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We develop a method of constructing percolation clusters that allows us to build very large clusters using
very little computer memory by limiting the maximum number of sites for which we maintain state information
to a number of the order of the number of sites in the largest chemical shell of the cluster being created. The
memory required to grow a cluster of mass s is of the order of su bytes where u ranges from 0.4 for
two-dimensional ~2D! lattices to 0.5 for six ~or higher!-dimensional lattices. We use this method to estimate
dmin , the exponent relating the minimum path l to the Euclidean distance r, for 4D and 5D hypercubic lattices.
Analyzing both site and bond percolation, we find dmin51.60760.005 ~4D! and dmin51.81260.006 ~5D!. In
order to determine dmin to high precision, and without bias, it was necessary to first find precise values for the
percolation threshold, pc : pc50.19688960.000003 ~4D! and pc50.1408160.00001 ~5D! for site and pc

50.16013060.000003 ~4D! and pc50.11817460.000004 ~5D! for bond percolation. We also calculate the
Fisher exponent t determined in the course of calculating the values of pc : t52.31360.003 ~4D! and t

52.41260.004 ~5D!.
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I. INTRODUCTION

Percolation is a standard model for disordered systems
@1,2#. In percolation systems, sites or bonds on a lattice are
populated with probability p. The value of p at which infinite
clusters are formed is known as the critical probability or
percolation threshold pc . The shortest path exponent dmin is
defined by the relation @2,4,5#

^l &;rdmin, ~1!

where r is the Euclidean distance between two sites on a
cluster and l is the length of the shortest path traveling
along occupied sites and bonds in the percolation cluster. The
length of this path is also known as the ‘‘chemical distance’’
between the sites. We can also write

^r&;l
z, ~2!

which defines the exponent z51/dmin . With the exceptions
of d>6 ~where z51/2) and d51 ~where z51), z is not
known exactly. The most common method of determining z
numerically ~and the one we will use! is to grow clusters,
calculating the average distance ^r& of sites in the cluster
from the seed of the cluster as a function of chemical dis-
tance l from the seed. In order that finite size effects do not
play a role, the lattice must be large enough such that the
clusters that are grown do not reach the boundaries of the
lattice.

Because corrections to scaling decrease with increasing
l , the larger the value of l max ~the value of l at which we
stop the growth!, the more accurately we can estimate z. The
limitations on the size l max to which the clusters can be
grown have been the computer memory available for the

simulation and the computer processing power needed to
build these clusters. The method of ‘‘data blocking’’ @6,7# has
helped ameliorate the need for large amounts of memory. In
this method, the lattice is logically divided into blocks;
memory for a block is not allocated until the lattice grows
into that block. The data blocking method has been used
recently to obtain precise estimates for the percolation
threshold and associated exponents for bond and site perco-
lation on a number of lattices @7,8#. Ultimately, however,
although sufficient computer power is available to build
larger clusters, the cluster size is limited by the amount of
memory available. This becomes particularly true as the di-
mension of the lattice d increases since at criticality the clus-
ter becomes less dense as d increases @9#. To reach the same
cluster mass or l max , we must have larger lattices.

In this paper we describe a method of constructing clus-
ters that dramatically reduces the memory requirements
needed to grow large clusters relative to previous methods.
Using this method of building large clusters, we estimate z
for hypercubic lattices in four and five dimensions. The study
of critical properties in higher dimensions is important be-
cause one can use the results to test relations, which are
conjectured to hold in all dimensions ~hyperscaling relations!
and exponents that are believed to be the same in all dimen-
sions ~superuniversal exponents!. The current best estimates
of dmin for four and five dimensions, 1.6360.03 @3# and 1.8
@1#, respectively, are of relatively low precision compared to
the estimates available in two and three dimensions 1.1307
60.0004 and 1.37460.006, respectively @2,4#.

II. CLUSTER GENERATION

One method of cluster generation is the Leath method
@10#. In this method a site is chosen as the seed site of the
cluster. Using a random number generator and a given bond
occupation probability, one determines whether the bonds
connected to the seed site are occupied or not @11#. If a bond
is occupied, the site to which this bond connects is consid-*Electronic address: gerryp@bu.edu
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ered to be part of the cluster and becomes a ‘‘growth site.’’
These sites are at chemical distance of unity from the seed
site; all sites at the same chemical distance l from the seed
site are considered to be in ‘‘chemical shell l .’’ The process
is then repeated for each of these growth sites with the next
set of growth sites being at chemical distance 2 from the seed
site. The cluster continues to grow until the growth stops
naturally, the growth is terminated by the sides of the
d-dimensional lattice of edge L, or the maximum chemical
distance l max is reached.

