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Empirical evidence for scale-invariant distributions in financial data has attracted the research interest of
physicists. While the power-law tails of the distribution of stock returns P�R�x��x−�R are becoming increas-
ingly well documented, less understood are the statistics of other closely related microstructural variables such
as qi, the number of shares exchanged in trade i �termed the trade size� and Q�t�t�=�i=1

N qi, the total number of
shares exchanged as a result of the N=N�t trades occurring in a time interval �t �termed share volume�. We
analyze the statistical properties of trade size q�qi and share volume Q�Q�t�t� by analyzing trade-by-trade
data from three large databases representing three distinct markets: �i� 1000 major U.S. stocks for the 2-y
period 1994–1995, �ii� 85 major U.K. stocks for the 2-y period 2001–2002, and �iii� 13 major Paris Bourse
stocks for the 4.5-y period 1994–1999. We find that, for all three markets analyzed, the cumulative distribution
of trade size displays a power-law tail P�q�x��x−�q with exponent �q�2 within the Lévy stable domain. Our
analysis of the exponent estimates of �q suggests that the exponent value is universal in the following respects:
�a� �q is consistent across stocks within each of the three markets analyzed, and also across different markets,
and �b� �q does not display any systematic dependence on market capitalization or industry sector. We next
analyze the distributions of share volume Q�t over fixed time intervals and find that for all three markets
P�Q�x��x−�Q with exponent �Q�2 within the Lévy stable domain. To test the validity for �t=1 day of the
power-law distributions found from tick-by-tick data, we analyze a fourth large database containing daily U.S.
data, and confirm a value for the exponent �Q within the Lévy stable domain.
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I. INTRODUCTION

Understanding economic phenomena using concepts and
methods of physics has attracted the research interest of
physicists and practitioners alike �1–3	. In particular, empiri-
cal evidence of scaling and long-range correlations in finan-
cial data is interesting because of the analogies it suggests
with collective phenomena in complex physical systems.
Moreover, it is possible that the statistical physics methods
used to understand collective phenomena may provide new
insights into understanding large economic fluctuations
�4–6	.

The statistical properties of the time series of financial
variables are quite unique. Stock returns, for example, dis-
play tails that are much more pronounced than a simple
Gaussian. Events such as the 1987 stock market crash—
where the leading U.S. index, the Standard & Poors �S&P�
500 index, dropped by a magnitude of over 20 standard
deviations—signify the non-Gaussian nature of these fluc-
tuations. This market crash was accompanied by 
6�108

shares that changed hands on the New York Stock Exchange
alone. Indeed, it is a common practitioner saying that it takes
volume to move stock prices.

Prior analysis of intraday stock returns data for both indi-
ces and single stocks shows that the tails of the return distri-
bution decay as power laws with exponents outside the Lévy
stable domain �7–11	. Although the precise nature of the re-
lationship between volume and price fluctuations is not
known, the presence of fat tails in the distribution of returns
suggests that the distribution of volume is also fat tailed.
Understanding the empirically observed positive equal-time
correlation between volume and volatility has been a subject

of active research in the literature �12–21	. Here we focus on
quantifying the statistical properties of share volume; in par-
ticular, we analyze the tail statistics of the distribution of
volume, which is important in evaluating the validity of dif-
ferent models of market microstructure �22	.

We define the trade size q�qi as the number of shares
exchanged in trade i, and the share volume as the total num-
ber of shares exchanged in a time interval �t,

