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Search engine query data deliver insight into the behaviour of individuals who are the
smallest possible scale of our economic life. Individuals are submitting several hundred
million search engine queries around the world each day. We study weekly search volume
data for various search terms from 2004 to 2010 that are offered by the search engine
Google for scientific use, providing information about our economic life on an aggregated
collective level. We ask the question whether there is a link between search volume
data and financial market fluctuations on a weekly time scale. Both collective ‘swarm
intelligence’ of Internet users and the group of financial market participants can be
regarded as a complex system of many interacting subunits that react quickly to external
changes. We find clear evidence that weekly transaction volumes of S&P 500 companies
are correlated with weekly search volume of corresponding company names. Furthermore,
we apply a recently introduced method for quantifying complex correlations in time series
with which we find a clear tendency that search volume time series and transaction
volume time series show recurring patterns.
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1. Introduction

Econophysics research—econophysics forms the interdisciplinary interface
between the two disciplines economics1 and physics2—has been addressing a
key question of interest in the subfield of financial markets: quantifying and
1Ancient Greek: oı’conomía—management.
2Ancient Greek: 4ysıch́ t3́cnh—art of handling nature.
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understanding large stock market fluctuations. Previous work was focused on
the challenge of quantifying the behaviour of the probability distributions of
large fluctuations of relevant variables such as returns, volumes and the number
of transactions. Sampling the far tails of such distributions requires a large
amount of data. However, there is a truly gargantuan amount of pre-existing
precise financial market data already collected, many orders of magnitude more
than for other complex systems. Accordingly, financial markets are becoming a
paradigm of complex systems, and increasing numbers of scientists are analysing
and modelling market data (Stanley et al. 1995; Vandewalle & Ausloos 1997;
Cont & Bouchaud 2000; Krawiecki et al. 2002; Plerou et al. 2002b; Gabaix et al.
2003; Lillo et al. 2003; Kiyono et al. 2006; Preis et al. 2006, 2007; Watanabe et al.
2007; Podobnik et al. 2009). Empirical analyses have been focused on quantifying
and testing the robustness of power-law distributions that characterize large
movements in stock market activity. The use of estimators that are designed
for serially and cross-sectionally independent data supports the hypothesis that
the power-law exponents that characterize fluctuations in stock price, trading
volume and the number of trades (Fama 1963; Lux & Marchesi 1999; Plerou
et al. 2002a) are seemingly ‘universal’ in the sense that they do not change
their values significantly for different markets, different time periods or different
market conditions.

A reason why the economy is of interest to statistical physicists is that—like
an Ising model which is a model of ferromagnetism—it is a system made up of
many subunits. The subunits in an Ising model are the interacting spins, and the
subunits in the economy are market participants—buyers and sellers. During any
time interval, these subunits of the economy may be either positive or negative
as regards perceived market opportunities. People interact with each other, and
this fact often produces what economists call the herd effect. The orientation of
whether they buy or sell is influenced not only by neighbours but also by news
usually realized by an external field. If we hear bad news, we may be tempted to
sell. So the state of any subunit is a function of the states of all the other subunits
and of a field parameter (Preis & Stanley 2010).

One very illustrative example of the herd effect is shown in figure 1. The search
engine Google offers the possibility to extract information about how popular are
specific search terms’.3 Thus, one can compare the interest in financial crisis
related keywords, such as ‘Subprime’, ‘Lehman Brothers’ and ‘Financial Crisis’,
with the fluctuations of the S&P 500 index that has the rank of an international
benchmark index. It is easy to understand that peaks in the search volume for the
term Subprime coincide with dips in the S&P 500 index time series. At the climax
of the crisis, the collapse of Lehman Brothers caused the sell-out of stocks and
the public was talking about the Financial Crisis afterwards. Figure 1 documents
this course of time and shows that people acted with steadily increasing dynamic.
The search volume profiles track the levels of escalation, which can be seen as a
prominent example of the herd effect.