We use the Leath method to construct clusters, but we
keep track of which bonds are occupied and which sites have
been visited by a method different from that traditionally
used. Traditionally, this state information is stored in an array
of size equal to the number of lattice sites. In the data block-
ing method, memory usage can be improved by allocating
blocks in this array dynamically. Vollmayr @12# eliminated
the use of this array, storing status of visited sites in a data
structure thus reducing memory requirements to grow a clus-
ter of mass s to O(s). We extend the approach of Ref. @12#
further, reducing the memory required to O(su) where u
ranges from 0.4 for two-dimensional lattices to 0.5 for six ~or
higher!-dimensional lattices.

To see how this can be done, we first consider the uses of
this state information.

~a! Occupancy status. Information concerning whether a
site/bond is occupied is maintained so that it is the same,
independent of when it is accessed in the growth process. For
example, we would not generate a cluster with the proper
statistics if we treated a bond as occupied during one stage of
the cluster growth and then treated it as empty during a later
stage.

~b! Visited status. Information concerning whether a site
has been visited or not is maintained in order that ~a! we do
not multiply count the presence of a site in the cluster and ~b!
we do not retrace our steps during cluster generation, causing
the growth process to never end.

A. Occupancy status

We address the need to maintain information about
whether a bond is occupied or not by using a random number
generation scheme in which the random number associated
with a bond is determined by the location of the bond in the
lattice @12# and the orientation of the bond. This is done by
first assigning a unique number n to any site in the lattice as
follows. Let (x1 ,x2 ,x3 . . . xd) be the coordinates of the site
in the lattice, and let (L1 ,L2 ,L3 , . . . ,Ld) be the lengths of
the sides of the lattice. Then

n~x1 ,x2 ,x3 , . . . ,xd!

5†„$@~x1L2!1x2#L3%1x3 , . . . …Ld1xd‡ ~3!

assigns a unique number to any site in the lattice. We assign
a unique number n8 to any bond in the lattice by defining

n8~x1 ,x2 ,x3 , . . . ,xd ,o !5@n~x1 ,x2 ,x3 , . . . ,xd!d#1o ,
~4!

where o is the orientation of a bond attached to site x ~as-
suming values 0 to d21).

Furthermore we want to assign unique numbers to bonds
over many different realizations. We then define

n9~x1 ,x2 ,x3 , . . . ,xd ,o ,m !

5@n8~x1 ,x2 ,x3 , . . . ,xd ,o !M #1m , ~5!

where m is the number of the realization and M is the maxi-
mum number of realizations we plan to create.

We then generate a 64-bit random number R using an
encryptionlike algorithm f (n9) @13# using n9 as its input,

R5 f ~n9!. ~6!

A bond is occupied if R.264p . In practice, because for large
lattices and a large number of realizations n9 is greater than
264, the maximum size of the input to the random number
algorithm, we actually determine the random number in two
steps,

R̄5 f „$@ f ~n !d#1o%M1m…. ~7!

That is, we first create an intermediate random number based
only on the coordinates of the bond and then create the final
random number based on the intermediate random number,
the orientation of the bond and the realization number. Using
the test described in @14#, we confirm that, within statistical
error, our algorithm generates unbiased random numbers.
This test is important because there is only a small difference
between the inputs to the random number generator for
neighboring sites. Any correlations between the outputs
would cause incorrect results @14#. The generation of random
numbers using Eq. ~7! is slower than congruence or shift
register techniques @14# but is somewhat compensated by
eliminating the processing done to store and access bond
state when maintained in an array. In any case, the net effect
of using this approach is about a factor of 5 increase in
calculation time because of the slowness of the encryption-
like random number generator that we used.