Q � Q�t�t� � �
i=1

N

qi. �1�

Here N=N�t�t� denotes the number of trades in �t.
Previous analysis �20	 for U.S. stocks reports power-law

distributions

P�q � x� � x−�q �2�

for trade size q and

P�Q � x� � x−�Q �3�

for share volume Q with average tail exponents �q
=1.53±0.07 and �Q=1.7±0.1, both belonging to the Lévy
stable domain �0,2	. In their analysis of the NASDAQ order
book data, the authors of Ref. �23	 note that market order
sizes display a power-law distribution with exponent
1.4±0.1, which is consistent with the estimate of �q reported
in Ref. �20	. Reference �24	 analyzes stocks traded in the
London Stock Exchange and reports values of �q consistent
with the �q estimates for U.S. stocks �similar results can also
be found in Ref. �22	�. In their analysis of the dollar volume
�“traded value”� for U.S. stocks, Ref. �25	 confirms a power-
law tail for the distribution of Q, although the exponent es-
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timates are reported to be outside the Lévy stable domain.
The goal of this work is to examine the validity of the

power-law tails of the distributions of trade size q and share
volume Q, and compare the tail behavior of these distribu-
tions between three distinct markets. We first focus on the
more fundamental quantity, the trade size q, and quantify its
tail statistics. Using two different statistical estimators—
Hill’s estimator �26	 and the threshold-independent
Meerschaert-Scheffler �MS� estimator �27	—we find expo-
nent estimates for �q within the Lévy stable domain for all
three markets analyzed. Moreover our analysis shows that
the exponent �q is universal in the following respects: �a� �q
does not display any systematic dependence on stock-
specific quantities such as the market capitalization or indus-
try sector, and �b� �q estimates are consistent across all three
markets.

Next we analyze the statistics of the share volume Q�t�t�
over short time intervals �t. Our analysis shows that, with
increasing �t, standard methods such as Hill’s estimator can
give biased estimates for �Q with results that depend signifi-
cantly on the estimation threshold which specifies the do-
main where the power law is expected to hold. Instead, we
use a different estimator, the MS estimator �27	, which, un-
like Hill’s estimator, does not rely on an estimation thresh-
old. Using the threshold-independent MS estimator, we find
that, for short time intervals �t, the distribution P�Q�x� is
consistent with a power-law behavior with exponent �Q in
the Lévy stable domain for all three markets. Moreover, us-
ing data from the Center for Research in Security Prices
�CRSP� database, we confirm the Lévy stable behavior for �Q
for �t=1 day.

II. DATA ANALYZED

We analyze the following databases.
�a� Trades and Quotes (TAQ) database (U.S. stocks). Tick

by tick data for the 1000 largest U.S. stocks from the TAQ
database �28	 for the 2-y period 1994–1995 �10	. These 1000
stocks cover a wide range of market capitalization and indus-
try sectors.

�b� London Stock Exchange (LSE) database (U.K. stocks).
Tick by tick data �29	 for 85 stocks from the London Stock
Exchange �Stock exchange Electronic Trading System
�SETS� traded� for the 2-y period 2001–2002, which were
part of the Financial Times Stock Exchange �FTSE� 100
index on January 2001 and survived through the period
analyzed.

�c� Paris Bourse database. Tick by tick data for 13 stocks
traded in the Paris Bourse which are part of the “Cotation
Assistie en Continu” CAC 40 index and survived through the
4.5-y period from 3 January 1995 to 22 October 1999 �this
database is analyzed in Ref. �21	�.

�d� CRSP database (daily data for USA stocks). To exam-
ine the behavior of the distribution P�Q�x� over a larger �t,
we analyze daily volume data from the CRSP database �30	
for 252 stocks for the 42-y period January 1963–December
2005.

III. SCALE-INVARIANT DISTRIBUTION
OF TRADE SIZE q

To understand the behavior of the distribution P�Q�, it is
important to first understand the behavior of a more funda-

mental quantity—the trade sizes qi which form Q �see Eq.
�1�	. In the following analysis we normalize the trade size
q�qi and the share volume Q�Q�t�t� by the total number
of outstanding shares to account for share splits.