This kind of data provides insights into our economic life on different scales. A
steadily increasing number of Internet users visit websites of search engines every
day. Each query request can be seen as an individual vote: using search engines,
we leave information about our interests codified as search terms. Thus, search

3More details can be found at http://www.google.com/trends.
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Figure 1. Keyword related search volume illustrates a behaviour similar to a herd effect. (a) Google
Trends analyses a portion of Web searches to compute how many queries have been done for
specified keyword terms. The relative number of queries can be plotted over time—here, the
keyword terms ‘Subprime’, ‘Lehman Brothers’ and ‘Financial Crisis’ are plotted for the time period
from 2004 to 2009. The peak of Lehman Brothers coincides with the bankruptcy of this institution
when the investment bank Lehman Brothers filed for chapter 11 bankruptcy protection. (b) The
US stock index S&P 500 is shown for the same period of time.

engines can collect our interests on the smallest possible scale—the scale of
individual requests. On larger time scales, our interest forms trends. Aggregated
search volume data can be used for uncovering such trends that affect our
economic life on large scales. As seen before, the international financial crisis
is one prominent example. However, product trends can be extracted as well—an
example for that is the cell phone market. Search volume data provided by Google
can also be used to predict spreading of seasonal influenza (Ginsberg et al. 2009).
In addition, correlations were found linking both the current level of economic
activity in given industries and search volume data of industry based query terms
(Choi & Varian 2009).

The ‘experimental basis’ of the interdisciplinary science econophysics is given
by time series that can be used in their raw form or from which one can derive
observables. Such historical price curves can be understood as a macroscopic
variable for underlying microscopic processes. The price fluctuations are produced
by the superposition of individual actions of market participants, thereby
generating cumulative supply and demand for a traded asset—e.g. a stock. The
analogue in statistical physics is the emergence of macroscopic properties, which
is caused by microscopic interactions among involved subunits.

Phil. Trans. R. Soc. A (2010)
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In this paper, we will ask the question whether there is a link between search
volume data and financial market fluctuations. For this task, we study cross
correlations between the ‘collective intelligence’ of Internet users and the change
of financial market quantities—weekly stock prices and weekly stock volume. In
addition, we apply a method to find complex correlations in search volume data,
which was recently introduced by Preis et al. (2008). Uncovering mechanisms and
dependencies, which are useful to understand the formation of financial crises,
is of crucial importance as an effective crises observatory could contribute in
protecting the stability of financial systems.

This article is structured as follows. Section 2 describes the datasets that
we analyse. In §3, we present correlation analyses between financial market
fluctuations and search volume data. In §4, we analyse complex correlations in
financial data and search volume data. Finally, §5 summarizes our results.

2. Data analysed

We use weekly closing prices of N = 500 US stocks, which were constituents of the
S&P 500 index on 31 May 2010. These weekly datasets also contain aggregated
transaction volumes covering the time period from the calendar week of 4 January
2004 until the calendar week of 30 May 2010. Thus, T = 335 × N = 167 500
weekly closing prices and weekly transaction volumes are available for analysis.
A detailed list of the S&P 500 index components can be found in the electronic
supplementary material. This list contains the exchange trading symbols and the
company names.

In order to investigate whether Internet search volume is correlated with
financial market fluctuations, we use search volume data provided by the search
engine Google, which is available for the same period of time. This service
which is called Google Trends analyses a portion of Google Web searches to
compute how many searches have been done for specific terms, relative to the
total number of searches done on Google over time—here we use all 500 company
names of the S&P 500 components. As exact company names—e.g. Microsoft
Corporation—may result in a weaker search volume quality in comparison to
common abbreviations—e.g. Microsoft— we optimize the list of company names
in order to improve the data quality and availability. The company names that
are used for our search volume data requests can be found in the electronic
supplementary material.

