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The first return time (FRT) is the time it takes a random walker to first return to its original site,
and the global first passage time (GFPT) is the first passage time for a random walker to move
from a randomly selected site to a given site. We find that in finite networks, the variance of FRT,
Var(FRT), can be expressed as Var(FRT) = 2hFRTihGFPTi � hFRTi2 � hFRTi, where h·i is the mean
of the random variable. Therefore a method of calculating the variance of FRT on general finite
networks is presented. We then calculate Var(FRT) and analyze the fluctuation of FRT on regular
branched networks (i.e., Cayley tree) by using Var(FRT) and its variant as the metric. We find that
the results differ from those in such other networks as Sierpinski gaskets, Vicsek fractals, T-graphs,
pseudofractal scale-free webs, (u, v) flowers, and fractal and non-fractal scale-free trees. Published
by AIP Publishing. https://doi.org/10.1063/1.5028123

I. INTRODUCTION

The first return time (FRT), an interesting quantity in the
random walk literature, is the time it takes a random walker
to first return to its original site.1,2 It is a key indicator of how
quickly information, mass, or energy returns back to its orig-
inal site in a given system. It can also be used to model the
time intervals between two successive extreme events, such as
traffic jams, floods, earthquakes, and droughts.3–7 Studies of
FRT help in the control and forecasting of extreme events.8,9 In
recent years, much effort has been devoted to the study of the
statistic properties10–14 and the probability distribution15–24 of
the FRT in different systems. A wide variety of experimen-
tal records show that return probabilities tend to exponentially
decay.18–21 Other findings include the discovery of an inter-
play between the Gaussian decay and exponential decay in the
return probabilities of quantum systems with strongly interact-
ing particles24 and the power-law decay in time of the return
probabilities in some stochastic processes of extreme events
and of random walks on scale-free trees.22,23

Statistically, in addition to its probability distribution, the
mean and variance of any random variable T are also useful
characterization tools. The mean hTi is the expected average
outcome over many observations and can be used for estimat-
ing T. The variance Var(T ) is the expectation of the squared
deviation of T from its mean and can be used for measuring
the amplitude of the fluctuation of T. The reduced moment of
T, R(T ) =

p
Var(T )
hTi ,25 is a metric for the relative amplitude of

the fluctuation of T derived by a comparison with its mean,
and it can be used to evaluate whether hTi is a good estimate
of T. The greater the reduced moment, the less accurate the
estimate provided by the mean. If R(T )!1, as network size

N !1, the standard deviation
p

Var(T ) � hTi. Then we can
affirm that the fluctuation of T is huge in the network with
large size, and that hTi is not a reliable estimate of T.

For a discrete random walk on a finite network, the mean
FRT can be directly calculated from the stationary distribution.
For an arbitrary site u, hFRTi = 2E/du, where E is the total
number of network edges and du is the degree of site u.26

However the variance Var(FRT) and the reduced moment of
FRT are not easily obtained, and the fluctuation of FRT is
unclear. Whether hFRTi is a good estimate of FRT is also
unclear.

Research shows that the second moment of FRT is closely
connected to the first moment of global first-passage time
(GFPT), which is the first-passage time from a randomly
selected site to a given site.27 We find that in general finite net-
works, Var(FRT) = 2hFRTihGFPTi � hFRTi2 � hFRTi. We can
also derive Var(FRT) and R(FRT) because hGFPTi has been
extensively studied and can be exactly derived on a number of
different networks.28–32 Thus we can also analyze the fluctua-
tion of FRT and determine when hFRTi is a good estimate of
FRT.