B. Visited status

We address the need to maintain information about
whether a site has been visited or not by storing information
about visited sites in a data structure. Each entry in the data
structure contains the coordinates of the site, the chemical
shell of the site, and a bit map with one bit for each direction
from which the site can be visited. The data structure can be
accessed as a ‘‘circular list’’ ~first-in-first-out queue! so en-
tries can be added and deleted. Since a site can be visited
from different directions, we must ensure that a site is
counted only once and that backtracking does not occur. To
accomplish this, before adding a site to the list of growth
sites, we first check to see if it is already in the list.

1. If it is already on the list, we do not add a new entry
but, in the entry for the site already in the list, we do set the
bit corresponding to the orientation of the connected bond
which was traversed to visit the site.

GERALD PAUL, ROBERT M. ZIFF, AND H. EUGENE STANLEY PHYSICAL REVIEW E 64 026115

026115-2



2. If it is not in the list, we add it ~storing the coordinates
and chemical length and setting the bit corresponding to the
direction from which the site was visited!.

When we are about to process the entry for a growth site,
we only count the site once in the mass of the cluster, and
only attempt to grow the cluster in directions other than
those from which the site was visited. In this way we avoid
backtracking along already traveled paths. If the data struc-
ture had to be searched sequentially every time we were
about to create a growth site, the time needed would make
this approach impractical. In Ref. @12#, the data structure was
maintained as a binary tree in order to reduce search time.
We use the faster ‘‘hash table’’ method @15# to access entries
for the visited sites.

The hashing technique works as follows: A key K is as-
sociated with each entry of the data structure. We use a func-
tion h(K) to map the key into a ‘‘slot’’ at offset h(K) in a
‘‘hash table.’’ If the slot in the table is not already used, we
store the number or address of the entry in this slot; if the
slot is used ~this is referred to as a ‘‘collision’’! we add the
entry to a chain of entries all of which map to the same value
h(K). Ideally the function h(K) maps the keys uniformly
over the slots in the table so we obtain few long chains. If we
use a hash table of size M52m, where m is an integer and
choose K as the unique number n of the site, an effective
hashing function is @15#

h~n !5

1

2w2m
@~nC !mod 2w# , ~8!

where w is the word size~in bits! of our computer and the
hash constant, C is the least significant w bits of the product
of 2w and the ‘‘golden ratio,’’ (A521)/2. Thus h(n) yields
the upper m bits ~shift right w2m bits! of the result of taking
the lower w bits of the product of the unique site number and
the hash constant C. We implement the ability to chain en-
tries in the data structure by defining another field in the data
structure entry that serves as a chain pointer field. To find an
entry in the data structure for a site, we calculate the unique
site number using Eq. ~3!, find the offset in the hash table
using Eq. ~8!, and then walk the chain of entries to find the
entry with the desired coordinates. If we make the size of the
hash table equal to the size of the site data structure, we find
the average number of hash ‘‘collisions’’ to be less than two
so we can determine if a site has been visited very efficiently.

This approach of keeping the status of visited sites in a
special data structure ~not in the lattice array! applies to any
lattice model. In the case of growing percolation clusters we
can further reduce the amount of memory needed signifi-
cantly. This is accomplished by recognizing that a site which
is multiply visited is done so during the growth of a single
chemical shell. This is the key insight that allows us to re-
duce the memory requirement and can be confirmed by con-
sidering the bonds adjacent to a site in a lower chemical
shell: ~i! an occupied bond adjacent to a site in a lower
chemical shell cannot be a path to revisit that site because we
do not backtrack and ~ii! an unoccupied bond adjacent to a
site in a lower chemical shell cannot be on the path to revisit
that site. Sites in the same chemical shell can, however, be

visited by multiple paths as shown in Fig. 1~a!. Thus we need
only keep state information about growth sites, which them-
selves have not yet been used to create entries for the next
chemical shell. The number of such sites at any point in the
growth process will be of the order of the size of the current
chemical shell.

The discussion so far has been for hypercubic lattices. For
these lattices, we ensure that we did not double count site or
backtrack by maintaining information about growth sites,
which themselves have not yet been used to create entries for
the next chemical shell and then checking for duplicates.
More generally ~e.g., for triangular lattices!, the situation is a
little more complicated as shown in the example in Fig. 1~b!.
A similar situation is shown in Fig. 1~c!, where we grow a
cluster from multiple seeds. To treat both types of situation,
we must maintain ~i! state information about growth sites
that themselves have not yet been used to create entries for
the next chemical shell and ~ii! state information about all
sites in the chemical shell previous to the one being built.
Before we add a site to the list of growth sites, we check if it
is already present in the previous shell; if it is, we do not add
it.

