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Abstract It is widely believed that switching phenomena require switches, but this is ac-
tually not true. For an intriguing variety of switching phenomena in nature, the underlying
complex system abruptly changes from one state to another in a highly discontinuous fash-
ion. For example, financial market fluctuations are characterized by many abrupt switch-
ings creating increasing trends (“bubble formation”) and decreasing trends (“financial col-
lapse”). Such switching occurs on time scales ranging from macroscopic bubbles persisting
for hundreds of days to microscopic bubbles persisting only for a few seconds. We ana-
lyze a database containing 13,991,275 German DAX Future transactions recorded with a
time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500
daily closing prices is used. We ask whether these ubiquitous switching phenomena have
quantifiable features independent of the time horizon studied. We find striking scale-free
behavior of the volatility after each switching occurs. We interpret our findings as being
consistent with time-dependent collective behavior of financial market participants. We test
the possible universality of our result by performing a parallel analysis of fluctuations in
transaction volume and time intervals between trades. We show that these financial market
switching processes have properties similar to those of phase transitions. We suggest that the
well-known catastrophic bubbles that occur on large time scales—such as the most recent
financial crisis—are no outliers but single dramatic representatives caused by the switching
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between upward and downward trends on time scales varying over nine orders of magnitude
from very large (≈ 102 days) down to very small (≈ 10 ms).

Keywords Econophysics

1 Introduction

In physics and in other natural sciences, it is often a successful strategy to analyze the be-
havior of a system by studying the smallest components of that system. For example, the
molecule is composed of atoms, the atom consists of a nucleus and electrons, the nucleus
consists of protons and neutrons, and so on. The fascinating point about analyses on steadily
decreasing time and length scales is that one often finds that the system exhibits properties
which cannot only be explained by the properties of its components alone. Instead, a com-
plex behavior can emerge due to the interactions among these components [1]. In financial
markets, these components are comprised by the market participants who buy and sell as-
sets in order to realize their trading and investment decisions. The superimposed flow of all
individual orders submitted to the exchange trading system initiated by market participants
generate a complex system with fascinating properties, similar to physical systems.

One of the key conceptual elements in modern statistical physics is the concept of scale
invariance, codified in the scaling hypothesis that functions obey certain functional equa-
tions whose solutions are power laws [2, 3]. The scaling hypothesis has two categories of
predictions, both of which have been remarkably well verified by a wealth of experimental
data on diverse systems. The first category is a set of relations, called scaling laws, that
serve to relate the various critical-point exponents characterizing the singular behavior of
functions such as thermodynamic functions. The second category is a sort of data collapse,
where under appropriate axis normalization, diverse data “collapse” onto a single curve
called a scaling function.

Econophysics research has been addressing a key question of broad interest for both
scientific and practical reasons: quantifying and understanding large stock market fluctua-
tions. Previous work focussed on the challenge of quantifying the behavior of the probabil-
ity distributions of large fluctuations of relevant variables such as returns, volumes, and the
number of transactions. Sampling the far tails of such distributions requires a large amount
of data. There is a truly gargantuan amount of pre-existing precise financial market data
already collected, many orders of magnitude more than for typical complex systems. Ac-
cordingly, financial markets are becoming a paradigm of complex systems, and increasing
numbers of scientists are analyzing market data [4–17]. Empirical analyses have been fo-
cused on quantifying and testing the robustness of power-law distributions that characterize
large movements in stock market activity. Using estimators that are designed for serially
and cross-sectionally independent data, findings support the hypothesis that the power law
exponents that characterize fluctuations in stock price, trading volume, and the number of
trades [18–25] are seemingly “universal” in the sense that they do not change their values
significantly for different markets, different time periods, or different market conditions.

In contrast to these analyses of global financial market distributions, we focus on the
temporal sequence of fluctuations in volatility, transaction volume, and inter-trade times
before and after a trend switching point. Our analysis can provide insight into switching
processes in complex systems in general and financial systems in particular. The study of
dramatic crash events is limited by the fortunately rare number of such events. Increasingly,
one seeks to understand the current financial crisis by comparisons with the depression of
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the 1930’s. Here we ask if the smaller financial crises—trend switching processes on all
time scales—also provide information of relevance for large crises. If this is so, then the
large abundance of data on smaller crises should provide quantifiable statistical laws for the
concept which we call “bubbles on all scales.”

2 Financial Market Data

To answer whether smaller financial crises also provide information of relevance to large
crises, we perform parallel analyses of bubble formation and bursting using two different
data sets on two quite different time scales: (i) from ≈ 101 ms to ≈ 106 ms, and (ii) from
≈ 108 ms to ≈ 1010 ms.

2.1 German Market—DAX Future

For the first analysis, we use a multivariate time series of the German DAX Future con-
tract (FDAX) traded at the European Exchange (Eurex), which is one of the world’s largest
derivatives exchanges. A “futures” exchange or derivatives exchange is a central financial
exchange where people can trade standardized “futures contracts”. A “future” is a contract
to buy or sell an underlying asset at a specified price at a specific future date—in this case
the German DAX index, which measures the performance of the 30 largest German com-
panies in terms of order book volume and market capitalization.1 The time series comprises
T1 = 13,991,275 transactions of three disjoint three-month periods (see Table 1). Each end
of the three disjoint periods corresponds to a last trading day of the FDAX contract, which
is ruled to be the third Friday of one of the months March, June, September, and December,
apart from the exceptions of national holidays. The data set we analyze contains the transac-
tion prices, the volumes, and the corresponding time stamps [30–33], with a large liquidity
and inter-trade times down to 10 ms, which allows us to perform an analysis of microtrends.