A. Database 1: TAQ database (U.S. stocks)

1. Prior analysis

Based on an analysis of the 1000 largest U.S. stocks, Ref.
�20	 reports that the distribution of trade size q follows a
power law

PUSA�q � x� � x−�q, �4�

with an average exponent estimate �q within the Lévy stable
domain. Using Hill’s estimator �26	, Ref. �20	 reports a mean
value of

�q
USA = 1.53 ± 0.07 �Hill estimator� . �5�

An examination of scaling behavior of the moments of q
shows anomalous scaling behavior just as would be expected
for a stable distribution; estimating the tail exponent based
on the behavior of moments, Ref. �20	 finds an average value

�q
USA = 1.45 ± 0.03 �Moments� . �6�

2. Universality: Lack of dependence on market capitalization
and industry sector

For the same set of 1000 U.S. stocks, we first analyze the
dependence of the power-law exponent �q on market capi-
talization and industry sector. Figures 1�a� and 1�c� show the
exponent �q plotted against the average market capitalization
for each stock. A logarithmic regression �q=� log S+�
shows no significant dependence �see the caption of Fig. 1�.
Figures 1�b� and 1�d� show that the exponent �q does not
show any systematic dependence for any particular industry
sector. That the exponent estimates �q do not show system-
atic variations with either market capitalization or industry
sector is consistent with the possibility that the distribution
P�q� displays a universal functional form for all stocks.

Although the functional form of the distribution of q �Eq.
�4�	 and the exponent values do not depend on market capi-
talization �S�, the “width” is stock specific; i.e., average trade
size �qi� for each stock displays a striking power-law depen-
dence on capitalization �Fig. 2�,

�q� � S−	, �7�

with an exponent

	 = 0.67 ± 0.02. �8�

More precisely, the dependence of the distribution P�q S� on
the market capitalization can be expressed as

P�qS� � S	f�q/S−	� , �9�

where f does not depend on S. We note that Eq. �7� is analo-
gous to the dependence of the average volatility on the mar-
ket capitalization �10	. While the functional form of the in-
dividual stock return distributions and the power-law
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exponents that describe the tails do not display any clear
dependency on the market capitalization, the average volatil-
ity �analogous to the average trade size� 
�S� depends on the
market capitalization S as a power law �10	 with an exponent

0.20. A similar set of results for LSE data can be found in
Ref. �31	.

B. Database 2: LSE database (U.K. stocks)

In order to examine the robustness of the power-law ex-
ponent �q for different markets, we next analyze the statistics
of trade size for the U.K. data. We analyze the probability
density function for each stock and find that it is consistent
with a power-law decay. Scaling q for each stock by its first
centered moment, we obtain a good data collapse. Using the

normalized q for all stocks together, we find that the prob-
ability density function PLSE�q� is consistent with a power-
law decay �Fig. 3�a�	,

PLSE�q� � q−��q+1�, �10�

with exponent �q.
For the 85 stocks in our sample, we estimate the exponent

�q individually for each stock using Hill’s estimator
�Fig. 3�b�	. We obtain an average exponent estimate �32	

�q
LSE = 1.57 ± 0.02 �Hill estimator� , �11�

consistent with our previous results �20,24,33	.
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FIG. 1. �a� Hill estimate of exponents �q for the 1000 U.S. stocks against average market capitalization for each stock. The line shows
a logarithmic regression which shows no significant dependence �we obtain a slope −0.013±0.006 with R2=0.004�. Note that the exponents
in this plot are obtained using Hill’s estimator using a tail threshold of five times the average value. Using estimation thresholds of up to 10,
we obtain average values in the range 1.45–1.67 with no significant dependence on the capitalization. �b� Exponents �q as a function of the
Standard Industrial Classification �SIC� code shows no clear dependence on the industry sector. Here we have binned using the first 2 digits
of the SIC code �37	 which shows major industry sectors. The points at SIC code 0 show the 73 stocks in our sample of 1000 for which we
did not have the corresponding SIC codes. �c� Same as �a� but using the threshold-independent MS estimator �see the Appendix� instead of
Hill’s estimator. The plot shows no dependence on market capitalization, consistent with part �a�. A log-linear regression shows no statisti-
cally significant dependence; we find a slope of 0.014±0.002 with negligible significance, R2=0.038. �d� Same as �b� but using the MS
estimator; there is no significant dependence on any particular industry sector. The dashed line shows the average value �q=1.63.
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The Hill exponent estimates show some variability in the
estimation threshold a, beyond which the power law P�q
�x��x−�q is expected to hold �see the Appendix�. Figure
3�c� shows the average of the exponent estimate as a function
of the estimation threshold. The mean value seems to in-
crease and then plateau below �q=2, the upper bound for
Lévy stability. The apparent increase of the exponent esti-
mate with the estimation threshold is likely an artifact of
Hill’s estimation technique. While in the presence of suffi-
cient number of data points Hill’s estimator is a reliable
method to estimate power-law exponents, the average of the
exponent estimates across many stocks is biased when the
estimation threshold is large and there are few points avail-
able for the tail estimation for each stock. This bias is en-
hanced in the presence of an outlier for any one stock, which
biases the sample mean of the tail exponent to larger values.