3. Linear autocorrelations and linear cross correlations

The Pearson product-moment correlation coefficient is a measure of the
correlation between two variables X(t) and Y (t), giving a value between +1
and −1 inclusive (Pearson 1895). This correlation coefficient is widely used
as a measure of the strength of linear dependence between two variables.
In our case, Xn(t) and Yn(t) are time series—the change of closing price,
p(t + 1) − p(t), the change of volume, v(t + 1) − v(t), or the change of search
volume, s(t + 1) − s(t)—of stock n with length T − 1. As we would like to
determine the correlation coefficient in dependence of a time lag parameter Dt,

Phil. Trans. R. Soc. A (2010)
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we use t ∈ {1, 2, . . . , T − 1 − Dt}. Thus, the correlation coefficient for stock n
(n ∈ {1, 2, . . . , N }) is given by

rn
X ,Y (Dt) = 〈Xn(t)Yn(t + Dt)〉 − 〈Xn(t)〉〈Yn(t + Dt)〉√〈X 2

n(t)〉 − 〈Xn(t)〉2√〈Y 2
n (t + Dt)〉 − 〈Yn(t + Dt)〉2 , (3.1)

with 〈. . .〉 denoting the expectation value. Only non-vanishing changes of time
series Xn(t) and Yn(t) are considered as, for example, search volume data are not
available for a few search terms at all observation times. Thus, let T ′

n(Dt) be the
number of non-vanishing time series changes of stock n in dependence of Dt. The
aggregated correlation coefficient of the set of stocks is calculated by

r̄X ,Y (Dt) =
∑N

n=1 T ′
n(Dt) · rn

X ,Y (Dt)∑N
n=1 T ′

n(Dt)
. (3.2)

For the analysis of cross correlations and autocorrelations (Yn(t) = Xn(t)),
we assume that the underlying variables Xn(t) and Yn(t) have a bivariate
normal distribution. Thus, we can use the Fisher transformation (Fisher 1915)
for the determination of time lag-dependent confidence intervals. The Fisher
transformation of r̄X ,Y is given by

F(r̄X ,Y ) = 1
2

ln
1 + r̄X ,Y

1 − r̄X ,Y
. (3.3)

For the z-score,

z =
√√√√(

N∑
n=1

T ′
n

)
− 3 · F(r̄X ,Y ), (3.4)

we obtain the confidence intervals from cumulative distribution function values
for the standard normal distribution. An inverted Fisher transformation provides
confidence intervals on a correlation scale.

First, we study autocorrelations r̄X ,X (Dt). In figure 2a, the autocorrelation
coefficients of weekly closing price changes are shown in dependence of Dt.
Almost all values are practically negligible and are located close to the 95%
confidence interval. Only the negative autocorrelation coefficient at time lag
Dt = 1 week seems to be relevant and reminds us that high-frequency financial
market transaction prices exhibit a strong negative autocorrelation at the smallest
possible time lag (larger than the trivial case of Dt = 0) on time scales of individual
transactions—Preis et al. (2008) report a value of roughly −0.30 for the German
DAX Futures contract. On the contrary, the autocorrelation functions of volume
changes (figure 2b) and search volume changes (figure 2c) provide significantly
negative values for small time lags (Dt < 4 weeks).

Figure 3 illustrates cross correlations between weekly closing price changes
and search volume changes and between weekly transactions volume changes
and search volume changes for one proxy of the S&P 500 index—Apple
Incorporated. There are no significant correlations between price changes and
search volume changes (figure 3a). All values are within the 95% confidence
interval. However, increasing/decreasing transaction volumes of this stock

Phil. Trans. R. Soc. A (2010)
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Figure 2. (a) Time lag-dependent autocorrelation r̄X ,X (Dt) of weekly closing price changes. 95%
confidence intervals are displayed as rectangles. The dashed lines are 95% confidence interval for
autocorrelations of an independent and identically distributed random variables (i.i.d.) process. (b)
Time lag-dependent autocorrelation r̄X ,X (Dt) of weekly volume changes. (c) Time lag-dependent
autocorrelation r̄X ,X (Dt) of weekly search volume changes.
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Figure 3. Cross correlations for a single stock—Apple Inc. (a) Time lag-dependent cross correlation
rX ,Y (Dt) between weekly closing price changes of Apple stock and weekly search volume changes of
the search term ‘apple’. Rectangles indicate 95% confidence intervals. Again, the dashed lines are
95% confidence interval for cross correlations of independent and identically distributed random
variables (i.i.d.) processes. (b) Time lag-dependent cross correlation rX ,Y (Dt) between weekly
transaction volume changes of Apple stock and weekly search volume changes of the search
term ‘apple’.
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Figure 4. Aggregated cross correlations for all S&P 500 stocks. (a) Time lag-dependent
cross correlation r̄X ,Y (Dt) between weekly closing price changes and weekly search volume
changes of corresponding company names. (b) Time lag-dependent cross correlation r̄X ,Y (Dt)
between weekly transaction volume changes and weekly search volume changes of corresponding
company names.