The size of a chemical shell can be estimated as follows.
The chemical distance l scales with the mean Euclidean
radius of the cluster r as

l ;rdmin, ~9a!

while the cluster mass ~the number of sites in the cluster! s
scales as

s;rd f , ~9b!

where dmin has values 1.13 and 2 for d52 and 6, respec-
tively @2,4,16,17#; d f , the fractal dimension of the cluster
mass, has the exact values 91/4851.89 and 4 for d52 and 6,
respectively @1,2#. Then

s;l
d f /dmin, ~10!

and

FIG. 1. Examples of cluster growth at the beginning of the
population of sites at chemical distance 3 from the seed site. The
seed sites are denoted by striped circles. ~a! Example of a square
lattice in which a site C is multiply visited from sites A and B. ~b!

Example of a triangular lattice in which site C can be multiply
visited from sites A and D and in which site D can be multiply
visited from sites B and C. ~c! Example in which the cluster is
grown from multiple seeds. Site C can be multiply visited from sites
A and D; site D can be multiply visited from sites B and C.
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ds;l
(d f /dmin)21dl 5~sdmin /d f !(d f /dmin)21dl

5s12(dmin /d f )dl . ~11!

Setting dl 51, we find the size of the outermost chemical
shell of a cluster of mass s scales as

sshell~s !;su, ~12!

where u512dmin /d f .
The values of u range from '0.4 to 0.5 for d52 to d

56. Thus the size of the data structure to contain the visited
status is only of the order of the square root of the size of the
cluster size because we only store status for the largest
chemical shell.

III. PERCOLATION THRESHOLD AND FISHER
EXPONENT

In order to determine dmin to high precision and without
bias, it is necessary to first find values of the percolation
threshold substantially more precise than previously known
~in most cases!. To determine these thresholds we used the
method of measuring cluster-size statistics of individual clus-
ters grown on large virtual lattices as described in @7#. The
data-blocking method @6# used involves assigning memory to
parts of the lattice only when the cluster grows into it. With
the data-blocking method, like the hashing method, a table is
used to access a data structure but in this case, the data
structure entries represent blocks of sites instead of indi-
vidual sites; there are no collisions, but some memory is
wasted. The advantage of using the data-blocking method as
opposed to the one proposed in this work is that the states of
all sites are recorded ~as described in the Appendix!, so it
allows using a fast random number generator. The data-
blocking method allows lattices of sufficient size to keep
finite-size effects under control, with sufficient speed to
achieve good statistics. ~The hashing method described in
this paper could also have been used for this calculation.!

In four dimensions ~4D!, we use a virtual lattice of 5124

sites, broken up into blocks of 164 sites each. In 5D, the
virtual lattice of size 1285 is divided into blocks of size 85.
The cluster-size cutoff smax is 217

5131,072, and 214

516 384 for 4D and 5D, respectively. The threshold is de-
termined as the value of p that leads to the cluster size dis-
tribution ns best following a power law ns;s2t. Simulating
about 108 clusters for each case, and using the data analysis
techniques employed in @7#, we find

pc55
0.19688960.000003 @4D site#

0.16013060.000003 @4D bond#

0.1408160.00001 @5D site#

0.11817460.000004 @5D bond# .

~13!

Also, for t we find the values

t5H 2.31360.003 @4D#

2.41260.004 @5D# .
~14!

These results are more precise than some of the published
values for pc50.1601360.00012 @3#, 0.140760.0003 @18#,
and 0.1181960.00004 @19# for 4D bond, 5D site, and 5D
bond percolation, respectively, and for t52.41 for 5D per-
colation; for 4D site percolation, Ballesteros et al. @20# found
the comparably precise value pc50.19690160.000005 ~just
slightly higher than ours! and t52.312760.0007. The ana-
lytic e-expansion method has also been used to estimate
critical exponents @21–25#. Using the third-order
e-expansion for h of Ref. @21# and the scaling relations t
5d/d f11 and d f5(d122h)/2, we find t52.348 and
2.421 for 4D and 5D, respectively. These values are fairly
close to the values we measured.

All simulation parameters and our results are summarized
in Table I. The precision of our results is sufficiently high
that we expect that statistical errors in pc will not have an
effect on our value of dmin .

