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For an intriguing variety of switching processes in nature, the
underlying complex system abruptly changes from one state to
another in a highly discontinuous fashion. Financial market fluctua-
tions are characterized bymany abrupt switchings creating upward
trends and downward trends, on time scales ranging from macro-
scopic trends persisting for hundreds of days to microscopic trends
persisting for a few minutes. The question arises whether these
ubiquitous switching processes have quantifiable features inde-
pendent of the time horizon studied. We find striking scale-free
behavior of the transaction volume after each switching. Our find-
ings can be interpreted as being consistent with time-dependent
collective behavior of financial market participants. We test the
possible universality of our result by performing a parallel analysis
of fluctuations in time intervals between transactions. We suggest
that the well known catastrophic bubbles that occur on large time
scales—such as themost recent financial crisis—may not be outliers
but single dramatic representatives caused by the formation of
increasing and decreasing trends on time scales varying over nine
orders of magnitude from very large down to very small.

complex systems ∣ econometrics ∣ switching phenomena ∣ phase transitions ∣
futurICT

The study of dramatic crash events is limited by the fortunately
rare number of such events. However, there is a truly gargan-

tuan amount of preexisting precise financial market data already
collected, many orders of magnitude more than for other com-
plex systems. Accordingly, financial markets are becoming a para-
digm of complex systems (1, 2), and increasing numbers of
scientists are analyzing market data (3–18) and modeling finan-
cial markets (19–29). The probability distribution function and
the time autocorrelation function reveal interesting features, such
as long-range power-law correlations in volatility (30) and fat tails
in the price change probability distribution function (31, 32).

Increasingly, one seeks to understand the current financial crisis
by comparisons with the depression of the 1930s. Here we ask if
the smaller financial crises also provide information of relevance
to large crises. If such “microbubbles” are relevant, then the larger
abundance of data on smaller crises should provide quantifiable
statistical laws for bubble formation and financial collapse on
various scales.

Data Analyzed
To answer this question, we perform parallel analyses of trend
switching on two quite different time scales: (i) from ≈10 ms
to ≈106 ms, and (ii) from ≈108 ms to ≈1010 ms.
• German market: For the first analysis, we use a price time ser-

ies of the German DAX Future (FDAX) traded at EUREX,
which is one of the world’s largest derivatives exchanges.
The time series comprises T1 ¼ 13;991;275 trades of three dis-
joint three-month periods (March 16, 2007—June 15, 2007;
June 20, 2008—September 19, 2008; and September 19,
2008— December 19, 2008). The data base contains the trans-
action prices, the volumes, and the corresponding time stamps
(33–36), with a large liquidity and intertrade times—time
intervals between consecutive transactions—down to 10 ms,
which allows us to perform an analysis of microtrends (Fig. 1A).

• US market: For the second analysis, which focuses on macro-
trends, we use price time series of daily closing prices of all
stocks of the S&P500 index. The time series comprises overall
T2 ¼ 2;592;531 closing prices. Our oldest closing prices date
back to January 2, 1962. Latest closing prices were recorded
on June 16, 2009. The data base of closing prices we analyze
contains the daily closing prices and the daily cumulative trad-
ing volumes.

In addition, we perform a parallel analysis of the 30 assets con-
tributing to the Dow Jones Industrial Average (DJIA)*. The time
series stem from the Trade and Quote (TAQ)† data base and cover
2,623,445,866 transactions.

Renormalization Method
To analyze switching processes of financial fluctuations, we first
propose how a switching process can be quantitatively analyzed.
Let pðtÞ be the transaction price of trade t, which is a discrete
variable t ¼ 1;…;T. A transaction price pðtÞ is defined to be a
local maximum of order Δt if there is no higher transaction price
in the interval t − Δt ≤ t ≤ tþ Δt, and is defined to be a local
minimum of order Δt if there is no lower transaction price in this
interval (Fig. 1B).