As an example, we analyze the fluctuation of FRT on
Cayley trees by using R(FRT) as the metric. We obtain the
exact results for Var(FRT) and R(FRT) and present their
scalings with network size N. We use Cayley trees for the
following reasons. Cayley trees, also known as dendrimers,
are an important kind of polymer networks. Random walk
on Cayley trees33–35 has many applications, including light
harvesting36–39 and energy or exciton transport.40,41 First pas-
sage problems in Cayley trees have received an extensive
study, and the hGFPTi to an arbitrary target node has been
determined.42,43 In contrast to other networks, the R(FRT) of
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Cayley trees differs when the network size N ! 1. We find
that R(FRT) ! 1 on many networks, including Sierpinski
gaskets,44–46 Vicsek fractals,43,47,48 T-graphs,49–51 pseudofrac-
tal scale-free webs,52,53 (u, v) flowers,54–57 and fractal and
non-fractal scale-free trees.58–62 Thus the fluctuation of FRT
in these networks is huge, and the hFRTi is not a reliable
FRT estimate. For Cayley trees, however, R(FRT )! const for
most cases. Thus the FRT fluctuation is relatively small, and
the hFRTi is an acceptable FRT estimate.

This paper is structured as follows. Section II presents the
network structure of the Cayley trees. Section III presents and
proves the exact relation between Var(FRT) and hGFPTi on
general finite networks. Section III also briefly introduces the
asymptotic results of R(FRT) on some networks, which shows
that R(FRT)!1 and N!1. Section IV presents the explicit
results of Var(FRT) and R(FRT), together with the fluctuation
analysis of FRT on Cayley trees. Finally, Sec. V is left for
conclusions and discussions. Technicalities on calculations are
collected in the Appendices.

II. NETWORK STRUCTURE AND PROPERTIES

The Cayley tree is rooted, and all other nodes are arranged
in shells around its root node.63 It is a regular branched
network, where each non-terminal node is connected to m
neighbours and m is called the order of the Cayley tree. Here
Cm ,g(m � 3, g � 0) is a Cayley tree of order m with g shells.
Beginning with the root node, m new nodes are introduced
and linked to the root by m edges. This first set of m nodes
constitutes the first shell of Cm ,g. We then obtain the shell i
(2  i  g) of Cm ,g. We add and link m � 1 new nodes to each
node of shell (i � 1). The set of these new nodes constitutes
shell i of Cm ,g. Figure 1 shows the construction of a specific
Cayley tree C4,3.

Using the construction, one can find that all nodes in the
same shell are equivalent. The nodes in the outermost shell
have a degree dg = 1, and all other nodes have a degree di = m
(i = 0, 1, . . ., g � 1). We also find that the number of nodes of
(i = 1, 2, . . ., g) shell i is Ni = m(m � 1)i�1. Thus for Cm ,g, the

FIG. 1. Structure of the particular Cayley tree C4,3. Nodes colored with red
constitute the first shell of C4,3; nodes colored with black constitute the second
shell of C4,3; nodes colored with green constitute the third shell of C4,3.

total number of nodes is

N = 1 +
gX

i=1

Ni =
m(m � 1)g � 2

m � 2
(1)

and the total number of edges in Cm ,g is

E = N � 1 =
m(m � 1)g � m

m � 2
. (2)

Although Cayley trees are obviously self-similar, their fractal
dimension is infinite, and they are thus nonfractal.

III. RELATION BETWEEN VAR(FRT) AND hGFPTi
ON GENERAL FINITE NETWORKS AND RESULTS

OF R(FRT) ON SOME NETWORKS

In this section, we present and prove the general relation
between the variance of FRT and the mean global first-passage
time on general finite networks. Our derivations are based on
the relation between their probability generating functions. To
briefly review the definition probability-generating function
(see, e.g., Ref. 64), we designate pk (k = 0, 1, 2, . . .) as the
probability mass function of a discrete random variable T that
takes the values of non-negative integers {0, 1, . . .}, and we
define the related probability-generating function�T (z) of pk ,

�T (z) =
+1X

k=0

zkpk . (3)

Now we introduce the probability distribution of GFPT
and FRT and then define the probability generating functions
of them. Before proceeding, we must clarify that, when evalu-
ating the GFPT, the starting site is selected by mimicking the
steady state, namely, the probability that a node u is selected
as starting site is du/(2E).