A reliable estimate of the tail exponent is obtained if we
use an estimator that does not depend on a threshold for
obtaining the exponent estimate. One such estimator is the
MS estimator �27	 �see the Appendix�. Figure 3�d� shows the
estimate of �q obtained from the MS estimator �27	, from
which we obtain

�q
LSE = 1.58 ± 0.01 �MS estimator� , �12�

which is consistent with Eq. �11�, and within the Lévy stable
domain. We shall further expand on the use of this estimator
in a later section.

C. Database 3: Paris Bourse database

Next, we analyze the distribution of trade size for the
Paris Bourse data. As in the analysis for the U.K. data, we
find that the distribution P�q� has the same functional form
for each of the 15 stocks in our sample. Scaling q by the first
centered moment, we find good data collapse. Under the as-

sumption that all the underlying distributions are identical,
we use the scaled data for all stocks to improve the tail
statistics. Figure 4�a� shows that the probability distribution
is consistent with a power law

PBourse�q� � q−��q+1�, �13�

with exponent �q.
Using Hill’s estimator, we obtain exponent estimates for

�q for each stock individually and find a mean value

�q
Bourse = 1.53 ± 0.04 �Hill estimator� , �14�

with only small dispersion among the stocks. Note that our
estimate of �q for the Paris Bourse data is consistent with our
previous results for the New York Stock Exchange �NYSE�
and for the LSE �Fig. 4�b�	.

Figure 4�b� shows the exponent �q as a function of the
estimation threshold for Paris Bourse data. Here the expo-
nent estimates plotted are the average values of the indi-
vidual exponent estimates for each stock for a particular es-
timation threshold. Unlike for the U.K. data, we do not find
any dependence with increasing threshold �Fig. 4�b�	. We
find only statistical deviations around the mean value �q
=1.46.

To compare the U.K. and Paris Bourse data to the U.S.
data, we selected the 116 most actively traded stocks and
analyzed the behavior of �q with the estimation threshold. As
in the U.K. data, we find an apparent tendency of the Hill
exponent estimate to increase with the estimation threshold
and plateau at a value �2 within the Lévy stable domain
�Fig. 5�a�	. As we previously noted, the dependence of the
Hill exponent estimate on the estimation threshold is an ar-
tifact of the technique for large estimation thresholds. Figure
5�b� shows that the threshold-independent MS estimator,
when applied to the same set of 116 most actively traded
stocks, provides an estimate �q

USA=1.65±0.01, within the
Lévy stable domain.

IV. SCALING OF SHARE VOLUME Q

A. Intraday time scales �t�1 day

Previous work �20	 analyzed the distribution of Q for U.S.
stocks by splitting the 1000 stocks into different groups
based on their liquidity �average time between trades� and
reported a power-law distribution P�Q�x��x−�Q, where
�Q=1.7±0.1, within the Lévy stable domain, on average for
the 1000 largest stocks.

In a separate work �25	, a similar analysis is performed on
the dollar volume �“traded value”� for U.S. stocks. While
these authors confirm a power-law tail for the distribution of
Q, they find a tail exponent that is outside the Lévy stable
domain. Reference �25	 concludes that the distribution P�Q�
is not Lévy stable since �a� larger time windows yield larger
values of exponents, and �b� increasing the threshold used
for estimating the Hill exponents gives rise to larger esti-
mates.