The time series analysis of future contracts has the advantage that the prices are created
by trading decisions alone. In contrast, stock index data are derived from a weighted sum
of a bunch of stock prices. Furthermore, systematic drifts by inflation are eliminated by
construction. The theory of futures pricing based on arbitrage states that for an asset that
can be stored at no cost and which does not yield any cash flows, the futures price F has to
be equal to the spot price S plus the cost of financing the purchase of the underlying between

Table 1 Three disjoint three-month periods of the German DAX Future contract (FDAX) which we analyze.
Additionally, the mean volume per transaction v̄ and the mean inter-trade time τ̄ are shown

Contract Records Time Period v̄ τ̄ [s]

FDAX JUN 2007 3,205,353 16 March 2007–15 June 2007 3.628a 2.485b

FDAX SEP 2008 4,357,876 20 June 2008–19 September 2008 2.558a 1.828b

FDAX DEC 2008 6,428,046 19 September 2008–19 December 2008 2.011a 1.253b

ameasured in units of contract

bincluding overnight gaps

1More detailed informations about German DAX index constituents and calculation principles can be found
on http://www.deutsche-boerse.com.
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the spot date and the expiry date [34, 35]. This theoretical futures price can be referred to as
fair value. In the case of the German DAX index, the underlying purchase can be financed
till expiry with a loan rate. Using a continuously compounded rate r , the fair value equation
can be written as

F(t) = S(t)ert , (1)

whereas t denotes the remaining time till expiry. The theoretical futures price expression—
see (1)—which simply reflects the cost of carry, compensates interest rate related effects.
At expiry time t = 0, the future’s price and underlying price are identical.

2.2 US Market—S&P500 Stocks

For the second analysis, which focuses on macrotrends, we use price time series of daily
closing prices of all stocks of the S&P500 index. This index consists of 500 large-cap com-
mon stocks, which are actively traded in the United States of America.2 The time series
comprises T2 = 2,592,531 closing prices overall of all US stocks which were constituent
of the S&P500 on June 16, 2009. Our oldest closing prices date back to January 2, 1962.
The data base of closing prices we analyzed contains the daily closing prices and the daily
cumulative trading volume. As spot market prices undergo a significant shift by inflation
over time periods of more than 40 years, we study the logarithm of stock prices instead of
the raw closing prices. Thus, the results between the two different data bases on two quite
different time scales become more comparable.

3 Renormalization Method

Less studied than the large fluctuations of major national stock indices such as the S&P500
are the various jagged functions of time characterizing complex financial fluctuations down
to time scales as short as a few milliseconds. These functions are not amenable to mathe-
matical analysis, at first sight because they are characterized by sudden reversals between
up and down microtrends (see Fig. 1), which can also be referred to as microscopic bubbles
on small time scales. On these small time scales, evidence can be found [9] that the three
major financial market quantities of interest—price, volume, and inter-trade times—are con-
nected in a complex way, overburdening standard tools of time series analysis such as linear
cross-correlation analysis. Thus, more sophisticated methods are necessary to analyze these
complex financial fluctuations creating complex financial market patterns.

It is not trivial how to characterize the sudden microtrend reversals, as the time derivative
of the price p(t) is discontinuous. This behavior is completely different from most real world
trajectories, e.g. a football, for which the time derivative of the space-time-relationship is a
smooth continuous function. In the following, we find a way of quantitatively analyzing
these sudden microtrend reversals which exhibit a behavior analogous to phase transitions
[36], and we interpret these transitions in terms of the cooperative interactions of the traders
involved. A wide range of examples of transitions exhibiting scale-free behavior ranges
from magnetism in statistical physics to heartbeat intervals (sudden switching from heart
contraction to heart expansion) [37], and to macroscopic social phenomena such as traffic
flows (switching from a free to congested traffic) [38].

2More detailed informations about S&P500 constituents and calculation principles can be found on
http://www.standardandpoors.com.
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Fig. 1 Visualization of a microtrend in the price movement p(t). (a) Positive microtrend of order Δt starting
at a local price minimum pmin and ending at a local price maximum pmax. The hatched region around pmax
indicates the interval in which we find scale-free behavior of related quantities—volume and inter-trade time.
This behavior is consistent with “self-organized” [26] macroscopic interactions among many traders [27], not
unlike “tension” in a pedestrian crowd [28, 29]. The reason for tension among financial traders may be found
in risk aversions and profit targets of financial market participants. (b) Renormalized time scale ε between
successive extrema, where ε = 0 corresponds to the start of a microtrend, and ε = 1 corresponds to the end

To focus on switching processes of price movements down to a microscopic time scale,
we first propose how a switching process can be quantitatively analyzed. Let p(t) be the
transaction price of trade t , which will be treated as a discrete variable t = 1, . . . , T . Each
transaction price p(t) is defined to be a local maximum pmax(Δt) of order Δt , if there is
no higher transaction price in the interval t − Δt ≤ t ≤ t + Δt . Thus, if p(t) = pmax(t,Δt),
p(t) is a local maximum, where

pmax(t,Δt) = max{p(t)|t − Δt ≤ t ≤ t + Δt}. (2)

Analogously, each transaction price p(t) is defined to be a local minimum of order Δt , if
there is no lower transaction price in this interval. With

pmin(t,Δt) = min{p(t)|t − Δt ≤ t ≤ t + Δt}, (3)

it follows that p(t) is a local minimum if p(t) = pmin(t,Δt). In this sense, the two points
in the time series in Fig. 1 marked by circles are a local minimum and a local maximum,
respectively.

