample curves, which confirms the observation that outofgge predictions are usually worse than in-sample tests
(Lang and Schmidt, 2016). Because they all exhibit verylsingatterns, we do not show the ROC curves obtained
from different thresholds andftirent types of extreme returns.
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Figure 5: (color online). ROC curves of in-sample tests amdod-sample predictions. The extreme returns corresporide negative returns in
the quantile of 99%. The in-sample period covers from 188B®8. The out-of-sample period spans from 1929 to 1932.

Because all three fitting distributions give the same RO@e&ure evaluate only the in-sample and out-of-sample
performance of the extreme return prediction model fortexponential distribution. We find the optimized hazard
threshold, which maximizes the usefulness in the in-samglibrating period, and estimate such performance mea-
surements as the rate of correct predictions, the falsenatate, the usefulness, and the KSS score during in-sample
and out-of-sample periods. The results are shown in Table 3.

First, we observe that all usefulnédsvalues are positive except in the positive returns in th&®/quantile in
Panel A and in the 95% quantile in Panel B, indicating thatmiméssing-event and false-alarm errors are weighted
equally our model provides more accurate results than thehmeark of ignoring the forecasting signals. Second, ex-
cluding the above two exceptions all KSS scores are grdaarQ, which corresponds to random guessing, indicating
that the rate of correct predictions exceeds that of faksered. Third, note that in most of the results, thand KSS
scores of in-sample performance are larger than those affesample performance, which is in consistent with the
observation that out-of-sample predictions are infendht in-sample tests. We do find one exception in Panel E and
nine exceptions in Panel F in which the out-of-sample piefis surpass the in-sample tests, and this indicates the
predictive power of the testing model. The results also yntipht the more data available for the in-sample tests, the
better the performance of out-of-sample predictions, higds further supported by the predictions during two récen
turbulent periods, which were better than predictionsrynther periods. Fourth, note that the predictions of the
extreme returns in the 99% quantile produce a lower falgenalate and a higher correct prediction rate than those in
the 95% and 97.5% quantiles, and this produces high usefibred KSS scores. The results imply that the extreme
events with a high quantile can be predicted more accuratelyle[1 shows the statistics of Ljung-Box Q tests that
exhibit a decreasing pattern as quantile thresholds iseneeall panels, indicating that increasing the quantilesh-
old could decrease the memory strength in the extremes. @leai¢he potential dependence structure in the extreme
series in our model because the larger the quantile threéstie weaker the memory in extremes and the better the
forecasting performance. Compared to the model based ddahées processes (Gresnigt etlal., 2015) our model
has the advantage of fewer model parameters, easier @atimatthods, and a faster prediction implementation.

7. Conclusion

We have performed a recurrence interval analysis of finaegteemes in the DJIA index during the period from
1885 to 2015. We determine the extreme returns accordingéwdy proposed extreme identifying approach, as well
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as quantile thresholds. With the extreme identifying apphowe are able to locate the optimal extreme threshold
associated with the minimum KS statistics of tail distribos. We find that the recurrence intervals, which are the
periods of time between the successive extremesttdrdint types of returns and thresholds, follow-axponential
distribution. This allows us to analytically derive the hed probabilityW(At|t) that within the time intervaht since

the last extreme event that occurred at tinvee will observe the next extreme event. The analytitv@ht|t) value
agrees well with the empirical hazard probability estirddtem real data.

Using the hazard probability, we develop an extreme-refuediction model for forecasting imminent financial
extreme events. When the hazard probability is greater tharazard threshold, this model can warn when an
extreme event is about to occur. The hazard threshold isnaotéy maximizing the usefulness of extreme forecasts.
Both in-sample tests and out-of-sample predictions retrestl the signals generated by our prediction model are
better statistically than the benchmark of neglectingetségnals and that the input distribution formula used tdét t
recurrence intervals has no influence on the final outcomeio&arly warning model. Although in most cases the
predictive performance of in-sample tests are better thandf out-of-sample predictions, expanding the in-sample
calibrating period could yield out-of-sample predictidhat are better than in-sample tests. In addition, incnegsi
the extreme-extracting threshold could improve the ptediqgower of our model in both in-sample tests and out-
of-sample predictions. Our results may shed new light therieence of extremes in financial markets and on the
application of recurrence interval analysis to forecagtinancial extremes.
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Table 1: Descriptive statistics of the recurrence intexvalhis table reports number of observations (obsv), meauljan, standard deviation

(stdev), skewness (skew), kurtosis (kurt), autocori@tafrho), Ljung-Box Q test statistic (LBQ) of the return intals between the extreme events,
defined by the extreme value thresholggind quantile thresholds (95%, 97.5%, and 99%). The autlation codicients are calculated at lag 1
and 5. The Ljung-Box Q tests are conducted at lag 30. Pandisgpfesent the results fromftirent in-sample calibrating periods.