Here Pv! u(k) (k = 0, 1, 2, . . .) is the probability distri-
bution of the first passage time (FPT) from node v to node u.
Thus Pu!u(k) (k = 0, 1, 2, . . .) is the probability distribution
of FRT when the target is located at node u. The probability
distribution of the GFPT to the target node u, denoted as Pu(k)
(k = 0, 1, 2, . . .), is defined as65

Pu(k) =
X

v

dv
2E

Pv!u(k), (4)

where the sum runs over all the nodes in the network.66

We denote �FRT(z) and �GFPT(z) as the probability-
generating functions of the FRT and GFPT for node u, respec-
tively. Both have a close connection with the probability gen-
erating function of the return time (i.e., how long it takes the
walker to return to its origin, not necessarily for the first time),
whose generating function is �RT(z). Note that65

�GFPT(z) =
z

1 � z
⇥ du

2E
⇥ 1
�RT(z)

(5)

and

�FRT(z) = 1 � 1
�RT(z)

. (6)

Equation (5) can now be rewritten as

1
�RT(z)

=
1 � z

z
⇥ 2E

du
⇥ �GFPT(z). (7)
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Plugging the expression for 1
�RT(z) into Eq. (6), we get

�FRT(z) = 1 � 1 � z
z
⇥ 2E

du
⇥ �GFPT(z). (8)

Taking the first derivative on both sides of Eq. (8) and setting
z = 1, we obtain the mean FRT,

hFRTi = d
dz
�FRT(z)

�����z=1
=

2E
du

. (9)

Taking the second order derivative on both sides of Eq. (8) and
setting z = 1, we obtain

d2

dz2
�FRT(z)

�����z=1
=

2E
du

(
2

d
dz
�GFPT(z)

�����z=1
� 2
)

= 2hFRTihGFPTi � 2hFRTi. (10)

We thus get the variance

Var(FRT ) =
d2

dz2
�FRT(z)

�����z=1
+

d
dz
�FRT(z)

�����z=1
� hFRTi2

= 2hFRTihGFPTi � hFRTi2 � hFRTi (11)

and the reduced moment

R(FRT ) =
p

Var(FRT )
hFRTi ⇡

s
2hGFPTi
hFRTi � 1. (12)

Both hGFPTi and hFRTi increase with the increase of
network size N, and the order in which hGFPTi increases is
no less than that of hFRTi. If the order that hGFPTi increases is
greater than that of hFRTi, R(FRT )!1 as N !1. However
if the order that hFRTi increases is the same as that of hGFPTi,
R(FRT )! const as N !1.

If hGFPTi has been obtained on a network, R(FRT ) can
also be obtained on that network. For example, on classical and
dual Sierpinski gaskets embedded in d-dimensional (d � 2)
Euclidian spaces, hFRTi ⇠ N and hGFPTi ⇠ N2/ds , where

ds =
2 ln(d+1)
ln(d+3) .45,46 Thus R(FRT ) ⇠ N

ln(d+3)
2 ln(d+1)� 1

2 and

R(FRT )! 1, (13)

as N !1. We find that Eq. (13) also holds on many other net-
works, such as Vicsek fractals, T-graph, pseudofractal scale-
free webs, (u, v) flowers, and fractal and non-fractal scale-free
trees. Although hFRTi is easy to obtain in these networks, it is
not a reliable estimate of FRT because the fluctuation of FRT
is huge.

IV. FLUCTUATION ANALYSIS OF FIRST RETURN TIME

ON CAYLEY TREES

We now calculate the variance and the reduced moment
of FRT and then analyze the fluctuation of FRT on Cayley
trees. Note that the target location strongly affects Var(FRT)
and R(FRT ). We calculate Var(FRT) and R(FRT ) when the tar-
get is located at an arbitrary node on Cayley trees. We obtain
exact results for Var(FRT) and R(FRT ) and present their scal-
ings with network size. The derivation presented here is based
on the relation between Var(FRT) and hGFPTi expressed in
Eq. (11). We first thus derive the mean GFPT66 to an arbitrary
node on Cm ,g. We then obtain Var(FRT) and R(FRT) from
Eqs. (11) and (12). Because the calculation is lengthy, we here
summarize the derivation and the final results and present the
detailed derivation in the Appendixes A and B.