Analyzing the tail behavior of Q over larger time win-
dows and for large estimation thresholds is not as straight-
forward, and the reason for this can be seen from Eq. �1�. As
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FIG. 2. Average trade size for U.S. stocks as a function of capi-
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market capitalization in the 2 y period 1994–1995. The line shows
a log-log regression, from which we obtain a slope 	=0.67±0.02.
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�t increases, the number of trades N�t also increases, and
consequently the mean of Q�t. Techniques such as Hill’s es-
timator are reliable only for a pure power-law distribution.
Unlike returns, which have almost zero mean, trade sizes
under aggregation acquire increasingly larger mean values,
so the effective region where the power law is expected to
hold shrinks considerably. In addition, the number of data
points decreases with aggregation, thereby providing hardly
any resolution in the tail. Thus, for a distribution such as
P�Q�x�, Hill’s estimator gives biased results with increas-
ing �t, and with increasing estimation threshold. Therefore
an increase in the Hill exponent estimate upon increasing �t
or upon increasing the estimation threshold may not be re-
flective of the actual behavior of the distribution.

To understand the behavior of Hill’s estimator numeri-
cally, we consider the partial sum Pn defined as

Pn � �
i=1

n

xi, �15�

where xi�0 is perfectly power-law distributed with �x=1.5.
Since xi is generated to have �x=1.5 in the Lévy stable do-
main, we expect the actual tail behavior to persist under ag-
gregation. Figure 6�a� shows the Hill estimate of �P as a
function of estimation threshold for increasing n. For n=1,
as expected, there is no dependence on threshold, and Hill’s
estimator yields �P=1.5. On increasing to n=5, we see that
this curve starts to display a peak, i.e., an increase, which
then decays and approaches the true asymptotic value of �P
=1.5. On further increasing n, we find that this peak is much
more pronounced; moreover, since the number of data points
shrinks with aggregation, the Hill estimate never reaches its
true asymptotic value. This can be clearly seen for the case
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FIG. 3. �a� Probability density function of trade sizes for 85 SETS stocks that form part of the FTSE 100 index and survived through the
2 y period 2001–2002. The time series of qi for each stock is normalized by its first centered moment. We find a power-law decay with an
exponent 1+�q. �b� We estimate the exponents �q by applying Hill’s estimator for each stock. For this plot, we have used a threshold of 16
times the average trade size for the estimation procedure. We obtain an average �q=1.57±0.02 �32	. �c� Average Hill exponent estimate �q

as a function of estimation threshold �in the same units as in the abscissa of �a�	, showing an apparent increase of the exponent followed by
a plateau within the Lévy stable domain. �d� Exponent estimate �q obtained by using the MS estimator which, unlike Hill’s estimator, does
not depend on estimation threshold. We obtain a mean value �q=1.58±0.01.
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n=100, where the exponent estimate “stabilizes” even out-
side the Lévy stable domain. Thus, although we started with
a genuine Lévy stable law, upon aggregation, Hill’s estimator
provides a biased estimate of the tail exponent that depends
on the estimation threshold. Moreover, for a given estimation
threshold, Fig. 6�a� shows that the Hill estimate of �P in-
creases monotonically with n, although �P is within the
stable Lévy domain.

We next analyze the behavior of the Hill estimate for the
volume exponent �Q when applied to the Paris Bourse data.
We choose the Paris Bourse data for this analysis since this is
the longest time series in our data, spanning more than four
years. Figure 6�b� shows the mean of the Hill exponent esti-
mates �Q over all 13 stocks for the Paris Bourse data for
�t=5 min as a function of the estimation threshold. We first
find an increase in the exponent estimate, which goes above
the Lévy stable domain and then retreats back and stabilizes
around the value of �Q
1.5, similar to the exponent estimate
for �q as expected for a stable distribution.