Negative return Positive return

Absolute return

Xt 95% 97.5% 99% Xt 95% 97.5% 99% Xt 95% 97.5% 99%
Panel A: in-sample calibrating period (1885 — 1928)
obsv 278.0 652.0 326.0 130.0 477.0 652.0 326.0 130.0 145.0 2.065 326.0 130.0
mean 46.950 20.0 40.0 100.0 27.363 20.0 40.0 100.0 90.014 0 20. 40.0 100.0
median 12.0 6.500 11.0 21.0 12.0 9.0 16.0 23.500 12.0 5.0 06.5012.0
stdev 91.524 38.122 78.407 173.978 44.790 32.100 78.043 .69B4 182.677 46.844 94819 201.517
skew 4.713 6.703 5.131 3.859 3.782 4.286 6.067 3.677 3.704 8529. 6.000 3.402
kurt 33.706 80.856 43.300 24.150 20.607 27.888 55.805 B0.58 20.540 157.674 57.471 16.804
rho(1) 0.120* 0.121* 0.140*  0.070 0.257 0.218** 0.081 -0.028 0.105 0.143* 0.090 0.082
rho(5) -0.064 0.062 -0.053 -0.054 0.083 0.112** 0.142* -0.086 —-0.040 0.005 0.041 -0.058
Q(30) 48.876" 66.026™* 36.545 18.890 131.947 143.181** 41.158 14.910 18.024 53.899 30.233 10.549
Panel B: in-sample calibrating period (1885 — 1972)
obsv 2032.0 1254.0 627.0 250.0 1171.0 1254.0 627.0 250.0 6.254 1254.0 627.0 250.0
mean 12.349 20.0 40.0 100.0 21.430 20.0 40.0 100.0 9.856 20.0 40.0 100.0
median 4.0 5.0 6.0 8.0 7.0 7.0 8.0 12.0 3.0 3.0 4.0 6.0
stdev 22.546 43.451 110.804 251.118 48.351 43.793 105.5281.123 23.928 59.488 138.074 276.742
skew 5.010 5.606 7.684 4.409 8.208 7.289 6.213 6.072 7.690 3067. 7.189 4.007
kurt 41.635 47.837 84.779 26.219 110.246 83.273 50.569 180.6 89.933 73.524 65.717 19.536
rho(1) 0.193* 0.295*  0.140™  0.532** 0.310** 0.303**  0.193** 0.215** 0.219* 0.194*  0.078 0.311*
rho(5) 0.112* 0.098**  0.245**  0.090 0.117 0.106**  0.131** 0.309*" 0.158** 0.085**  0.110*  0.407**
Q(30) 843.689* 755.150" 206.777** 111.717* 753.825* 733.710" 432.78%* 82.437" 1153.606* 585.612™ 225.441** 110.987**
Panel C: in-sample calibrating period (1885 — 1986)
obsv 716.0 1431.0 715.0 286.0 1360.0 1431.0 715.0 286.0 .@822 1431.0 715.0 286.0
mean 39.989 20.0 40.0 100.0 21.053 20.0 40.0 100.0 10.146 0 20. 40.0 100.0
median 7.0 5.0 7.0 8.0 8.0 7.0 9.0 12.0 3.0 4.0 4.0 6.0
stdev 99.845 43.138 99.905 253.139 46.590 44787 102.5712.275 24.320 58.219 128.684 270.823
skew 5.139 5.507 5.135 4.222 8.144 8.664 6.099 5.977 7.815 1827. 6.986 3.832
kurt 34.807 45.983 34.762 24.000 111.272 124.207 50.108 6480. 93.261 72.012 66.050 18.315
rho(1) 0.242* 0.284*  0.242**  0.565** 0.296** 0.259**  0.196**  0.221** 0.233* 0.205*  0.098**  0.213**
rho(5) 0.176* 0.117* 0.174* 0.307*" 0.114** 0.130** 0.136** 0.271* 0.148* 0.075**  0.080* 0.237**
Q(30) 276.588* 667.824" 277.421** 249.183" 791.779* 736.976™ 450.736" 101.007** 1277.446* 597.888" 238.276"* 182.886"*