For the analysis of financial market quantities in dependence of trend fraction, we intro-
duce a renormalized time scale ε between successive extrema as follows: Let tmin and tmax be
the time (measured in units of ticks) at which the corresponding transactions take place of a
successive pair of local minimum and local maximum (see Fig. 1). For a positive microtrend,
the renormalized time scale is given by

ε(t) ≡ t − tmin

tmax − tmin
, (4)

with t ≥ tmin, and for a negative microtrend by

ε(t) ≡ t − tmax

tmin − tmax
, (5)
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with t ≥ tmax. Thus, ε = 0 corresponds to the beginning of the microtrend and ε = 1 indicates
the end of the microtrend. We analyze a range of ε within the interval 0 ≤ ε ≤ 2, so we can
analyze trend switching processes both before and after the critical value ε = 1 (Fig. 1). The
renormalization is essential to assure that microtrends of various lengths can be aggregated
and that all switching points have a common position on the renormalized time scale.

3.1 Volatility Analysis

First we analyze the fluctuations σ 2(t) of the price time series during the short time inter-
val of increasing microtrends from one price minimum to the next price maximum (see
Fig. 2a) and decreasing microtrends from one price maximum to the next price mini-
mum (see Fig. 2b). The quantity studied is given by squared price differences, σ 2(t) =
(p(t) − p(t − 1))2 for t > 1, and can be referred to as local volatility. For the analysis of
σ 2(t) in dependence of the trend fraction, we use the renormalization time scale ε. In Fig. 2,
the color represents the mean volatility 〈σ 2〉(ε,Δt) in dependence of ε and Δt , normalized
by the average volatility σ̄ , where the brackets denote the average over all increasing mi-
crotrends (see Fig. 2a) or all decreasing microtrends (see Fig. 2b) in the full time series of
T1 = 13,991,275 records. If one can find Npos(Δt) positive microtrends and Nneg(Δt) nega-
tive microtrends each of order Δt in the time series, and if σ 2

i (ε) denotes the local volatility
at position ε in the i-th positive or i-th negative microtrend, then the mean volatility is given
by

〈σ 2
pos〉(ε,Δt) = 1

Npos(Δt)

Npos(Δt)∑

i=1

σ 2
i (ε) (6)

for positive microtrends and

〈σ 2
neg〉(ε,Δt) = 1

Nneg(Δt)

Nneg(Δt)∑

i=1

σ 2
i (ε) (7)

for negative microtrends. The mean volatility can be normalized by the average volatility σ̄ ,
which is determined by

σ̄pos = εbin

εmaxΔtmax

εmax/εbin∑

ε=0

(
Δtmax∑

Δt=0

〈σ 2
pos〉(ε,Δt)

)
(8)

and

σ̄neg = εbin

εmaxΔtmax

εmax/εbin∑

ε=0

(
Δtmax∑

Δt=0

〈σ 2
neg〉(ε,Δt)

)
, (9)

where εmax is the maximum value of the renormalization time scale ε studied, which is fixed
to εmax = 2, and εbin denotes the bin size of the renormalization time scale. The maximum
value of Δt analyzed is given by Δtmax. For reasons of convenience, we relate the bin size
to Δtmax via

εbin = εmax

Δtmax
. (10)
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Fig. 2 Renormalization time analysis of volatility σ 2 for microtrends. (a) Volatility profile, averaged over
all positive microtrends in the German DAX future time series and normalized by the average volatility of
all positive microtrends studied. The color represents the normalized mean volatility 〈σ 2

pos〉(ε,Δt)/σ̄pos. The
color profile shows the link between mean volatility and price evolution. New maximum values of the price
time series are reached with a significant sudden jump of the volatility, as indicated by the vertical white
regions and the sharp maximum in the volatility aggregation σ 2∗(ε) shown in the top panel. Here, σ 2∗(ε)

denotes the average of the volatility profile, averaged only for layers with 50 ≤ Δt ≤ 100. After reaching new
maximum values in the price, the volatility decays and returns to the average value (top panel) for ε > 1.
(b) Parallel analysis averaged over all negative microtrends in the time series. New minimum values of the
price time series are reached with a pronounced sudden jump of the volatility, as indicated by the vertical blue
regions in the volatility aggregation σ 2∗(ε) shown in the top panel. (c) Volatility (50 ticks ≤ Δt ≤ 1000 ticks)
before reaching a new maximum price value (ε < 1, circles) and after reaching a new maximum price value
(ε > 1, triangles), aggregated for increasing microtrends. The straight lines correspond to power law scaling
with exponents β+

σ2 = −0.30 and β−
σ2 = 0.01. The shaded interval marks the region in which this power law

behavior is valid. (d) Log-log plot of σ 2∗(ε) for negative microtrends. The straight lines suggest power law
scaling with exponents β+

σ2 = −0.54 and β−
σ2 = 0.04. The left border of the shaded region is given by the

first measuring point closest to the switching point
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The absence of changes of the colored volatility profiles in Fig. 2 is consistent with a data
collapse for Δt values larger than a certain cut-off value Δtcut. Thus, we calculate the volatil-
ity aggregation σ 2∗(ε). This volatility aggregation σ 2∗(ε) is the average of the mean volatil-
ity 〈σ 2

neg〉(ε,Δt), averaged only for layers with Δtcut ≤ Δt ≤ Δtmax. It is given by

σ 2∗
pos(ε) = 1

Δtmax − Δtcut

Δtmax∑

Δt=Δtcut

〈σ 2
pos〉(ε,Δt)

σ̄pos
(11)

and the equivalent definition

σ 2∗
neg(ε) = 1

Δtmax − Δtcut

Δtmax∑

Δt=Δtcut

〈σ 2
neg〉(ε,Δt)

σ̄neg
(12)

for negative microtrends. Note that, in order to improve readability, we will drop the sub-
scripts “pos” and “neg” in the following if the context determines whether positive or nega-
tive microtrends are considered.