Figure 6�c� �filled points� shows the same plot as Fig. 6�a�
but for �t=30 min. Here we see that the increase in expo-
nent estimate is followed by a seeming plateau behavior
around a value slightly larger than �Q=2, outside the Lévy
stable domain. In order to compare with the surrogate data,
instead of creating partial sums as in Eq. �15�, which holds n
constant, we construct a directly comparable case by defining

P�t � �
i=1

N�t

xi, �16�

where N�t denotes the actual number of trades in �t from the
empirical data. By construction, the surrogate time series
should also be Lévy stable since N�t has tails that decay
much more rapidly �19	. Figure 6�c� �empty symbols� shows
the behavior of the Hill exponent estimate �P, defined by
P�P�x��x−�P, as a function of the estimation threshold. We
find virtually indistinguishable behavior from the behavior of
�Q for the empirical data.
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FIG. 4. �a� Probability density function of the trade size for 13
largest stocks listed in the Paris Bourse. Here we have normalized
the time series of qi for each stock by its first centered moment.
Power-law fits yield �q=1.49±0.03. �b� Hill estimate of the expo-
nent �q averaged over the 15 Bourse stocks as a function of estima-
tion threshold, showing no significant dependence, nor any indica-
tion of truncation. The line shows the mean value 1.46.
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FIG. 5. �a� Hill estimate of the exponent �q averaged over the
116 largest U.S. stocks as a function of the estimation threshold.
The apparent increase followed by a plateau within the Lévy stable
domain is similar to the behavior observed for the U.K. data in Fig.
3�c�. �b� Using the MS estimator we obtain a mean �q=1.65±0.01.
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Thus, the behavior of the Hill exponent estimate for vari-
ables such as the aggregated �t share volume Q�t is unreli-
able, and increasingly so as �t increases. Therefore it is
likely that the exponent estimate at a level larger than the
Lévy stable limit of �Q=2 �e.g., Fig. 6�c�, or some of the
results in Ref. �25	, using methods that depend on estimation
thresholds	 is an artifact of the estimation procedure itself, as
suggested by the surrogate data in the above numerical ex-
periment.

To obtain a reliable estimate of the tail exponent, we use
the MS estimator �27	 introduced in the previous section,
which does not have an estimation threshold, but instead
uses all the data to estimate the tail exponent �see the Ap-
pendix�. Figure 6�d� shows the behavior of the MS exponent
estimate for the surrogate data Pn as a function of n. Clearly,
the exponent estimate does not show dependence on n, as
would be expected for a stable law. For subsequent analysis

for Q, we rely on the MS estimator, since it avoids most of
the problems that we encounter when using Hill’s method for
quantities such as Q.

Applying the MS estimator to the U.S. data over the time
interval �t=15 min, we obtain the average exponent esti-
mate �Fig. 7�

�Q
USA = 1.69 ± 0.01 �MS estimator� , �17�

which is consistent with the results previously obtained in
Ref. �20	. A similar analysis of �Q for the 85 stocks in the
U.K. data using the MS estimator yields a consistent value of

�Q
LSE = 1.67 ± 0.01 �MS estimator� , �18�

where �t=5 min �Fig. 7�b�	. For comparison, we apply the
MS estimator for the Paris Bourse data. Since we have
30-min data for 34 stocks �compared to the 13 for which we
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FIG. 6. �a� Hill exponent estimate as a function of estimation threshold for the surrogate data Pn defined in Eq. �15� for different n. We
have considered 100 time series, each with 200 000 points at n=1. Each time series is generated to have a tail exponent of �x=1.5. For a
given n and estimation threshold, each point denotes the average over the 100 time series of the exponent estimates of Pn. �b� Hill estimate
of the tail exponent �Q as a function of estimation threshold for the Paris Bourse data for �t=5 min. We plot the average value of �Q for the
13 Bourse stocks which are comparable in liquidity. �c� Hill exponent estimate for the Paris Bourse data for �t=30 min �filled symbols� as
a function of estimation threshold compared against the same technique applied to the surrogate data �empty symbols� constructed by Eq.
�16�. �d� MS exponent estimate for the surrogate data in Eq. �15� for different n. As in �a� we have considered 100 time series, each with
200 000 points generated to have a tail exponent of �x=1.5. Each point denotes the average over the 100 time series of the exponent
estimates of Pn.
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have tick data�, we apply the MS estimator to all 34 stocks,
and find

�Q
Bourse = 1.69 ± 0.01 �MS estimator� , �19�

which is consistent within error bars with the estimates of �Q
for both the U.S. and the U.K. data.