Panel D: in-sample calibrating period (1885 — 1999)
obsv 782.0 1595.0 797.0 319.0 1448.0 1595.0 797.0 319.0 .a421 1595.0 797.0 319.0
mean 40.816 20.0 40.0 100.0 22.043 20.0 40.0 100.0 22.462 0 20. 40.0 100.0
median 8.0 6.0 7.0 8.0 8.0 8.0 9.0 13.0 4.0 4.0 4.0 5.0
stdev 97.920 41.851 96.353  248.548 47.351 43.650 99.684 .3@r0 62.523 56.713 127.547 270.274
skew 5.055 5.511 5.155 4.210 7.660 8.550 6.076 5.746 6.589 1487. 7.004 3.903
kurt 34.510 46.938 35.971 23.986 99.818 124.073 50.734 1469 60.862 72.525 65.444 18.877
rho(1) 0.256* 0.278™  0.252**  0.548** 0.327** 0.259**  0.228**  0.199** 0.203** 0.214* 0.089*  0.206**
rho(5) 0.176** 0.13r**  0.189* 0.273** 0.142** 0.139** 0.131** 0.328™" 0.081** 0.082**  0.148* 0.203**
Q(30) 277.454* 675.904" 303.462"* 254.647*  849.279* 790.724™ 467.774" 102.416™ 677.953* 657.786™ 195.112"* 154.916™
Panel E: in-sample calibrating period (1885 — 2006)
obsv 834.0 1683.0 841.0 336.0 1539.0 1683.0 841.0 336.0 .a518 1683.0 841.0 336.0
mean 40.380 20.0 40.0 100.0 21.882 20.0 40.0 100.0 22.185 0 20. 40.0 100.0
median 8.0 6.0 8.0 8.0 8.0 8.0 9.0 13.0 4.0 4.0 4.0 6.0
stdev 95.125 41.361 94.757  241.773 46.746 43.235 102.4165.0Q% 60.659 56.179 124.604 264.232
skew 5.213 5.472 5.240 4.322 7.580 8.417 6.467 5.925 6.795 1627. 7.148 3.985
kurt 36.645 46.813 36.980 25.403 99.236 122.461 56.734 150.0 64.680 72.654 68.333 19.714
rho(1) 0.258* 0.295*  0.254** 0.536** 0.337** 0.286** 0.282**  0.199** 0.206™** 0.221**  0.102**  0.204**
rho(5) 0.178* 0.105**  0.193** 0.278** 0.151** 0.141**  0.081* 0.251** 0.083** 0.091**  0.058 0.204**
Q(30) 304.082* 873.194* 304.969** 260.485* 980.303** 875.671** 491.718" 106.786** 743.033** 673.330** 200.311** 158.391**
Panel F:in-sample calibrating period (1885 — 2010)
obsv 858.0 1734.0 867.0 346.0 924.0 1734.0 867.0 346.0 0540. 1734.0 867.0 346.0
mean 40.425 20.0 40.0 100.0 37.538 20.0 40.0 100.0 22,523 0 20. 40.0 100.0
median 7.0 6.0 7.0 8.0 9.0 8.0 9.0 12.0 4.0 4.0 4.0 5.0
stdev 111.346 42.218 109.226  259.435 97.671 43.424  104.9389.598 68.579 59.451 132.133 275.164
skew 7.095 5.598 7.081 4.464 6.397 8.211 6.287 5.680 8.097 7617. 6.888 3.898
kurt 71.630 49.644 72.329 26.510 56.115 117.442 52915 886.1 91.999 83.058 61.436 18.701
rho(1) 0.146* 0.296™  0.161** 0.495** 0.308** 0.297**  0.302** 0.184** 0.218* 0.201** 0.112** 0.165**
rho(5) 0.174* 0.088"  0.132**  0.234™ 0.08416 0.138* 0.19%** 0.218* 0.113** 0.099**  0.057 0.249*
Q(30) 227.668* 877.559** 215.488** 223.093* 552.569** 994.993** 465.599"* 99.923** 565.484** 613.619** 218.575" 146.530*