The colored volatility profiles (see Fig. 2) show the mean volatility 〈σ 2〉(ε,Δt) averaged
over all increasing or all decreasing microtrends in the full time series of T1 = 13,991,275
records, and are normalized by the average volatilities of microtrends studied in both cases.
In order to remove outliers, only such microtrends are collected in which the time intervals
between successive trades τ(t) [39] are not longer than 1 minute, which is roughly 60 times
longer than the average inter-trade time (≈ 0.94 s without overnight gaps), and in which the
transaction volumes are not larger than 100 contracts (the average transaction volume is 2.55
contracts, see Table 1). This condition ensures that time t , when measured in units of ticks,
runs only over the working hours of the exchange—removing overnight gaps, weekends,
and national holidays.

The color profiles exhibit a link between volatility and price evolution. A new local price
maximum is reached with a significant sudden jump of the volatility (top panel of Fig. 2a).
After reaching new local maximum values in the price, the volatility decays and returns
to the average value for ε > 1. Reaching a maximum seem to cause tension among the
market participants. A local price maximum can stoke the expectations that higher prices
are possible and thus stimulate purchases. However, this development can also raise fears of
traders to find an optimal price for selling their assets. Additionally, it is possible that market
participants hold a short position which means that they benefit from falling asset prices,
having to stop their losses. For negative microtrends, the reaching of a local minimum value
in the price coincides with a more pronounced sudden jump of the volatility (see Fig. 2b).
A negative microtrend seems to create a situation in which market participants act in a more
dramatic way after the end of a trend in comparison to the end of positive microtrends.
One can conjecture that they are driven by tension at least or even by “panic”, if they try
to stop their losses. But of course, also the opposite situation should be relevant: A market
participant who has no inventory is looking for entry opportunities. As asset prices are rising
after reaching a local price minimum (ε = 1), a financial market actor who wants to enter
into the market has to deal with the problem to find the “right” time—the optimal entry
level, the local price minimum is already missed at this time.

This qualitative effect is intuitively understandable and should be obvious for market ac-
tors. In contrast, the shape of the volatility peak around extrema is surprising. The peak is
characterized by asymmetric tails, as it is analyzed next. For this analysis, we use the volatil-
ity aggregation σ 2∗(ε), which is the mean volatility 〈σ 2〉(ε,Δt) averaged for layers from
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Δtcut = 50 ticks to Δtmax = 1000 ticks. Figure 2c shows the aggregated average volatility
σ 2∗(ε) for positive microtrends on a log-log plot. Surprisingly, the evolution of the volatility
before and after reaching a maximum shows up as straight lines and thus are consistent with
a power law scaling behavior

σ 2∗(|ε − 1|) ∼ |ε − 1|βσ2 (13)

within the range indicated by the vertical dashed lines. Over one order of magnitude, we find
distinct exponents, β−

σ 2 = 0.01 before a price maximum and β+
σ 2 = −0.30 after a price max-

imum. Figure 2d shows the aggregated average volatility σ 2∗(ε) for negative microtrends
on a log-log plot. Over more than one order of magnitude, we find for negative microtrends
a qualitatively consistent behavior with exponents β−

σ 2 = 0.04 before a price minimum and
β+

σ 2 = −0.54 after it.
In the following, we will test the possible universality of our results by performing a

parallel analysis for trends on long time scales, using the daily closing price data base of
S&P500 stocks. Here, universality means that our renormalized market quantities do not
change their values significantly for different markets, different time periods, or different
market conditions.

Note that for our parallel analysis on macroscopic time scales, the order of a extremum
Δt is measured in units of days, and that 〈σ 2〉(ε,Δt) is averaged additionally over the clos-
ing price time series of all S&P500 components. In order to avoid biased contributions for
the rescaled averaging caused by inflation-based drifts over more than 47 years as described
in section 2.2, the analyzed price time series p(t) contains the logarithm of the daily closing
prices. Figure 3a shows the mean volatility 〈σ 2〉(ε,Δt) for positive microtrends, averaged
for layers from Δtcut = 10 days to Δtmax = 100 days. Figure 3b shows the mean volatility
〈σ 2〉(ε,Δt) for negative microtrends, averaged for the same layers’ range. As already un-
covered for microtrends, the sudden volatility rise is more dramatic for negative macrotrends
than for positive macrotrends. Surprisingly, the aggregate average volatilities σ 2∗(ε) for pos-
itive and negative macrotrends on a log-log plot show again distinct tail exponents around
the switching point ε = 1. For positive macrotrends, we obtain β−

σ 2 = −0.05 before a price
maximum and β+

σ 2 = −0.40 after it. For negative microtrends, we obtain β−
σ 2 = −0.09 be-

fore a price minimum and β+
σ 2 = −0.50 after it, which is both similar to the values obtained

for our study of positive and negative microtrends.