Here, we perform an analysis of the volume fluctuations vðtÞ
from one price extremum to the next. The volume is the number
of contracts traded in each individual transaction in case of mi-
crotrends for the German market and the number of traded
stocks per day in case of macrotrends for the US market. For
the analysis, we introduce a renormalized time scale ε between
successive extrema (37). Thus, ε ¼ 0 corresponds to the begin-
ning of a trend and ε ¼ 1 indicates the end of a trend (Fig. 1C).
We analyze a range of ε for the interval 0 ≤ ε ≤ 2, so we can ana-
lyze trend switching processes both before as well as after the cri-
tical value ε ¼ 1 (Fig. 1). The renormalization is essential to
assure that trends of various lengths can be aggregated and that
all switching points have a common position in the renorma-
lized time.

Results of Analysis
Fig. 2A provides the volume v�ðεÞ averaged over all increasing
and decreasing microtrends in the full time series of T1 ¼
13;991;275 records, and is normalized by the average volume
of all microtrends studied. In order to remove outliers, e.g., over-
night gaps, only these microtrends are collected in which the time
intervals between successive trades τðtÞ (38) are not longer than
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1 min, which is roughly 60 times longer than the average inter-
trade time (≈0.94 s). Furthermore, transaction volumes have
not to be larger than 100 contracts (the average transaction
volume is 2.55 contracts). As expected, new price extrema are
linked with peaks in the volume time series. In Fig. 2D, we show
the averaged volume v�ðεÞ vs. jε − 1j as a log—log histogram.
Surprisingly, the averaged volume falls on straight lines and thus
indicates a power-law scaling behavior of the form

v�ðjε − 1jÞ ∼ jε − 1jβv [1]

with scaling parameters β−v ¼ −0.068� 0.001 (t-test, p-value <
2 × 10−16) before, and βþv ¼ −0.155� 0.004 (t-test, p-value ¼
9.2 × 10−16) after a price extremum. Such an extraction of slopes

by performing least-squares linear regressions is not sufficient for
the claim that the averaged volume is drawn from a power-law
distribution. However, additional performed statistical tests
(see SI Appendix ) enable us to conclude that our observations
are indeed consistent with the hypothesis that v� is drawn from
a power-law distribution.

Next we test the possible universality of our result by perform-
ing a parallel analysis for trends on long time scales using the dai-
ly closing price data base of S&P500 stocks. Note that for our
parallel analysis on macroscopic time scales the order of a extre-
mum Δt is measured in units of days, and that v�ðεÞ is averaged
over all trends and all closing price time series of all S&P500 com-
ponents. In order to avoid biased contributions for the rescaled
averaging caused by inflation based drifts over more than 47 y, the
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Fig. 1. Segregation and rescaling of trend sequences in a multivariate time series in order to analyze financial market quantities on the path from one price
extremum to the next. (A) Small subset comprising 121,400 transactions of the full dataset (13,991,275 transactions) analyzed, extracted from the German DAX
future (FDAX) time series which provides transaction prices, transaction volumes, and time intervals between transaction—intertransaction times (ITT). This
subset recorded on September 29, 2008 documents the volatile reaction of stock markets as the US government’s $700 billion financial bailout plan was
rejected by the House of Representatives on that day. (B) Schematic visualization of trend segregation for Δt ¼ 3. Positive trends start at local price minima
(red circles) and end at local maxima (blue circle)—and vice versa. A transaction price pðtÞ is a local maximum if there is no higher transaction price in the
interval t − Δt ≤ t ≤ t þ Δ. Analogously, pðtÞ is a local minimum if there is no lower transaction price in the interval t − Δt ≤ t ≤ t þ Δ. (C) Segregated se-
quences of transaction volumes belonging to the three trends identified in (B). We assign ε ¼ 0 to the start of each trend, and ε ¼ 1 to the end of each trend.
In order to study trend switching processes—both before as well as after the end of a trend—we consider additionally the subsequent volume sequences of
identical length. (D) Visualization of the volume sequences in the renormalized time scale. The renormalization assures that trends of various lengths can be
aggregated as all switching points have a common position in this renormalized scale. (E) Averaged volume sequence derived from the summation of the three
trend sequences. (F) Average volume sequence v�ðεÞ for all trends in the full FDAX time series derived from summation over various values of Δt. Extreme
values of the price coincide with peaks in the time series of the volumes.
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analyzed price time series pðtÞ contains the logarithm of the daily
closing prices. A log—log histogram of our parallel analysis
for the US market on large time scales (Fig. 2 B and E)
provides evidence for a similar behavior with scaling parameters
β−v ¼ −0.052� 0.001 (t-test, p-value ¼ 1.7 × 10−9) before, and
βþv ¼ −0.109� 0.003 (t-test, p-value < 2 × 10−16) after a price
extremum. Statistical tests confirm the consistency with a
power-law distribution.