IV. SHORTEST PATH EXPONENT

To calculate the shortest path exponent, we ran simula-
tions at the percolation thresholds found above. We stopped
cluster growth at l max52048 for 4D bond and site percola-
tion and l max51024 for 5D bond and site percolation. We
simulated 733106, 393106, 1053106, and 203106 real-
izations for 4D bond, 4D site, 5D bond, and 5D site perco-
lation, respectively. During our simulations, we kept track of
the maximum and minimum lattice points to which our clus-
ters extended. Using this information, we determined the size
of the lattice that we would have needed to build if we had
been using conventional memory techniques. For d55 the
lattice would have had sides of length L5245 resulting in
approximately 9003109 lattice sites ('1 TB memory!; the
actual memory used was less than '106 ~1 MB!, six orders
of magnitude smaller.

TABLE I. Simulation parameters and results for pc and the Fisher exponent t .

Dimension Type No. of realizations smax pc t

Bond 108 131 073 0.16013060.000003
4 2.31360.003

Site 108 131 073 0.19688960.000003

Bond 108 16 383 0.11817460.000004
5 2.41260.004

Site 108 16 383 0.1408160.00001
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Figure 2~a! shows plots of ^r& for 4D site and bond per-
colation, while Fig. 2~b! shows plots of ^r& for 5D site and
bond percolation. While the plots resemble straight lines, the
effects of corrections to scaling are, in fact, considerable.
One customarily assumes that corrections to scaling have the
functional form @1,2,4,5#

^r&;l
z~11Al

2D
1••• !, ~15!

where the constant A depends on the dimension, lattice type
and percolation type ~bond or site! but the exponent D de-
pends only on dimension. Let

h~ l ![
^r&

l
z8

;l
z2z8~11Al

2D
1••• !, ~16!

where z8 is an estimated value of z. If l max were infinitely
large, we could determine z as the value of z8, which results
in a plot of h(l ) that asymptotically approaches a constant
~i.e., has zero slope as l →`); however, since l max is finite,
we may obtain misleading results if we determine z in this
manner. Nevertheless, we can use this approach to determine
bounds on z.

To see how this is accomplished, first consider Fig. 3~a!,
in which we plot h(l ) for 4D bond percolation for various
values of z8. From this figure and Eq. ~16! it is clear that A is
positive. Hence, we know that if for large l the slope of

h(l ) becomes an increasing function, the leading power-law
term l

z2z8 will dominate because z.z8. Thus a lower
bound on z is that value of z8 at which h(l ) asymptotically
becomes an increasing function. From Fig. 3~a! this value is
0.620.

We can proceed similarly by considering site percolation
in 4D, plotting h(l ) for 4D site percolation for various val-
ues of z8 in Fig. 3~b!. From these plots it is clear that A for
bond percolation is negative. Hence we know that if for large
l the slope of h(l ) becomes a decreasing function, we are
seeing the leading power-law term l

z2z8 dominate because
z,z8. Thus an upper bound on z is that value of z8 at which
h(l ) asymptotically becomes a decreasing function. From
Fig. 3~b! this value is 0.625.

Proceeding in the same manner for site and bond perco-
lation in 5D @see Fig. 4~a,b!#, we find that the constant A is
positive for both bond and site percolation, allowing us to
determine only an upper bound of z50.5515 ~the lower of
the upper bounds for site and bond percolation!. While this
method of finding bounds on z by identifying the value of z8

at which the slope of h(l ) changes sign does not always
yield both upper and lower bounds, it has the advantage that
it does not require any estimation of the parameters A and D
in Eq. ~12! and, in fact, is somewhat insensitive to the exact
form of the the corrections-to-scaling terms.

We also analyze our data using another more commonly
used method @4–6#. That method is to plot the effective ex-

FIG. 2. Euclidean distance ^r& versus chemical distance l for
site percolation ~upper line! and bond percolation ~lower line! for
~a! 4D and ~b! 5D. The slightly different apparent slopes of the plots
for bond and site cases can be attributed to different values of the
correction-to-scaling parameters.

FIG. 3. h(l )[^r&/l z versus l for ~a! 4D bond percolation for
values of ~from top to bottom! z850.615, 0.620, and 0.625 and ~b!