3.2 Volume Analysis

To test the possible universality of these results obtained for volatility, we perform a parallel
analysis of the corresponding volume fluctuations v(t), the numbers of contracts traded in
each individual transaction in case of microtrends for the German market and the cumulative
number of traded stocks per day in case of macrotrends for the US market. The volume pro-
file provides the mean volume averaged over all increasing microtrends in the time series of
the German market and is also normalized by the average volume of all microtrends studied.
In order to remove outliers in this analysis, we consider only those microtrends which in-
clude inter-trade times not longer than 1 minute and transaction volumes not larger than 100
contracts. As expected, new price extrema are linked with peaks in the volume time series
but, surprisingly, we find that the usual cross-correlation function between price changes
and volumes vanishes. Thus, one can conjecture that the tendency towards increased vol-
umes occurring at the end of positive microtrends is counteracted by the tendency towards
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Fig. 3 Renormalization time analysis of volatility σ 2 for macrotrends. (a) Volatility profile, averaged over all
positive macrotrends in the daily closing price time series of all S&P500 stocks and normalized by the average
volatility of all positive macrotrends studied. The stylized fact that new maximum values of the price time
series are reached with a significant sudden jump of the volatility can also be found for macrotrends. Note that
Δt is measured in units of day for macrotrends. (b) Parallel analysis performed for all negative macrotrends in
the daily closing price time series of all S&P500 stocks. As already uncovered for microtrends (see Fig. 2), the
sudden jump of the volatility at ε = 1 is more pronounced for negative trends than for positive microtrends. (c)
Volatility (10 days ≤ Δt ≤ 100 days) before reaching a new maximum price value (ε < 1, circles) and after
reaching a new maximum price value (ε > 1, triangles), aggregated for increasing macrotrends. The straight
lines suggest power law scaling with exponents β+

σ2 = −0.40 and β−
σ2 = −0.05. (d) Log-log plot of σ 2∗(ε)

for negative macrotrends. The straight lines correspond to power law scaling with exponents β+
σ2 = −0.50

and β−
σ2 = −0.09
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increased volumes occurring at the end of negative microtrends. The crucial issue is to dis-
tinguish between positive and negative microtrends, realized by the renormalization time ε

between successive extrema.
For positive microtrends, a significant increase of volumes can be found already before

the local maximum price is reached. After reaching the local maximum value, the volatility
falls dramatically back to values close to the average value. For negative microtrends, the
opposite characteristic is observed. Reaching a local price minimum causes a sudden jump
of the transaction volume, whereas after the local price minimum the volume decays and
returns to the average value for ε > 1. We find

v∗(|ε − 1|) ∼ |ε − 1|βv (14)

with exponents β−
v = −0.14 before and β+

v = −0.20 after a price maximum. v∗(ε) is
obtained by averaging Δt “slices” between Δtcut = 50 and Δtmax = 1000. For negative
microtrends, straight lines can be fitted to the log-log histogram as well with exponents
β−

v = −0.17 before and β+
v = 0 after a local price minimum.

A parallel analysis for the US market on large time scales provides evidence that the
volume peaks are symmetrically shaped around the switching point ε = 1 and that the
characteristics are similar for positive and negative macrotrends. The power law exponents
for positive microtrends are given by β−

v = −0.04 before, and β+
v = −0.08 after a local

price maximum. The similar behavior of negative microtrends is supported by exponents
β−

v = −0.05 before and β+
v = −0.15 after a local price minimum.

3.3 Inter Trade Time Analysis

In order to verify a possible universality, we analyze additionally the behavior of the inter-
trade times τ(t) of the German market during the short time interval from one price ex-
tremum to the next. The linear cross-correlation function between price changes and inter-
trade times as standard tool of time series analysis exhibits no significant correlation values
as well. Thus, one can again conjecture that the tendency towards decreased inter-trade
times at the end of positive microtrends is counteracted by the tendency towards decreased
inter-trade times at the end of negative microtrends. It is of crucial importance to distin-
guish between positive and negative microtrends. The mean inter-trade time 〈τ 〉(ε,Δt)/τ̄

reflects a link between inter-trade times and price extrema. Far away from the critical point
ε = 1, the mean inter-trade time starts to decrease. After the formation of a new local price
maximum, the mean inter-trade times increase and return to the average value in a sym-
metrical way. Negative microtrends obey the same behavior with one exception. Reaching a
local price minimum (ε = 1) coincides with a temporary sudden increase of the inter-trade
times. For both types of trends, the dip of the inter-trade times may be interpreted in terms
of “panic”. Already before reaching local extremal prices, market actors try to participate in
the forming trend or try to correct their trading decision, which was caused by the hope to
participate in the establishment of an opposite trend. After reaching the local extremal price,
the tension persists, but becomes steadily smaller. We find

τ ∗(|ε − 1|) ∼ |ε − 1|βτ (15)

for positive microtrends with exponents β−
τ = 0.10 before and β+

τ = 0.12 after a local price
maximum. For negative microtrends, we obtain exponents β−