A. Mean GFPT and the variance of FRT while the target

site is located at an arbitrary node on Cayley trees

Here ⌦ is the node set of the Cayley tree Cm ,g, and we
define

Wv =
X

u2⌦
⇡(u)Luv (14)

and
⌃ =
X

u2⌦
⇡(u)Wu, (15)

where Luv is the shortest path length from node u to v and
⇡(u) = du

2E . Using the relation between the mean first passage
time and the effective resistance, if the target site is fixed at
node y (y 2 ⌦), we find the mean GFPT to node y to be

hGFPTyi = E(2Wy � ⌃) + 1. (16)

We supply the detailed derivation in Appendix A.
Note that the target location strongly affects the moments

of GFPT and FRT and that all nodes in the same shell of Cm ,g
are equivalent. Here GFPTi and FRTi (i = 0, 1, 2, . . ., g) are
the GFPT and FRT, respectively, and the target site is located
in shell i of the Cayley tree Cm ,g. Note that we here regard the
node in shell 0 to be the root of the tree. Calculating Wv for
any node v and ⌃ and plugging their expressions into Eq. (16),
we obtain the mean GFPT to the root,

hGFPT0i =
1

2E

"
(m � 1)2g 4m(m � 1)

(m � 2)3

� (m� 1)g m(4gm� 3m + 6)
(m � 2)2

� m(3m2 � 8m + 8)
(m � 2)3

#

(17)

and the mean GFPT to nodes in shell i (i = 1, 2, . . ., g) of Cm ,g,

hGFPTii = (m � 1)g 2m(m � 2)i � 4(m � 1)
(m � 2)2

+
4(m � 1)g�i+1

(m � 2)2
+ hGFPT0i. (18)

We supply a detailed derivation of Eqs. (17) and (18) in
Appendix B. Inserting the expressions for the mean GFPT
and mean FRT into Eq. (11), we obtain the variance of FRT
for i = 0, 1, 2, . . ., g � 1,

Var(FRTi) = (m � 1)2g 8m(m � 2)i � 12m + 16
(m � 2)3

� (m � 1)g[
8gm � 4m + 8mi

(m � 2)2
+

16(m � 1)
(m � 2)3

]

+
16(m � 1)2g�i+1

(m � 2)3
� 16(m � 1)g�i+1

(m � 2)3

� 4m2 � 4m
(m � 2)3

, (19)

and for i = g,

Var(FRTg) = (m � 1)2g 8m2(m � 2)g � 4m(m2 � 2)
(m � 2)3

�(m � 1)g 4m(8gm � 4gm2 + 3m2 � 4)
(m � 2)3

�8m3 � 8m
(m � 2)3

. (20)
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Then the reduced moments of FRT can be exactly determined
using Eq. (12).

B. Scalings

Using the results found in Subsection IV A, we
derive their scalings with network size N. Note that
N = m(m�1)g�2

m�2 ⇠ (m � 1)g (see Sec. II). We get g ⇠ ln(N),
E = N � 1 ⇠ N, and hFRTii ⇠ N for any i. We further reshuffle
Eqs. (17)–(20) and get for i = 0, 1, . . ., g,

hGFPTii ⇠ (i + 1)N (21)

and
Var(FRTi) ⇠ (i + 1)N2. (22)

If we now set i = g in Eqs. (21) and (22), we obtain

hGFPTgi ⇠ N ln(N) (23)

and
Var(FRTg) ⇠ N2 ln(N). (24)

Inserting the expressions for Var(FRTi) and hFRTii into
Eq. (12), we obtain the reduced moment of FRT and find that
in the large size limit (i.e., when N ! 1), for i = 0, 1, . . .,
g � 1,

R(FRTi)!
r

2mi � 3m � 4
m � 2

+
4(m � 1)1�i

m � 2
(25)

and

R(FRTg) ⇡
s

4g � m2 + 2m � 4
m(m � 2)