coincide with increasing/decreasing search volumes as one can see at time lag
Dt = 0 weeks in figure 3b. Thus, one can conclude that search volume reflects
the present attractiveness for trading a stock. But it seems that neither buying
transactions nor selling transactions are preferred. This example shows that the
commonly accepted reasons for financial market movements—‘news moves the
market’ and ‘volume moves the market’—are clearly linked together because
news should be the most probably reason for searching company names in
Internet search engines. The same effect can be found for aggregated correlation
coefficients of all S&P 500 constituents (figure 4), even if the correlation coefficient
at time lag Dt = 0 weeks (figure 4b) is smaller than for the single stock, Apple
Incorporated. In figure 4a, a few correlation coefficients (Dt ≈ 4 weeks) are not
in the 95% confidence interval indicating a non-random correlation between
weekly closing price changes and search volume changes. In fact, present price
movements seem to influence the search volume in the following weeks. However,
the correlation coefficients are very small, |r̄X ,Y | < 0.05. Thus, confirming analyses
with more records are necessary. Unfortunately, Google Trends offer search
volume data only on a weekly basis.

4. Pattern conformity

These results raise hopes that complex correlations exist on weekly time scales in
the data. A sophisticated observable to quantify them was introduced in a recent
work (Preis et al. 2008).4 This work was focused on finding complex correlations
in high-frequency financial market datasets. In such a context, the existence
of complex correlations implies that market participants—human traders and
most notably automated trading algorithms—react to a given time series pattern
4This approach consumes a huge amount of computing time. However, an accelerated calculation is
possible on graphic card architectures (Preis et al. 2009a,b) which can also be used in computational
physics (Block et al. 2010).

Phil. Trans. R. Soc. A (2010)



5714 T. Preis et al.

(a)

(b)

price
pattern

pattern

Δt− Δt+

Δt− Δt+

price

weekly data

Figure 5. Pattern conformity analysis of financial market fluctuations. The aim is to compare (a)
a current pattern of a certain time interval length Dt− with (b) all possible previous patterns of
the time series.

just like to comparable patterns in the past (figure 5). However, this concept is
transferable to medium and large time scales. To quantify additional correlations,
we will define a pattern conformity (PC) observable.

The aim is to compare the current reference pattern of time interval length
Dt− with all previous patterns in the time series p(t). The current observation
time shall be denoted by t̂, then the reference interval is given by [t̂ − Dt−; t̂).
The forward evolution after this current reference interval—the distance to t̂
is expressed by Dt+—is compared with the prediction derived from historical
patterns. As the standard deviation is not constant in time, all comparison
patterns have to be normalized with respect to the current reference pattern.
Thus, we use the true range—the difference between high and low. Let ph(t̂, Dt−)
be the maximum value of a pattern of length Dt− at time t̂ and analogously
pl(t̂, Dt−) be the minimum value. Note that p(t), ph(t̂, Dt−) and pl(t̂, Dt−) depend
also on n, the specific stock. However, we waive the corresponding superscript to
improve the readability. We construct a modified time series, which is true range
adapted in the appropriate time interval, through

p̃Dt−
t̂

(t) = p(t) − pl(t̂, Dt−)

ph(t̂, Dt−) − pl(t̂, Dt−)
(4.1)

with p̃Dt−
t̂

(t) ∈ [0; 1] ∀ t ∈ [t̂ − Dt−; t̂), as illustrated in figure 6. At this point,
the fit quality QDt−

t̂
(t) between the current reference sequence p̃Dt−

t̂
(t) and a

comparison sequence p̃Dt−
t̂−t

(t − t) for t ∈ [t̂ − Dt−; t̂) has to be determined by a
least mean square fit through