τ = 0.09 before and β+
τ = 0.15

after a local price minimum. A log-log histogram of a parallel analysis for the US market on
large time scales is not obtainable, as the inter-trade times between successive closing prices
are given by the constant value of 1 day (exceptions are weekends and general holidays).
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Fig. 4 Stability test of the power law dependence. (a) If one reshuffles randomly γ T pairs of volume entries
in the multivariate time series, the significant link between volume and price evolution starts to disappear as
γ increases. (b) If γ T pairs of inter-trade time entries are randomly reshuffled, the inter-trade time dip starts
to disappear. (c) We find an identical behavior for the volume peak on long time scales, using daily closing
prices of S&P500 stocks. (d) The disappearance phenomenon appears to follow a power law behavior. The
maximum value of v∗(ε)γ at ε = 1 scales with exponent βs

v = −0.115 ± 0.005. (e) The minimum value of
τ∗(ε)γ at ε = 1 scales with exponent βs

v = 0.094 ± 0.004. (f) In the case of the maximum of v∗(ε)γ at ε = 1
for the S&P500 stocks, the plot may be fitted by a power law with exponent βs

v = −0.095 ± 0.008

3.4 Random Reshuffling

To confirm that our results are a consequence of the exact time series sequence and thus
sensitive to the time ordering of the original time series of volumes and inter-trade times,
we randomly reshuffle (γ T ) pairs of data points of both the volume time series and inter-
trade time series in order to weaken their connection with the price evolution. We find that
the clear link between volumes fluctuations and price evolution (see Fig. 4a) and between
inter-trade times and price evolution (see Fig. 4b) disappears with increasing γ and entirely
vanishes for γ ≥ 1 for microtrends. The dip of the inter-trade times at ε = 1 becomes less
pronounced with increasing γ and, correspondingly, the peak of the volume maximum de-

 Author's personal copy 



Switching Phenomena in a System with No Switches 443

creases. For the S&P500 data set (Fig. 4c), the volume peak disappears with increasing γ ,
obeying the same characteristics. These reshuffling induced processes may be characterized
by power law relationships as well, which support our finding that a fluctuating price time
series passes through a sequence of distinct transitions with scale-free properties. The dis-
appearance phenomenon follows a power law behavior. The maximum value of v∗(ε)γ at
ε = 1 scales with exponent βs

v = −0.12 for microtrends (Fig. 4d). The minimum value of
τ ∗(ε)γ at ε = 1 scales with exponent βs

v = 0.09 as shown in Fig. 4e. In the case of the max-
imum of v∗(ε)γ at ε = 1 on large time scales, the log-log plot can be fitted by a straight line
with a power law exponent βs

v = −0.10 for the S&P500 stocks. However, some deviations
can be observed for macrotrends, which are caused by the limited number of closing prices
in the S&P500 data set (T2 
 T1).

Using this approach, it is not possible to reshuffle the volatility as it is extracted directly
from the price time series. As our study pursues a data-driven approach and finds a higher
volatility around the switching point, we have to clarify, whether the increase in variance
is caused by the application of the variance formula to a time series with a changing trend.
The relevance of the trend dynamics for the variance can, for example, be seen in [40]. In
general, the tendency towards higher volatility around switching points can be qualitatively
obtained by a random walk process. However, this does not effect the results of volume and
inter-trade times [41].

4 Summary and Conclusions

The straight lines in Fig. 5 offer insight into financial market fluctuations: (i) a clear con-
nection between volatility, volumes, inter-trade times, and price fluctuations on the path
from one extremum to the next extremum, and (ii) the underlying law, which describes the
tails of volatility, volumes, and inter-trade times around extrema varying over 9 orders of
magnitude starting from the smallest possible time scale, is a power law with a unique ex-
ponents which quantitatively characterize the region around the trend switching point. As
a direct consequence of the existence of power law tails, the behavior does not depend on
the scale. Thus, we find identical behavior for other sub-intervals of 50 ≤ Δt ≤ 1000. With
a decreasing value of Δt , the number of local minima and maxima increases (see Fig. 1),
around which we find scale-free behavior, for exactly the same ε interval 0.6 ≤ ε ≤ 1.4. The
peaks in σ 2(ε) and v(ε) around ε = 1 and the dip of τ(ε) around ε = 1 offer a challenge for
multi-agent-based financial market models [42–48] to reproduce these empirical facts. The
characterization of volatility, volume, and inter-trade times by power law relationships in
the time domain supports our hypothesis that a fluctuating price time series passes through
a sequence of “phase transitions”.

Before concluding, we may ask “what kind of phase transition” could the end of a mi-
crotrend or macrotrend correspond to, or is the end of a trend an altogether different kind
of phase transition that resembles all phase transitions by displaying a regime of scale free
behavior characterized by a critical exponent? It may be premature to speculate on possi-
ble analogies, so we will limit ourselves to describing here what seems to be a promising
candidate. Consider a simple Ising magnet characterized by one-dimensional spins that can
point North or South. Each spin interacts with some (or even with all) of its neighbors with
positive interaction strength J , such that, when J is positive neighboring spins lower their
energy by being parallel. The entire system is bathed in a magnetic field that interacts with
all the spins equally with a strength parametrized by H , such that when H is positive, the
field points North and when H is negative the field points South. Thus, when H is positive,
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Fig. 5 Overview of time scales studied and log-log plots of quantities with scale-free properties. (a) Visual-
ization of time scales studied for both the German market and the US market. For the analysis of microtrends,
we use the German DAX future data base which enables us to analyze microtrends starting at roughly 106

ms down to the smallest possible time scale of individual transactions measured in multiples of 10 ms. The
log-log plots of quantities with scale-free behavior on short time scales are shown in the left column. For the
analysis of macrotrends, we use the data base of daily closing prices of all S&P500 stocks, which enables us
to perform equivalent analysis of macrotrends on long time scales which are shown the right column. Thus,
our analysis of switching processes ranges over 9 orders of magnitude from 10 ms to 1010 ms. (b) Volatility
(50 ticks ≤ Δt ≤ 1000 ticks) before reaching a new extreme price value (ε < 1, circles) and after reaching
a new extreme price value (ε > 1, triangles), aggregated for microtrends. The straight lines suggest power
law scaling with exponents β+