Table 2: The estimated parameters and the maximum logacitlikelihoods of the fits to the stretched exponential dstiion, g-exponential

distribution, and Weibull distribution for recurrenceémtals. The likelihoods with the maximum value are hightigghin bold. The recurrence
intervals are determined according to the extreme valeskimidsx; and quantile thresholds (95%, 97.5%, and 99%) in the negainsitive, and
absolute returns. Panels A—F present the results fréi@reit in-sample calibrating periods.

Negative return Positive return Absolute return
Xt 95% 97.5% 99% Xt 95% 97.5% 99% Xt 95% 97.5% 99%

Panel A: in-sample calibrating period (1885 — 1928)

i 0.350 0.461 0.360 0.280 0.513 0.573 0.451 0.307 0.227 0.383 .2840 0.215
InLse —1264.269 —2496.914-1434.225 -674.465 -2000.951-2553.728-1473.376 —-680.297 —700.468 —2424.402-1365.008 -634.993
q 1.408 1.357 1.405 1.435 1.316 1.286 1.345 1.423 1.461 1.399 .4431 1.465
INLge —1266.953-2485.817 -1434.396 —684.927 -1996.519 -2544.451 -1471.303 -685.261 -711.080-2411.504 -1360.696 -647.154
@ 0.625 0.718 0.634 0.563 0.757 0.802 0.708 0.587 0.498 0.651 .5560 0.483

InLw —1275.718-2523.094-1448.428 -678.027 —2014.244-2571.295-1483.428 -684.853 -707.857-2458.188-1386.102 —641.552
Panel B: in-sample calibrating period (1885 — 1972)

u 0.512 0.398 0.294 0.207 0.433 0.451 0.315 0.229 0.452 0.312 .2300 0.177
InLsg —6870.875-4662.711-2602.562-1173.240 —-4501.362-4759.720-2654.990-1205.945 -7787.724-4359.017-2384.191-1098.368
q 1.336 1.396 1.442 1.473 1.373 1.363 1.429 1.464 1.373 1.438 .4671 1.483
InLge —6805.955 -4610.407 —2571.429 —1165.118 —4463.297 —-4718.507 —-2632.444 —1200.464 —7624.907 —4248.552 —2312.401 -1081.346
a 0.758 0.663 0.563 0.465 0.692 0.706 0.585 0.492 0.704 0.577 .4870 0.422

InLw -6957.774-4735.734-2650.054-1195.844 —4559.812-4820.370-2696.831-1226.002 -7951.129-4469.435-2453.110-1126.514
Panel C: in-sample calibrating period (1885 — 1986)

u 0.302 0.409 0.302 0.208 0.449 0.463 0.325 0.229 0.464 0.322 .2370 0.179
InLse —3011.043-5359.481-3008.233-1348.487 —5236.811-5455.453-3056.744-1382.459 -8773.031-5036.183-2770.080-1272.260
q 1.437 1.388 1.437 1.473 1.362 1.354 1.424 1.464 1.365 1.433 .4651 1.482
InLge —2980.534 -5305.811 —2978.056 —1342.692 —-5195.029 —-5410.298 -3035.525 —1377.135 -8608.555 —4924.461 —-2701.469 —1258.164
a 0.571 0.672 0.571 0.465 0.705 0.715 0.594 0.493 0.714 0.587 .4960 0.426

InLw —-3062.519-5438.722-3059.523-1373.600 —5300.912-5521.812-3101.494-1405.021 -8944.445-5155.682-2843.627-1302.926
Panel D: in-sample calibrating period (1885 — 1999)

u 0.307 0.419 0.308 0.208 0.457 0.477 0.335 0.233 0.314 0.329 .2410 0.178
InLsg  —3325.185-6004.925-3375.885-1506.977 —-5657.201-6104.959-3430.370-1552.323 —-5155.298-5655.759-3115.198-1416.369
q 1.435 1.382 1.434 1.472 1.357 1.345 1.418 1.462 1.435 1.429 .4631 1.482
InLge —3298.423 -5953.468 -3348.336 —-1501.836 -5615.392 -6055.245 —3408.686 —1548.247 -5054.298 -5540.644 —3047.366 —1403.017
a 0.577 0.681 0.578 0.467 0.711 0.726 0.604 0.498 0.581 0.595 .5020 0.424

InLw —3378.117-6087.515-3429.832-1534.442 -5722.565-6175.819-3477.890-1576.590 -5271.119-5783.800-3193.905-1450.209
Panel E: in-sample calibrating period (1885 — 2006)

u 0.310 0.422 0.311 0.214 0.455 0.472 0.334 0.235 0.318 0.331 .2410 0.181
InLsg  —3529.464-6339.332-3552.077-1598.990 —-5994.090-6429.892-3604.772-1636.240 —-5476.112-5959.563-3276.784-1502.338
q 1.434 1.381 1.433 1.470 1.359 1.350 1.419 1.461 1.434 1.429 .4631 1.481
InLge —3498.388 -6285.001 —-3519.699 —1595.926 -5947.393 -6375.880 —3577.750 -1632.522 -5364.948 -5835.504 —3203.838 -1491.093
a 0.582 0.684 0.582 0.475 0.710 0.723 0.603 0.501 0.585 0.597 .5030 0.430