QDt−
t̂

(t) =
Dt−∑
q=1

(p̃Dt−
t̂

(t̂ − q) − p̃Dt−
t̂−t

(t̂ − t − q))2

Dt− (4.2)

Phil. Trans. R. Soc. A (2010)
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Figure 6. Schematic visualization of the pattern conformity (PC) calculation mechanism. The
normalized reference pattern p̃Dt−

t̂
(t) and the by t shifted comparison pattern p̃Dt−

t̂−t
(t − t) have the

maximum value 1 and the minimum value 0 in [t̂ − Dt−; t̂), as illustrated by the filled rectangle.
For the PC calculation, it will be checked for each time interval Dt+ starting at t̂ whether reference
and comparison pattern are above or below the last value of the reference pattern p̃Dt−

t̂
(t̂ − 1). If

both are above or below this level, then +1 is added to the non-normalized PC. If one is above
and the other below, then −1 is added. Grey line, p̃Dt−

t̂
(t); black line, p̃Dt−

t̂−t
(t − t).

with QDt−
t̂

(t) ∈ [0, 1] as a result of the true range adaption. With these elements,
one can define an observable for the PC, which is not yet normalized by

xc(Dt+, Dt−) =
T−Dt+∑
t̂=Dt−

t̂∑
t=Dt−

sgn(uDt−
t̂

(t, Dt+))

exp (cQDt−
t̂

(t))
, (4.3)

as motivated in figure 6. Furthermore, we use the definition

sgn(x) =
⎧⎨
⎩

1 for x > 0
0 for x = 0
−1 for x < 0.

(4.4)

The parameter c weights terms according to their qualities (Preis et al. 2008).
The larger c is, the stricter the pattern weighting in order to use only sequences
with good agreement to the reference pattern. The expression uDt−

t̂
(t, Dt+) in

equation (4.3), which takes into account the value of reference and comparison
pattern after t̂ for a proposed Dt+ relative to p̃Dt−

t̂
(t̂ − 1), is given by the following

expression:

uDt−
t̂

(t, Dt+) = (p̃Dt−
t̂

(t̂ − 1 + Dt+) − p̃Dt−
t̂

(t̂ − 1))

× (p̃Dt−
t̂−t

(t̂ − t − 1 + Dt+) − p̃Dt−
t̂

(t̂ − 1)). (4.5)

We normalize the observable for PC and obtain for stock n

Xn
c(Dt+, Dt−) = xc(Dt+, Dt−)∑T−Dt+

t̂=Dt−
∑t̂

t=Dt− |sgn(uDt−
t̂

(t, Dt+))|/exp (cQDt−
t̂

(t))
, (4.6)
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Figure 7. PC—Dt is measured in units of weeks. (a) PC XP
c=100(Dt−, Dt+) of weekly closing prices.

(b) Identical to (a), but the fit quality of a pattern is not only calculated by prices: appropriate
transaction volumes are incorporated, too. (c) Identical to (a), but appropriate search volumes are
incorporated, too. (d) PC XS

c=100(Dt−, Dt+) of weekly search volumes. (e) Identical to (d), but
appropriate transaction volumes are incorporated, too. (f ) Identical to (d), but appropriate prices
are incorporated, too. (g) PC XV

c=100(Dt−, Dt+) of weekly transaction volumes. (h) Identical to (g),
but appropriate prices are incorporated, too. (i) Identical to (g), but appropriate search volumes
are incorporated, too.

where Xn
c(Dt+, Dt−) denotes the PC of a stock n. In order to obtain an aggregated

quantity of all S&P 500 stocks, we define

Xc(Dt+, Dt−) = 1
N

N∑
n=1

Xn
c(Dt+, Dt−). (4.7)

The PC for a standard random walk time series, which exhibits no correlations
by construction, is 0 for all pairs of Dt+ and Dt−. The PC for a perfectly correlated
time series—a straight line—is 1. With this method, it is possible to search for
complex correlations in various time series.