Figure 7�c� shows the MS exponent estimate of �Q for all
1000 U.S. stocks as a function of their average market capi-
talization over the 2 y period. A logarithmic regression
shows a small dependence as evidenced by the slope
0.045±0.003 �see the caption of Fig. 7�c�	. Although the sta-
tistical significance of this regression is small �R2=0.25�, it
does not allow for a definitive conclusion regarding the uni-
versality of the exponent �Q. Note that this is quite in con-
trast to the case of �q, for which the dependence on market
capitalization is clearly statistically insignificant �Figs. 1�a�
and 1�c�	. In the small trend in Fig. 7�c� is genuine, this may
be suggestive of an eventual truncation of the power-law at
very large values.

B. Database 4: CRSP database, volume distribution
for �t=1 day

Given that the exponents �q and �Q are within the Lévy
stable domain, one expects the distribution P�Q� to be stable
under aggregation. Conversely, an increase of exponent esti-
mate at daily time scales would indicate the presence of a
truncation of the distribution for large values �34	.

To examine whether the stability is empirically observed,
we analyze daily U.S. data which record the time series of
volumes for 252 stocks from the CRSP database for the 43 y
period 1962–2005. We have normalized the daily volumes by
the number of outstanding shares to adjust for the effect of
stock splits. Since the average volume increases considerably
over this large time period, we separate each time series into
blocks of 5 y windows and normalize each block by the
average volume over that period.

We find that for each stock the distribution of the daily
volumes displays a power-law decay,

PUSA daily�Q � x� � x−�Q, �20�

with exponent �Q. To estimate for �Q, we apply the MS es-
timator �27	 to each stock individually. Figure 8 shows the
exponents thus obtained. We find a mean value of

�Q
USA daily = 1.78 ± 0.01 �MS estimator� , �21�

which is consistent with our estimate for the �t=15 min
volume for the U.S. intraday data, suggesting a stable Lévy
distribution of volume.

C. Time scaling of the distribution of volume

Since �Q is within the Lévy stable domain, we expect the
estimates of �Q to remain stable with increasing �t. We ana-
lyze the behavior of �Q for U.S. data using the TAQ database
for �t�1 day and the CRSP database for �t�1 day. Figure
9 shows that, for �t varying from 15 min up to 8 days, �Q
consistently remains within the Lévy stable domain.

0 200 400 600 800 1000
Stock

0.0

0.5

1.0

1.5

2.0

2.5

3.0
T

ai
le

xp
on

en
tζ

Q
(M

S
es

tim
at

or
)

(a) US stocks ∆t=15 min

0 20 40 60 80
Stock

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
ai

le
xp

on
en

tζ
Q

(M
S

es
tim

at
or

)

(b) UK stocks ∆t= 5 min

10
8

10
9

10
10

10
11

10
12

Market capitalization

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
ai

le
xp

on
en

tζ
Q

(M
S

es
tim

at
or

)

(c) US Data ∆t= 15 min

FIG. 7. �a� MS estimate of �Q exponent for 1000 U.S. stocks
over �t=15 min. Here we have normalized the data by the first
centered moment. We obtain a mean value of �Q=1.69±0.01. �b�
Same as �a� for �t=5 min for the U.K. data. We find a mean value
of �Q=1.67±0.01. �c� MS exponent estimate of �Q for the 1000
U.S. stocks at �t=15 min against the average market capitalization
over the 2 y period. The solid line shows a logarithmic regression
which gives a slope 0.045±0.003, with R2
0.25.
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V. SUMMARY

We focused on quantifying the tail statistics of trade size
and share volume. Analyzing tick data for three distinct mar-
kets, we find that the distribution of trade size q displays a
power-law tail P�q�x��x−�q with exponent �q within the
Lévy stable domain �0,2	. We next analyze the distributions
of share volume Q�t over short time intervals and find a
power-law distribution P�Q�x��x−�Q with exponent �Q

within the Lévy stable domain. We find consistent results for

daily data from the CRSP database, confirming a Lévy stable
behavior of the distribution of share volume for �t=1 day.