4D site percolation for values of ~from top to bottom! z8

50.623, 0.625, and 0.627. The dashed horizontal lines are pro-
vided as guides to the eye to allow one to better see that, for large
l , the middle plots of h(l ) in ~a! and ~b! are increasing and de-
creasing, respectively.
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ponents z(l ) between points l and 2l versus l
2D using an

estimated value of D that yields the straightest line. The ef-
fective exponent z(l ) between two points at l and 2l is the
value of the slope between these points in a log-log plot of
^r(l )&

z~ l !5

ln@^r~2l !&#2ln@^r~ l !&#

ln@2l #2ln@ l #
5

ln@^r~2l !&/^r~ l !&#

ln@2#
.

~17!

The l 50 intercept of a plot of z(l ) will be an estimate for
z, and the slope will be proportional to A. Our best estimate
for D for d54 and d55 is 0.4,D,0.6, so we use a value
of D of 0.5 and plot z(l ) for 4D site and bond percolation in
Fig. 5~a! and 5D site and bond percolation in Fig. 5~b!. In
Fig. 5~a!, the fact that the slopes of the lines change suggests
that we are seeing the effects of both the correction-to-
scaling term in Eq. ~15! as well as higher order terms, which
become less significant at larger values of l . In general, it is
more efficient to generate smaller clusters and more of them,
rather than fewer, larger ones. However, if the corrections to
scaling are not well understood or large, then one must build
the largest clusters possible. As we see here, strong correc-
tions to scaling are present in 4D percolation where the plots
of effective slope change at large l . If we had used smaller
clusters using traditional memory-management techniques
we would have obtained incorrect results. In Fig. 5~a!, the

almost horizontal plot for site percolation indicates that the
amplitude, A, of the correction-to-scaling term is very small.
From these plots and our estimates above of bounds on z, we
estimate

z5H 0.62260.002 @4D#

0.55260.002 @5D# .
~18!

In terms of dmin , this corresponds to

dmin5H 1.60760.005 @4D#

1.81260.006 @5D# .
~19!

The previously published values for dmin obtained by nu-
merical methods are 1.6360.03 @3# and 1.8 @1# for 4D and
5D. Thus our estimates of dmin are of higher accuracy than
the existing ones and have accuracy comparable to that for
the estimate of dmin in 3 dimensions, 1.37460.006 @5#. Us-
ing the rational form of the second order e-expansion, of
Ref. @25# @in which a cubic term was added so that dmin(d
51)51] we find dmin51.568 and 1.803 for 4D and 5D,
respectively. The e-expansion result for 5D is just a small
amount outside the error bar of our result. The agreement can
be improved by making a @2,1# Pade approximation to the
e-expansion series; using this technique, we find dmin
51.614 and 1.814 for 4D and 5D, respectively, in good
agreement with our results.

Our results and all simulation parameters are summarized
in Table II.

FIG. 4. h(l )[^r&/l z versus l for ~a! 5D site percolation for
values of ~from top to bottom! z850.5510, 0.5515, and 0.5520,
and ~b! 5D bond percolation for values of ~from top to bottom! z8

50.5595, 0.5615, and 0.5635. The dashed horizontal lines are pro-
vided as guides to the eye to allow one to better see that, for large
l , the the middle plots of h(l ) in ~a! and ~b! are decreasing.

FIG. 5. Effective exponent z versus 1/l 2D with D50.5 for bond
percolation ~upper line! and site percolation ~lower line! for ~a! 4D
and ~b! 5D.
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V. DISCUSSION

We have developed a technique that allows us to build
very large percolation clusters using very little memory. In
fact, using the method described here, relative to computer
processing power available today and in the foreseeable fu-
ture, computer memory is no longer a constraint on building
percolation clusters near the percolation threshold. The criti-
cal computer resource thus becomes solely processing
power. For example, by extrapolating from our simulations,
we find that with our method, with less than 108 bytes of
memory, we could build a 5D cluster of 1012 sites, which
would have required a lattice of 1017 sites, and reach a value
of l max of 107 ~versus the 1024 cutoff we used in our simu-
lations!. But the time to build a single trillion-site cluster
would be about 2000 h on current workstations. As processor
speeds increase, our technique for reducing memory usage
should allow critical exponents and constants to be deter-
mined with greater precision. Current techniques of growing
clusters, including the one described in this paper, require
computer processing resource of O(s), where s is the size of
the cluster grown.