In order to verify a possible universality, we analyze the beha-
vior of the intertrade times τðtÞ of the German market during the
short time interval from one price extremum to the next. The
cross-correlation function between price changes and intertrade
times exhibits no reasonable correlation values as well. Thus,
one can conjecture that the tendency to decreased intertrade
times for the end of positive microtrends is counteracted by the
tendency to decreased intertrade times for the end of negative
microtrends. The crucial issue is to distinguish between positive
and negative microtrends realized by the renormalized time ε
between successive extrema. In Fig. 2C, the averaged intertrade
times τ�ðεÞ reflects the link between intertrade times and price
extrema. Fig. 2F shows τ�ðεÞ vs. jε − 1j as a log—log histogram
supporting a power-law behavior of the form

τ�ðjε − 1jÞ ∼ jε − 1jβτ [2]

with scaling parameters β−τ ¼ 0.092� 0.002 (t-test, p-value ¼
1.8 × 10−15) before, and βþτ ¼ 0.118� 0.002 (t-test, p-value <
2 × 10−16) after a price extremum. Statistical tests confirm the
consistency with a power-law distribution as well.

The straight lines in Fig. 2 D–F offer insight into financial
market fluctuations: (i) a clear connection between volumes,
intertrade times, and price fluctuations on the path from one

extremum to the next extremum, and (ii) the underlying law,
which describes the volumes and intertrade times around extrema
varying over nine orders of magnitude starting from the smallest
possible time scale, is a power-law with scaling parameters which
quantitatively characterizes the region around the trend switching
point. As a direct consequence of the consistency with power-law
distributions, the behavior does not depend on the scale. Thus, we
find identical behavior for other subintervals of 50 ≤ Δt ≤ 1;000.
These findings can contribute to the understanding of mechan-
isms causing catastrophic events. However, one should be aware
of that our findings cannot be used for predicting individual trans-
action sequences due to their level of noise.

Confirmation Based on 2,623,445,866 Transactions
We perform a parallel analysis of the 30 assets contributing to the
Dow Jones Industrial Average (DJIA). The time series stem from
the Trade and Quote (TAQ) database and cover 2,623,445,866
transactions, roughly 200 times the length of the FDAX time
series analyzed before.