σ2 = −0.42 ± 0.01 and β−
σ2 = 0.03 ± 0.01. The shaded interval marks the

region in which this power law behavior is valid. The left border of the shaded region is given by the first
measuring point closest to the switching point. (c) Volatility aggregation of macrotrends determined for the
US market on long time scales (10 days ≤ Δt ≤ 100 days). The straight lines correspond to power law
scaling with exponents β+

σ2 = −0.46 ± 0.01 and β−
σ2 = −0.08 ± 0.02, which seem to be similar to the

exponents determined for the German future market on short time scales. (d) Log-log plot of the volume
aggregation on short time scales (50 ticks ≤ Δt ≤ 1000 ticks) exhibiting a power law behavior with expo-
nents β+

v = −0.146 ± 0.005 and β−
v = −0.072 ± 0.001. (e) Log-log plot of the volume aggregation on long

time scales (10 days ≤ Δt ≤ 100 days) exhibits a power law behavior with exponents β+
v = −0.115 ± 0.003

and β−
v = −0.050 ± 0.002, seem to be similar to our results on short time scales. (f) Log-log plot of the in-

ter-trade time aggregation on short time scales (50 ticks ≤ Δt ≤ 100 ticks), exhibiting a power law behavior
with exponents β+

τ = 0.120 ± 0.002 and β−
τ = 0.087 ± 0.002. An equivalent analysis of long time scales is

not possible, as daily closing prices are recorded with equidistant time steps
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the system lowers its energy by each spin pointing North. Thus, there are two competing
control parameters J and H . If, e.g., the system is prepared in a state with the majority
of spins pointing North yet the field H points South, the competition will be between the
relative effects of J and H : the J interaction motivates the spins to point North but the H

interaction motivates the spin to point South. Such a system is termed metastable since, if
each North-pointing spin suddenly flips its state to point South, the system can achieve a
lower total energy. This flipping will occur in time in a fashion not unlike the trading fre-
quency near the end of a trend: first, one or two spins will randomly switch their state, then
more, and suddenly, after in an “avalanche” of switches, the majority of spins will point
South. The phase transition is termed a spinodal singularity, characterized by its own set of
exponents.

Why should the end of microtrends or macrotrends have a parallel with such a metastable
physical system? Presumably, near the end of a positive trend, all the market participants
watching the market begin to sense that the market is metastable and that, if they do not
sell soon, it could be too late to make any profit, because the price will drop. First, a few
traders sell, pushing the market imperceptibly lower. Then, additional traders, sensing this
microscopic downturn, may decide that now is the time to sell and they sell too. Then an
“avalanche” of selling begins, with traders all hoping to protect their profits by selling before
the market drops. Thus, the set of N market participants “holding their position” are in this
sense analogous to the set of N mostly North-pointing spins, bathed in a South-pointing
magnetic field.

Perhaps, the above analogy is not yet the best. It will be a future challenge to find a
coherent, convincing explanation for why the end of a microtrend or macrotrend displays
such striking parallels to a phase transition. In any case, a set of interacting spins appears to
be analogous to a set of interacting traders.

The end of the negative microtrend or macrotrend follows the same mechanism, but with
everything reversed. The N Ising spins point mostly South, the magnetic field points North,
and the spins flip from South to North one by one, ending with an avalanche corresponding
to the spinodal singularity. Analogously, the N traders begin to suspect that the market is
becoming metastable, so that they start to buy one by one. But as the traders witness the
price increasing, they jump into buy mode before the price becomes too high.

In summary, we have seen that each trend—microtrend and macrotrend—in a financial
market starts and ends with a unique switching process, and each extremum shares prop-
erties of macroscopic cooperative behavior. We have seen that the mechanism of bubble
formation and bubble bursting has no scale, for time scales varying over 9 orders of magni-
tude down to the smallest possible time scale—the scale of single transactions measured in
units of 10 ms. On large time scales, histograms of price returns provide the same scale-free
behavior. Thus, the formation of positive and negative trends on all scales is a fundamental
principle of trading, starting on the smallest possible time scale, which leads to the non-
stationary nature of financial markets as well as to crash events on large time scales. Thus,
the well-known catastrophic bubbles occurring on large time scales—such as the most re-
cent financial crisis—may not be outliers but in fact single dramatic events caused by the
inherent, scale-free behavior related to the formation of increasing and decreasing trends on
time scales from the very large down to the very small.

Acknowledgements The authors thank K. Binder, S.V. Buldyrev, C. De Grandi, S. Havlin, D. Helbing,
U. Krey, H.-G. Matuttis, M.G. Mazza, I. Morgenstern, W. Paul, J.J. Schneider, R.H.R. Stanley, T. Vicsek, and
G.M. Viswanathan for discussions, and we also thank the German Research Foundation (DFG), the Gutenberg
Academy, and the NSF for financial support.

 Author's personal copy 



446 T. Preis, H.E. Stanley

References

1. Anderson, P.W.: Science 177, 393 (1972)
2. Stanley, H.E.: Rev. Mod. Phys. 71, S358 (1999)
3. Mantegna, R.N., Stanley, H.E.: Introduction to Econophysics Correlations and Complexity in Finance.