We note that the technique we have developed is useful
when we can count the quantities in which we are interested
as we build the cluster ~e.g., cluster mass, average distance to
sites in a chemical shell!. On the other hand, it is not clear
how we could calculate the mass of the backbone, for ex-
ample, using our method because current methods of deter-
mining backbone mass require knowing all the sites in the
cluster, not just those in the current chemical shell. To obtain
backbone properties one could, however, reduce memory re-
quired to ;s ~versus Ld) by maintaining information about
all visited sites ~not just those in the current chemical shell!
in a data structure as opposed to maintaining the full lattice
data structure @12#. In the Appendix, we describe an alterna-
tive method of cluster generation that can be used when in-
formation about all visited sites must be maintained.

Finally, it is useful to compare our method with the
Hoshen-Kopelman method @26#, which constructs all clusters
in a d-dimensional lattice by successively populating d21
dimensional slices of the lattice. Memory is used to store the
last and current slice of the lattice so the memory needed
scales as Ld21. The Hoshen-Kopelman method is much less
memory efficient than the method presented here, and be-
comes less effective as the dimension increases since
Ld21/Ld

→1 with increasing d. Also, the Hoshen-Kopelman
method cannot be used to calculate dmin . On the other hand,

the Hoshen-Kopelman method is better suited to other prob-
lems, such as calculating the number of clusters that span
across a rectangular system, than our method, based on the
Leath algorithm.
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APPENDIX: ALTERNATIVE METHOD
OF CLUSTER GROWTH

We discuss a variant of our approach in which we still
store information concerning which sites are visited in a data
structure and access the entries using a hash table. However,
if one stores information about all visited sites, not just for
those in the last shell~s!, then a traditional random number
generator ~one which does not take the coordinates/
orientation of the bond as input! can be used. Let us first
consider the case where we have no need for occupied bond
information ~e.g., we are simply counting the number of sites
in the cluster!. When considering a growth site, if: ~i! an
adjacent site is vacant we determine whether the bond con-
nected to that site is occupied or not; ~ii! an adjacent site is
not vacant we simply do not make a determination of
whether the bond is occupied.

In this way we make a determination about whether a
given bond is occupied no more than once.

Now consider the case in which we do have a need to
know whether a bond is occupied or not ~e.g., we are count-
ing the number of bonds in the cluster or we will be deter-
mining the backbone of the cluster!. In this case, when con-
sidering a growth site, if:

~i! An adjacent site is vacant, we determine whether the
bond connected to that site is occupied or not.

~ii! An adjacent site is not vacant and is in a higher chemi-
cal shell, we also determine whether the bond is connected to
that site is occupied or not.

~iii! An adjacent site is not vacant and is in the same
chemical shell as the growth site, we make a determination
about whether the bond is occupied only if the direction from
the growth site to the adjacent site is positive. In this way, the
determination about whether the bond is occupied is done
only once. This situation arises in noncubic ~e.g., triangular!

TABLE II. Simulation parameters and results for the spreading exponent z and shortest path exponent
dmin .

Dimension Type pc No. of realizations l max z dmin

Bond 0.160130 733106 2048
4 0.62260.002 1.60760.005

Site 0.196889 393106 2048

Bond 0.118174 1053106 1024
5 0.55260.002 1.81260.006

Site 0.14081 203106 1024
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lattices and when we start cluster growth with multiple
seeds.

~iv! An adjacent site is not vacant and is in a lower chemi-
cal shell than the growth site, we make no determination
about whether the bond to that site is occupied; whether the
bond is occupied has been determined earlier in the growth
process. In fact, the bond must be unoccupied because if it
were occupied we would have reached the growth site earlier
directly from the adjacent site.

Thus we ensure that we determine whether a bond is oc-
cupied once and only once. If one needs to keep a record of

whether a given bond is occupied ~e.g., to later determine the
backbone! this information can be stored in the entry in the
data structure for the site with which the bonds are associated
along with the coordinates of the site, etc.

This method trades off memory ~we keep state for all
visited sites! versus performance ~we can use the faster tra-
ditional random number generators as opposed to the encryp-
tionlike random number generator!. Also, in cases where we,
for some other reason, must keep state information about all
the sites, we can obtain the benefit of the using a faster
random number generator.
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