! 1. (26)

Results show that in the large size limit, R(FRTi) increases as
i increases, which implies that the farther the distance between
the target and root, the greater the fluctuation of FRT. If the
target site is fixed at the root (i.e., i = 0), R(FRTi) reaches its
minimum,

R(FRT0)!
r

m
m � 2

. (27)

If the target site is fixed at shell i (i.e., i does not increase
as N increases), R(FRTi) ! const. Here the fluctuation of
FRT is small, and hFRTi can be used to estimate FRT. If i
increases with the network size N, e.g., the target is located at
the outermost shell [i.e., i = g ⇠ ln(N)], i ! 1 as N ! 1.
Thus R(FRTi)!1. Here the fluctuation of FRT is huge, and
hFRTi is not a reliable estimate of FRT.

V. CONCLUSIONS

We have found the exact relation between Var(FRT) and
hGFPTi in a general finite network. We thus can determine
the exact variance Var(FRT) and reduced moment R(FRT )
because hGFPTi has been widely studied and measured on
many different networks. We use the reduced moment to
measure and evaluate the fluctuation of a random variable
and to determine whether the mean of a random variable
is a good estimate of the random variable. The greater the
reduced moment, the worse the estimate provided by the
mean.

In our research, we find that in the large size limit (i.e.,
when N ! 1), R(FRT ) ! 1, which indicates that FRT has

a huge fluctuation and that hFRTi is not a reliable estimate of
FRT in most networks we studied. However for random walks
on Cayley trees, in most cases, R(FRT )! const.

We also find that the target location strongly affects FRT
fluctuation on Cayley trees. Results show that the farther the
distance between the target and root, the greater the FRT fluctu-
ations. R(FRT ) reaches its minimum when the target is located
at the root of the tree, and R(FRT ) reaches its maximum when
the target is located at the outermost shell of the tree. Results
also show that when the target site is fixed at shell i (i.e., i
does not increase as N increases), R(FRTi)! const. Here the
fluctuation of FRT is small, and hFRTi can be used to esti-
mate FRT. When i increases with network size N (e.g., i = g),
R(FRTi)!1. Here the fluctuation of FRT is huge, and hFRTi
is not a reliable estimate of FRT.
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APPENDIX A: DERIVATION OF EQ. (16)

We denote ⌦ as the node set of any graph G. For any two
nodes x and y of graph G, F(x, y) is the mean FPT from x to
y. Therefore F(y, y) is just the first return time for node y. For
any two different nodes x and y, the sum

k(x, y) = F(x, y) + F(y, x)

is the commute time, and the mean FPT can be expressed in
terms of commute times67

F(x, y) =
1
2
*
,k(x, y) +

X

u2⌦
⇡(u)[k(y, u) � k(x, u)]+-, (A1)

where ⇡(u) = du
2E is the stationary distribution for random

walks on the G, E is the total numbers of edges of graph G,
and du is the degree of node u.

We treat these systems as electrical networks, consider
each edge as a unit resistor, and denote Rxy as the effective
resistance between nodes x and y. Prior research67 indicates
that

k(x, y) = 2ERxy. (A2)

If graph G is a tree, the effective resistance between any
two nodes is the shortest path length between the two nodes.
Hence

Rxy = Lxy, (A3)
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where Lxy is the shortest path length between node x to node
y. Thus

k(x, y) = 2ELxy. (A4)
Substituting k(x, y) in the right side of Eq. (A4), in Eq. (A1),
the mean FPT from x to y can be rewritten as

F(x, y) = E(Lxy + Wy �Wx). (A5)

Thus the mean GFPT to y can be written as

hGFPTyi =
X

x2⌦
⇡(x)F(x, y)

= ⇡(y)F(y, y) +
X

x,y

⇡(x)F(x, y)

= 1 +
X

x,y

⇡(x)E(Lxy + Wy �Wx)

= 1 + E
X

x,y

⇡(x)Lxy + E
X

x,y

⇡(x)Wy � E
X

x,y

⇡(x)Wx)