Phil. Trans. R. Soc. A (2010)
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Figure 7 shows the PCs of weekly closing prices (figure 7a), weekly search
volumes (figure 7d) and weekly transaction volumes (figure 7g). The tendency
to reproduce historic price patterns is very small for weekly closing prices
(figure 7a). It is difficult to distinguish the given PC from a completely random
behaviour (Preis et al. 2008). So far, the comparison between reference and
historic patterns was only based on the price time series, QDt−

t̂
(t) = QP,Dt−

t̂
(t).

Now, we also incorporate the time series of transaction volumes v(t), i.e.
QDt−

t̂
(t) = QP,Dt−

t̂
(t) + QV,Dt−

t̂
(t), to improve the pattern selection. In the same

way, it is possible to include the search volume time series s(t) for the pattern
selection, i.e. QDt−

t̂
(t) = QP,Dt−

t̂
(t) + QS,Dt−

t̂
(t). If we include transaction volumes

for the selection process (figure 7b), then we obtain a noisier PC profile. A still
noisier profile can be achieved by using search volume time series as an additional
pattern selection criterion (figure 7c). Clear recurring tendencies can be found for
the search volume time series. Figure 7d shows significant non-zero values for the
PC. In contrast to results obtained for high-frequency transactions, parameter
pairs with large time lags Dt+ and Dt− provide the highest level of PC of roughly
0.42—due to the given amount of data points we limit the analyses to the
range from one week to three months. The additional incorporation of weekly
transaction volumes (figure 7e) increases the maximum value of the PC in the
range that we analyse. The maximum value is roughly 0.66. This fact supports our
finding that there is a clear link between weekly transaction volumes and weekly
search volumes. More important, there is not only a linear dependence as found
in §3 but also complex dependencies uncovered by the PC approach. Thus, it is
evidence that search volume time series and transaction volume time series show
recurring patterns. On the contrary, the inclusion of weekly closing prices does
not alter the PC significantly (figure 7f ). Analogously, transaction volume time
series are characterized by large PC values (figure 7g) that are slightly smaller
than in figure 7d. If one also incorporates closing price times series (figure 7h)
or search volume time series (figure 7i) for the pattern selection, then a slightly
increased PC can be observed.

5. Conclusion

Search engine query data offer insights into our economic life on the smallest
possible scale of individual actions. In order to investigate whether Internet search
volume is correlated with financial market fluctuations—the largest possible scale
of our economic life—we used search volume data provided by the search engine
Google. We studied weekly search volume data for various search terms from 2004
to 2010. We asked the question whether there is a link between search volume data
and financial market fluctuations on the same, weekly time scale and found clear
evidence that weekly transaction volumes of S&P 500 companies are correlated
with weekly search volume of the corresponding company names. Increasing
transaction volumes of stocks coincide with an increasing search volume and
vice versa. Thus, one can conclude that search volume reflects the present
attractiveness of trading a stock. But it seems that neither buying transactions
nor selling transactions are preferred when one detects an increased search
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volume. Thus, the commonly accepted reasons for financial market movements—
news and volume—are clearly linked together because news should be the most
likely reason for searching company names in Internet search engines. In addition,
we have seen that present price movements seem to influence the search volume
of the corresponding company name in the following weeks.

Furthermore, we applied a recently introduced method for quantifying complex
correlations in time series with which we find the clear tendency that search
volume time series and transaction volume time series show recurring patterns.
This fact supports our finding that there is a clear link between weekly transaction
volumes and weekly search volumes. More important, there is not only a linear
dependence but also complex dependencies, which raises hopes that search volume
data can contribute to understand financial crises.

The authors are very grateful for helpful discussions with D. Helbing, P. Virnau and K. Yamasaki.
In addition, T.P. would like to thank D. Diefenbach for insightful comments.
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