Cambridge Univ. Press, Cambridge (2000)
4. Axtell, R.L.: Science 293, 1818 (2001)
5. Takayasu, H. (ed.): Practical Fruits of Econophysics. Springer, Berlin (2006)
6. Kiyono, K., Struzik, Z.R., Yamamoto, Y.: Phys. Rev. Lett. 96, 068701 (2006)
7. Watanabe, K., Takayasu, H., Takayasu, M.: Physica A 383, 120 (2007)
8. Gabaix, X., Gopikrishnan, P., Plerou, V., Stanley, H.E.: Nature 423, 267 (2003)
9. Preis, T., Paul, W., Schneider, J.J.: Europhys. Lett. 82, 68005 (2008)

10. Preis, T., Virnau, P., Paul, W., Schneider, J.J.: New J. Phys. 11, 093024 (2009)
11. Lillo, F., Farmer, J.D., Mantegna, R.N.: Nature 421, 129 (2003)
12. Plerou, V., Gopikrishnan, P., Gabaix, X., Stanley, H.E.: Phys. Rev. E 66, 027104 (2002)
13. Cont, R., Bouchaud, J.P.: Macroecon. Dyn. 4, 170 (2000)
14. Krawiecki, A., Holyst, J.A., Helbing, D.: Phys. Rev. Lett. 89, 158701 (2002)
15. O’Hara, M.: Market Microstructure Theory. Blackwell, Cambridge (1995)
16. Vandewalle, N., Ausloos, M.: Physica A 246, 454 (1997)
17. Eisler, Z., Kertész, J.: Phys. Rev. E 73, 046109 (2006)
18. Mandelbrot, B.: J. Bus. 36, 394 (1963)
19. Fama, E.F.: J. Bus. 36, 420 (1963)
20. Lux, T.: Appl. Financ. Econ. 6, 463 (1996)
21. Guillaume, D.M., Dacorogna, M.M., Davé, R.R., Müller, U.A., Olsen, R.B., Pictet, O.V.: Financ. Stoch.

1, 95 (1997)
22. Gopikrishnan, P., Meyer, M., Amaral, L., Stanley, H.E.: Eur. J. Phys. B 3, 139 (1998)
23. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Stanley, H.E.: Phys. Rev. Lett. 83, 1471

(1999)
24. Gopikrishnan, P., Plerou, V., Amaral, L.A.N., Meyer, M., Stanley, H.E.: Phys. Rev. E 60, 5305 (1999)
25. Gopikrishnan, P., Plerou, V., Gabaix, X., Stanley, H.E.: Phys. Rev. E 62, 4493 (2000)
26. Krugman, P.: The Self-Organizing Economy. Blackwell, Cambridge (1996)
27. Shleifer, A.: Inefficient Markets: An Introduction to Behavioral Finance. Oxford Univ. Press, Oxford

(2000)
28. Helbing, D., Farkas, I., Vicsek, T.: Nature 407, 487 (2000)
29. Bunde, A., Schellnhuber, H.J., Kropp, J. (eds.): The Science of Disasters: Climate Disruptions, Heart

Attacks, and Market Crashes. Springer, Berlin (2002)
30. Jones, C.M., Kaul, G., Lipson, M.L.: Rev. Financ. Stud. 7, 631 (1994)
31. Chan, L., Fong, W.M.: J. Financ. Econ. 57, 247 (2000)
32. Politi, M., Scalas, E.: Physica A 387, 2025 (2008)
33. Jiang, Z.Q., Chen, W., Zhou, W.X.: Physica A 388, 433 (2009)
34. Dubil, R.: An Arbitrage Guide to Financial Markets. Wiley, Chichester (2004)
35. Deutsch, H.P.: Derivate und Interne Modelle: Modernes Risk Management. Schaefer-Poeschel, Stuttgart

(2001)
36. Binder, K.: Rep. Prog. Phys. 50, 783 (1987)
37. Peng, C.K., Mietus, J., Hausdorff, J.M., Havlin, S., Stanley, H.E., Goldberger, A.L.: Phys. Rev. Lett. 70,

1343 (1993)
38. Helbing, D., Huberman, B.A.: Nature 396, 738 (1998)
39. Ivanov, P.C., Yuen, A., Podobnik, B., Lee, Y.: Phys. Rev. E 69, 056107 (2004)
40. Helbing, D.: Phys. Rev. E 55, R25 (1996)
41. Preis, T., Schneider, J.J., Stanley, H.E.: Formation and bursting of financial bubbles. Preprint (2009)
42. Smith, E., Farmer, J.D., Gillemot, L., Krishnamurthy, S.: Quant. Finance 3, 481 (2003)
43. Lux, T., Marchesi, M.: Nature 397, 498 (1999)
44. Preis, T., Golke, S., Paul, W., Schneider, J.J.: Europhys. Lett. 75, 510 (2006)
45. Preis, T., Golke, S., Paul, W., Schneider, J.J.: Phys. Rev. E 76, 016108 (2007)
46. Bouchaud, J.P., Matacz, A., Potters, M.: Phys. Rev. Lett. 87, 228701 (2001)
47. Haerdle, W., Kleinow, T., Korostelev, A., Logeay, C., Platen, E.: Quant. Financ. 8, 81 (2008)
48. Halla, A.D., Hautsch, N.: J. Financ. Mark. 10, 249 (2007)

 Author's personal copy 


	Switching Phenomena in a System with No Switches
	Abstract
	Introduction
	Financial Market Data
	German Market-DAX Future
	US Market-S&P500 Stocks

	Renormalization Method
	Volatility Analysis
	Volume Analysis
	Inter Trade Time Analysis
	Random Reshuffling

	Summary and Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