The TAQ database makes it possible to study the switching
phenomenon of transaction volume on an intraday time scale
for all 30 stocks individually‡. For the sake of clarity and presen-
tation, results for all stocks considered can be found in
SI Appendix. For each stock, we document the development of
the stock price, the aggregated volume as a function of ε, and
v�ðεÞ vs. jε − 1j as a log—log histogram with two power-law fits.
The fitting exponents are reported in the upper right corner.
Each fitting range is based on statistical tests identical to those
applied in the previous analyses: The shaded intervals mark
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Fig. 2. Renormalization time analysis and log–log plots of quantities with scale-free properties. (A) Averaged volume sequence v�ðεÞ of the German DAX
Future time series. Δt ranges from 50 to 100 transactions (ticks). Extreme values of the price coincide with sharp peaks in the volume time series. (B) A very
similar behavior is obtained for the averaged volume sequence v�ðεÞ of S&P500 stocks. Here, Δt ranges from 10 days to 100 days. (C) Averaged intertrade time
sequence τ�ðεÞ of the German DAX Future time series. Extreme values of the price time series are reached with a significant decay of intertrade times (50 ticks
≤Δt ≤ 100 ticks). Averaged volume and averaged intertrade time sequences are asymmetric for two main reasons: Only ε ¼ 0 and ε ¼ 1 correspond to extreme
values in the price time series. In order to study the behavior before and after a trend switching point, we extend individual sequences from ε ¼ 0 to ε ¼ 1 by an
identical amount of transactions or intertrade times. In addition, the end of a trend, ε ¼ 1, does not necessarily correspond to the starting point of the next
trend due to filter criteria mentioned in the main text. (D) Log—log plot of the FDAX transaction volumes (50 ticks ≤Δt ≤ 1;000 ticks) before reaching an
extreme price value (ε < 1, circles) and after reaching an extreme price value (ε > 1, triangles). The straight lines correspond to power-law scaling with
exponents βþv ¼ −0.155� 0.004 (t-test, p-value ¼ 9.2 × 10−16) and β−v ¼ −0.068� 0.001 (t-test, p-value < 2 × 10−16). The shaded intervals mark the region in
which the empirical data are consistent with a power-law behavior. The left border of the shaded regions is given by the first measuring point closest to
the switching point. The right borders stem from statistical tests of the power-law hypothesis (see SI Appendix). (E) Log—log plot of the transaction volumes
shown in (B) indicates a power-law behavior with exponents βþv ¼ −0.109� 0.003 (t-test, p-value < 2 × 10−16) and β−v ¼ −0.052� 0.001 (t-test,
p-value ¼ 1.7 × 10−9) which are similar to our results on short time scales. (F) Log—log plot of the intertrade times on short time scales (50 ticks
≤Δt ≤ 100 ticks) exhibits a power-law behavior with exponents βþτ ¼ 0.118� 0.002 (t-test, p-value < 2 × 10−16) and β−τ ¼ 0.092� 0.002 (t-test,
p-value ¼ 1.8 × 10−15). An equivalent analysis on long time scales is not possible as daily closing prices are recorded with equidistant time steps.

‡The quality of the time stamp is not comparable to that of the FDAX time series. Thus,
only volume is studied.
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the region in which the empirical data are consistent with a
power-law behavior. The left border of the shaded regions is
given by the first measuring point closest to the switching point.
The right borders stem from statistical tests of the power-law
hypothesis.

As is evident in the presented results, the DJIA components
confirm our previous findings and provide evidence for power-
law exponents between β−v ¼ −0.06 and β−v ¼ −0.01 before the
switching point ε ¼ 1 and between βþv ¼ −0.46 and βþv ¼ −0.12
after the switching point ε ¼ 1.

Parallels to a Phase Transition in Physics
The straight lines in Fig. 2 D–F offer insight into the nature of
financial market fluctuations: (i) We uncover a clear relationship
between transaction volumes and price fluctuations on the path
from one extremum to the next extremum. In addition, the ana-
lysis of intertrade times provides confirmation for our finding.
However, it is noteworthy that transaction volumes and inter-
trade times are not directly linked to each other. The transaction
volume per individual transaction increases dramatically before
an extreme price value is reached. Parallelly, time intervals be-
tween individual transactions decreases dramatically before an
extreme price value is reached. (ii) We find the underlying law
—a power-law—, which describes transaction volumes and inter-
trade times around price extrema varying over nine orders of
magnitude starting from the smallest possible time scale of indi-
vidual transactions. This power-law with unique exponents quan-
titatively characterizes the region around the trend switching
point. At this point a positive trend ends and a negative trend
starts or a negative trend ends and a positive trend starts. As
a direct consequence of the existence of power-law behavior,
the phenomenon does not depend on the scale. Thus, we find
an identical behavior for other subintervals of 50 ≤ Δt ≤ 1;000.
With a decreasing value of Δt, the number of local minima and
maxima increases in the price time series, around which we
find the same scale-free behavior. The finding of a power-law
behavior of transaction volumes and intertrade times in the time
domain of individual transactions supports the hypothesis that a
fluctuating price time series passes through a sequence of transi-
tions similar to phase transitions in physics.