= 1 + EWy + E(1 � ⇡(y))Wy � E
X

x,y

⇡(x)Wx)

= E(2Wy � ⌃) + 1. (A6)

APPENDIX B: DERIVATION OF EQS. (17) AND (18)

We here derive hGFPTii for any (i = 0, 1, 2, . . ., g). To
calculate hGFPTii, we assume that the target is located at node
vi in shell i of Cm ,g. Thus hGFPTii can also be denoted as
hGFPTvii. Using Eq. (16), we calculate Wvi and ⌃ defined in
Eqs. (14) and (15).

Calculating the shortest path length between any two
nodes in a Cayley tree is straightforward, e.g., the shortest
path length between arbitrary node u in shell i is (i = 1, 2, . . .,
g) and the root v0 is Luv0 = i. Thus for root node v0,

Wv0 ⌘
X

u2⌦
⇡(u)Luv0

=
1

2E

8>><>>:
g�1X

i=1

[m2i(m � 1)i�1] + mg(m � 1)g�1
9>>=>>;

=
m(m � 1)g(2gm � 4g � m) + m2

2E ⇥ (m � 2)2
. (B1)

For arbitrary node vi in shell i (i = 1, 2, . . ., g), we can find
its parents node in shell i � 1, and let vi� 1 denote the parents
node of vi and⌦i denote the node set of the subtree whose root
is vi. We find that

Luvi � Luvi�1 =

(
�1 u 2 ⌦i
1 otherwise.

Hence,

Wvi �Wvi�1 =
X

u2⌦
⇡(u)(Luvi � Luvi�1 )

=
X

u2⌦
⇡(u) � 2

X

u2⌦i

⇡(u)

= 1 � 1
E

8>><>>:
g�1X

k=i

m(m � 1)k�i + (m � 1)g�i
9>>=>>;

= 1 � 1
E

(
2

m � 2
(m � 1)g�i+1 � m

m � 2

)
.

Thus,

Wvi �Wv0 =

iX

k=1

(Wvk �Wvk�1 )

= i � 1
E

8><>:
iX

k=1

2
m � 2

(m � 1)g�k+1 � mi
m � 2

9>=>;.

= i � 2(m � 1)g+1 � 2(m � 1)g�i+1 � mi(m � 2)
(m � 2)2E

=
mi(m � 2)(m � 1)g � 2(m � 1)g+1

E ⇥ (m � 2)2

+
2(m � 1)g�i+1

E ⇥ (m � 2)2
. (B2)

Therefore, for any i = 1, 2, . . ., g,

hGFPTii � hGFPT0i = 2E(Wvi �Wv0 )

= (m � 1)g 2m(m � 2)i � 4(m � 1)
(m � 2)2

+
4(m � 1)g�i+1

(m � 2)2
, (B3)

and Eq. (18) is obtained.
Replacing Wv0 from Eq. (B1) in Eq. (B2), we obtain

Wvi =
(2gm2 � 4gm � 4im � 4m + 2im2 � m2 + 4)(m � 1)g

2E ⇥ (m � 2)2

+
4(m � 1)g�i+1 + m2

2E ⇥ (m � 2)2
. (B4)

Hence,

⌃ =
X

u2⌦
⇡(u)Wu

=
mWv0 +

Pg�1
i=1 m2(m � 1)i�1Wvi + m(m � 1)g�1Wvg

2E

=
2m(2gm2 � 2m � 4gm � m2 + 2)(m � 1)2g

2(m � 2)32E2

+
m(3m2 + 4m � 4)(m � 1)g � m3

2(m � 2)32E2
. (B5)

Therefore,

hGFPT0i = E(2Wv0 � ⌃) + 1

=
1

2E

"
(m � 1)2g 4m(m � 1)

(m � 2)3

� (m� 1)g m(4gm� 3m + 6)
(m � 2)2

�m(3m2 � 8m + 8)
(m � 2)3

#
,

(B6)

and Eq. (17) is obtained.
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