InLw —3585.778-6425.731-3609.157-1626.494 —6064.641-6506.061-3656.471-1661.245 -5599.175-6094.643-3359.717-1536.739
Panel F: in-sample calibrating period (1885 — 2010)

u 0.305 0.421 0.308 0.208 0.338 0.469 0.333 0.232 0.312 0.330 .2370 0.177
InLse —3616.004-6527.378-3651.908-1632.635 —3910.386-6620.877-3712.984-1682.142 -5558.880-6135.844-3356.883-1529.646
q 1.436 1.382 1.435 1.472 1.418 1.352 1421 1.462 1.437 1.429 .4651 1.483
InLqe —3577.687 —6465.676 —3613.537 —1625.505 —3875.292 —-6562.953 -3680.043 —1677.062 —5441.337 —-6002.342 —3273.580 —1512.333
a 0.574 0.682 0.577 0.466 0.606 0.720 0.601 0.497 0.577 0.595 .4970 0.422

InLw —3678.097-6619.216-3714.149-1663.022 —3969.370-6701.078-3768.877-1708.772 —5688.562-6278.192-3446.235-1567.267
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Table 3: In-sample and out-of-sample performance of theemé return predicting model. False alarm rates, corretiging rate, usefulness,
and KSS score is listed for in-sample tests and out-of-saymgldictions. The predictions that out-of-sample pertoroes are better than in-sample
performances are highlighted in bold. The recurrencevaterare determined according to the extreme value thresikohnd quantile thresholds
(95%, 97.5%, and 99%) in the negative, positive, and absogitirns. Panels A—F present the results froffedint in-sample calibrating periods
and out-of-sample predicting periods.