Based on our findings we may ask what kind of transition could
the end of a trend—a microtrend on scales of 10 ms or a macro-
trend on scales of 100 d—correspond to, or is the end of a trend
an altogether different kind of phase transition that resembles all
phase transitions by displaying a regime of scale-free behavior
characterized by a critical exponent? It may be premature to spec-
ulate on possible analogies, so we will limit ourselves to describ-
ing here what seems to be a promising candidate. Consider a
simple Ising magnet characterized by one-dimensional spins that
can point North or South. Each spin interacts with some (or even
with all) of its neighbors with positive interaction strength J, such
that, when J is positive neighboring spins lower their energy by
being parallel. The entire system is bathed in a magnetic field that
interacts with all the spins equally with a strength parametrized by
H, such that when H is positive, the field points North and when
H is negative the field points South. Thus, when H is positive, the
system lowers its energy by each spin pointing North. Thus, there
are two competing control parameters J andH. If, e.g., the system
is prepared in a state with the majority of spins pointing North yet
the field H points South, the competition will be between the
relative effects of J and H: the J interaction motivates the spins
to point North but the H interaction motivates the spin to point
South. Such a system is termedmetastable because, if each North-
pointing spin suddenly flips its state to point South, the system
can achieve a lower total energy. This flipping will occur in time

in a fashion not unlike the trading frequency near the end of a
trend: first, one or two spins will randomly switch their state, then
more, and suddenly, after in an “avalanche” of switches, the
majority of spins will point South. The phase transition is termed
a spinodal singularity, characterized by its own set of exponents.

Why should the end of microtrends or macrotrends have a par-
allel with such a metastable physical system? Presumably, near
the end of a positive trend, all the market participants watching
the market begin to sense that the market is metastable and that,
if they do not sell soon, it could be too late to make any profit,
because the price will drop. First, a few traders sell, pushing the
market imperceptibly lower. Then, additional traders, sensing
this microscopic downturn, may decide that now is the time to
sell and they sell too. Then an “avalanche” of selling begins, with
traders all hoping to protect their profits by selling before the
market drops. Thus, the set of N market participants holding
their position are in this sense analogous to the set of N mostly
North-pointing spins, bathed in a South-pointing magnetic field.

Perhaps, the above analogy is not yet the best. It will be a future
challenge to find a coherent, convincing explanation for why
the end of a microtrend or macrotrend displays such striking
parallels to a phase transition. In any case, a set of interacting
spins appears to be analogous to a set of interacting traders.
The end of the negative microtrend or macrotrend follows the
same mechanism, but with everything reversed. The N Ising spins
point mostly South, the magnetic field points North, and the spins
flip from South to North one by one, ending with an avalanche
corresponding to the spinodal singularity. Analogously, the N
traders begin to suspect that the market is becoming metastable,
so that they start to buy one by one. But as the traders witness
the price increasing, they jump into buy mode before the price
becomes too high.

Summary
In summary, we have seen that each trend—microtrend and
macrotrend—in a financial market starts and ends with a unique
switching process, and each extremum shares properties of
macroscopic cooperative behavior (39–42). We have seen that
the switching mechanism has no scale, for time scales varying over
nine orders of magnitude down to the smallest possible time scale
—the scale of single transactions measured in units of 10 ms.
Thus, the well known catastrophic bubbles occurring on large
time scales—such as the most recent financial crisis—may not
be outliers but in fact single dramatic events caused by the inher-
ent, scale-free behavior related to the formation of increasing and
decreasing trends on time scales from the very large down to the
very small. The larger abundance of data on smaller crises can
provide quantifiable statistical laws for bubble formation and
financial collapse on various scales.

Materials and Methods
Test of the Power-Law Hypothesis. Description of the statistical test confirming
consistency with power-law distributions. Details are given in SI Appendix.

Switching Process Analysis for DJIA Components. Parallel analysis of the 30
assets contributing to the Dow Jones Industrial Average (DJIA). Details are
given in SI Appendix.
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