Our analysis of the exponent estimates for �q suggests that
the exponent value is universal in the following respects: �a�
�q is consistent across stocks within each of the three mar-
kets, and also across different markets; �b� �q does not dis-
play any systematic dependence on market capitalization or
industry sector. These results are particularly interesting
since universal behavior of tail exponents is suggestive of
underlying mechanisms that are largely independent of mi-
crostructural details, analogous to scaling exponents that oc-
cur in strongly interacting physical systems �35	.
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APPENDIX: METHODS FOR ESTIMATING
POWER-LAW EXPONENTS

1. Hill’s estimator

Hill’s estimator is the conditional maximum likelihood
estimator for a true power-law distribution based on the k
largest order statistics �26	. Denote the data series as Y for
which we expect a power-law behavior P�Y �x��x−�. De-
fine the inverse local slope of the cumulative distribution
function C�x�� P�q�x�,

� � �−1 = − �d log C�x�/d log x	−1. �A1�

We obtain an estimator for � by sorting the Y by their size,
Y�1��Y�2�� ¯ �Y�N�. The cumulative distribution can then
be written as P�Y�k��=k /N, and we obtain for the local slope

�Hill = ��N − 1��
i=1

N−1

log Y�i�� − log Y�N�, �A2�

where N is the number of tail events used. When applying
Hill’s estimator, k should be as large as possible but small
enough that the chosen points are within the distributional
tail where the power law holds. Instead of restricting our-
selves to a fixed number of tail events, we specify an esti-
mation threshold a beyond which we expect the power law
to hold, i.e., P�Y �x��x−� for x�a. This procedure also
allows us to compare the tail exponents of different stocks
since we normalize the data series by the first centered mo-
ment. Thus we apply Eq. �A2� for all events such that x�a.

2. MS estimator

Hill’s estimator can give misleading results when applied
to stable data �36	; in particular, for the values 1.5���2,
Hill’s estimator can give estimates of � much larger than 2
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FIG. 8. MS estimate of the power-law exponent �Q for 252
stocks from the daily U.S. data, showing a mean value of 1.78 and
standard deviation of 0.06. We have normalized the data for each
stock by first subdividing the 43 y period 1962–2005 into eight
separate subperiods. Within each subperiod, we normalize Q by its
average value within that period.
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FIG. 9. MS estimate of the power-law exponent �Q for time
scales �t ranging from 15 min up to 8 days, showing stable behav-
ior within the Lévy stable domain. Here we have used the TAQ
database for �t�1 day and the CRSP database for �t�1 day. The
exponents seem mutually consistent within error bars for both the
TAQ and the CRSP data. The dashed line shows a regression y
=A log x+B, and we obtain A=0.018±0.002 for �t�1 day and A
=0.019±0.001 for �t�1 day.
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although the true exponent is less than 2. In particular, one of
the drawbacks of Hill’s estimator is its dependence on the
number k of order statistics �or equivalently the estimation
threshold� that is used in the estimation.

Reference �27	 developed a method for estimating the
thickness of heavy tails based on the asymptotics of sums.
This robust estimator depends only on the tail exponent �
and not on the exact form of the distribution. The estimator
works for dependent data as well, and performs well when �
approaches 2. The central advantage of this estimator is that

it uses all the data for estimating � and does not depend on
any estimation threshold, unlike Hill’s estimator. Using data
denoted Yi, with i=1, . . .N, the MS estimator for ���−1 is

�MS =

� + log+�
i=1

N

�Yi − �Y��2

2�� + log N�
, �A3�

where �Y� is the sample mean, log+ Y �max�log Y ,0�, and
�=0.5772 is Euler’s constant.
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