Negative return

Positive return

Absolute return

EVT 95% 97.5% 99% EVT 95% 97.5% 99% EVT 95% 97.5% 99%
Panel A: in-sample calibrating period (1885 — 1928yt-of-sample predicting period (1929 — 1932)
in: A 0.256 0.319 0.286 0.228 0.317 0.382 0.494 0.263 0.159 0.207.2420 0.142
out: A 0.807 0.814 0.834 0.895 0.821 0.862 0.967 0.773 0.719 0.699.8050 0.721
in: D 0.616 0.623 0.657 0.626 0.543 0.602 0.755 0.656 0.637 0.582.7130  0.626
out: D 0.953 0.949 0.967 0.980 0.891 0.898 0.963 0.963 0.960 0.935.9750  0.958
in: U 0.180 0.152 0.186 0.199 0.113 0.110 0.131 0.197 0.239 0.187.2350  0.242
out: U 0.073 0.068 0.066 0.042 0.035 0.018 -0.002 0.095 0.121 0.118 0.085 0.11¢
in: KSS 0.361 0.304 0.372 0.398 0.226 0.220 0.261 0.393 0.478.375 0.470 0.484
out: KSS 0.146 0.135 0.133 0.084 0.069 0.036 —0.005 0.190 0.241 0.236 0.170 0.23€
Panel B: in-sample calibrating period (1885 — 1978)t-of-sample predicting period (1973 — 1975)
in: A 0.413 0.332 0.263 0.120 0.316 0.337 0.257 0.191 0.303 0.170.1590  0.075
out: A 0.760 0.634 0.377 0.111 0.677 0.676 0.608 0.361 0.641 0.360.2450  0.042
in: D 0.727 0.729 0.760 0.725 0.657 0.664 0.702 0.757 0.723 0.700.7990 0.737
out: D 0.824 0.750 0.769 0.250 0.776 0.782 0.714 0.692 0.780 0.671.7890  0.667
in: U 0.157 0.199 0.248 0.302 0.170 0.163 0.222 0.283 0.210 0.265.3200 0.331
out: U 0.032 0.058 0.196 0.069 0.049 0.053 0.053 0.166 0.069 0.155.2720  0.312
in: KSS 0.314 0.397 0.497 0.605 0.341 0.327 0.445 0.566 0.42@.531 0.640 0.663
out: KSS 0.064 0.116 0.392 0.139 0.099 0.106 0.107 0.331 90.130.311 0.545 0.624
Panel C: in-sample calibrating period (1885 — 1986)t-of-sample predicting period (1987 — 1989)
in: A 0.284 0.342 0.284 0.193 0.405 0.362 0.309 0.191 0.309 0.177.1670  0.099
out: A 0.370 0.512 0.370 0.291 0.721 0.688 0.676 0.394 0.546 0.336.2290  0.205
in: D 0.763 0.717 0.763 0.780 0.726 0.675 0.732 0.753 0.703 0.680.7850  0.749
out: D 0.786 0.667 0.786 0.750 0.763 0.683 0.789 0.733 0.645 0.662.8280  0.733
in: U 0.239 0.187 0.239 0.294 0.161 0.157 0.211 0.281 0.197 0.252.3090 0.325
out: U 0.208 0.077 0.208 0.230 0.021 -0.003 0.057 0.169 0.050 0.163 0.299 0.26:
in: KSS 0.479 0.375 0.478 0.587 0.321 0.313 0.423 0.562 0.3949.504 0.618 0.650
out: KSS 0.416 0.155 0.416 0.459 0.042 -0.005 0.113 0.339 0.099 0.325 0.599 0.52
Panel D: in-sample calibrating period (1885 — 1998\it-of-sample predicting period (2000 — 2003)
in: A 0.245 0.350 0.248 0.140 0.414 0.370 0.317 0.185 0.233 0.181.1720  0.105
out: A 0.522 0.690 0.523 0.330 0.768 0.702 0.725 0.461 0.539 0.463.4180 0.278
in: D 0.709 0.707 0.712 0.725 0.725 0.669 0.726 0.734 0.733 0.669.7730  0.747
out: D 0.731 0.821 0.745 0.533 0.883 0.820 0.855 0.769 0.784 0.664.7640  0.700
in: U 0.232 0.178 0.232 0.292 0.156 0.149 0.204 0.275 0.250 0.244.3010 0.321
out: U 0.104 0.065 0.111 0.102 0.058 0.059 0.065 0.154 0.122 0.100.1730 0.211
in: KSS 0.463 0.357 0.463 0.585 0.311 0.298 0.409 0.549 0.50@.487 0.601 0.642
out: KSS 0.209 0.130 0.223 0.204 0.115 0.118 0.130 0.308 40.240.201 0.345 0.422
Panel E: in-sample calibrating period (1885 — 2006)t-of-sample predicting period (2007 — 2009)
in: A 0.248 0.351 0.249 0.144 0.414 0.367 0.315 0.186 0.236 0.258.1720  0.107
out: A 0.660 0.711 0.666 0.333 0.633 0.603 0.640 0.423 0.557 0.616.4710 0.175
in: D 0.710 0.708 0.713 0.715 0.733 0.678 0.734 0.730 0.736 0.746.7740  0.742
out: D 0.855 0.902 0.875 0.900 0.913 0.869 0.887 0.933 0.892 0.911.8630  0.969
in: U 0.231 0.179 0.232 0.286 0.160 0.155 0.209 0.272 0.250 0.244.3010 0.317
out: U 0.097 0.095 0.104 0.283 0.140 0.133 0.124 0.255 0.168 0.147.1960  0.397
in: KSS 0.462 0.357 0.463 0.571 0.319 0.311 0.419 0.544 0.50®.489 0.603 0.634
out: KSS 0.195 0.191 0.209 0.567 0.279 0.266 0.247 0.510 50.330.294 0.392 0.793
Panel F: in-sample calibrating period (1885 — 2016)t-of-sample predicting period (2011 — 2015)
in: A 0.258 0.350 0.254 0.140 0.326 0.439 0.312 0.183 0.230 0.256.1690  0.100
out: A 0.180 0.352 0.174 0.128 0.229 0.358 0.229 0.136 0.155 0.195.1120  0.066
in: D 0.729 0.712 0.725 0.726 0.747 0.752 0.737 0.738 0.740 0.751.7800  0.758
out: D 0.667 0.636 0.682 0.667 0.682 0.696 0.682 0.714 0.737 0.720.8420 0.571
in: U 0.235 0.181 0.235 0.293 0.211 0.157 0.213 0.277 0.255 0.248.3060  0.329
out: U 0.243 0.142 0254 0.269 0.227 0.169 0.227 0.289 0.291 0.262 0.365 0.253
in: KSS 0.470 0.362 0.471 0.587 0.421 0.313 0.426 0.554 0.51®.495 0.611 0.658
out: KSS 0.486 0.285  0.508 0.538 0.453 0.338 0.453 0.578 0.582 0.525 0.730 0.505
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