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Abstract
We investigate the relation between trading activity—measured by the
number of trades N�t—and the price change G�t for a given stock over a
time interval [t, t + �t]. We relate the time-dependent standard deviation of
price changes—volatility—to two microscopic quantities: the number of
transactions N�t in �t and the variance W 2

�t of the price changes for all
transactions in �t . We find that N�t displays power-law decaying time
correlations whereas W�t displays only weak time correlations, indicating
that the long-range correlations previously found in |G�t | are largely due to
those of N�t . Further, we analyse the distribution P {N�t > x} and find an
asymptotic behaviour consistent with a power-law decay. We then argue that
the tail-exponent of P {N�t > x} is insufficient to account for the
tail-exponent of P {G�t > x}. Since N�t and W�t display only weak
interdependence, we argue that the fat tails of the distribution P {G�t > x}
arise from W�t , which has a distribution with power-law tail exponent
consistent with our estimates for G�t . Further, we analyse the statistical
properties of the number of shares Q�t traded in �t , and find that the
distribution of Q�t is consistent with a Lévy-stable distribution. We also
quantify the relationship between Q�t and N�t , which provides one
explanation for the previously observed volume–volatility co-movement.

1. Introduction
This paper summarizes the results of a few recent empirical
studies focused on quantifying the statistical features of stock
price fluctuations, market activity, and share-volume traded.
Our results are based on the analysis of transaction data for
1000 US stocks for the two-year period 1994–1995.

The first result we shall discuss concerns the asymptotic
nature of the distribution of stock returns. Our analysis shows
that the tails of the distribution of stock returns display a power-
law decay with exponents α larger than the upper bound for
a Lévy-stable distribution. Our estimates of the exponents
indicate that although the second moment exists, moments

larger than the third (in particular, the kurtosis) are divergent.
Our analysis also shows that, although not statistically stable,
the estimates of exponents characterizing these power laws are
quite similar for time scales �t up to approximately 16 trading
days, indicating the slow onset of convergence to Gaussian
behaviour.

The second result concerns the statistical relationship
between returns and market activity. We relate the statistical
properties of the time-dependent standard deviation of
returns—volatility—to those of two quantities: the number
of trades N�t in �t and the variance W 2

�t of the price changes
for all trades in�t . We find that returns scaled by the volatility
have a distribution with tails that are consistent with those of
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a Gaussian. We next relate the non-Gaussian properties of
returns to those of N�t and W�t . We find that while the long-
range correlations found in |G�t | are largely due to N�t , the
pronounced tails in the distribution of price fluctuations arise
largely from W�t .

The third result concerns the statistical properties of the
number of shares Q�t traded in �t and its relation to the
number of trades N�t . Our analysis of the number of shares qi
traded in each trade i shows that the distribution P {q > x} has
a tail that decays as a power law with an exponent within the
Lévy-stable domain. Since, the number of shares traded in �t

is Q�t = ∑N�t

i=1 qi , in the limit of sufficiently large N�t , if qi
are i.i.d., the sum implies a statistical relationship betweenQ�t

and N�t . We test the data for such a relationship and find good
agreement. We argue that the Q–N relationship, together with
the relationship between volatility and the number of trades,
provides an explanation for the previously observed volume–
volatility co-movement.

2. Databases analysed
Our empirical results are based on the analysis of different
databases covering securities traded in the three major US
stock exchanges, namely (i) the New York Stock Exchange
(NYSE), (ii) the American Stock Exchange (AMEX), and
(iii) the National Association of Securities Dealers Automated
Quotation (Nasdaq).

For studying short-time scale dynamics, we analyse the
Trades and Quotes (TAQ) database, from which we select the
two-year period January 1994 to December 1995. Nasdaq
and AMEX merged in October 1998, after the end of the
period studied in this work. The TAQ database, which has
been published by NYSE since 1993, covers all trades at the
three major US stock markets. This huge database is available
in the form of CD-ROMs. The rate of publication was one
CD-ROM per month for the period studied, but recently has
increased to two–four CD-ROMs per month. The total number
of transactions for the largest 1000 stocks is of the order of 109

in the two-year period studied. We analyse the largest 1000
stocks, by capitalization on 3 January 1994, which survived
through to 31 December 1995.

The data are adjusted for stock splits and dividends. The
data are also filtered to remove spurious events, such as occur
due to the inevitable recording errors. The most common error
is missing digits which appears as a large spike in the time series
of returns. These are much larger than the usual fluctuations
and can be removed by choosing an appropriate threshold. We
tested a range of thresholds and found no effect on the results.

To study the dynamics at longer time horizons, we analyse
the Center for Research and Security Prices (CRSP) database.
The CRSP Stock Files cover common stocks listed on NYSE
beginning in 1925, the AMEX beginning in 1962, and the
Nasdaq Stock Market beginning in 1972. The files provide
complete historical descriptive information and market data
including comprehensive distribution information, high, low
and closing prices, trading volumes, shares outstanding, and
total returns. In addition to adjusting for stock splits and
dividends, we have also detrended the data for inflation.

3. The distribution of stock returns
The nature of the distribution of stock returns has been a topic
of interest for over 100 years [1]. A reasonable a priori
assumption, motivated by the central limit theorem, is that
the returns are independent, identically Gaussian distributed
(i.i.d.) random variables, or equivalently, a random walk in
the logarithm of price [2].

Empirical studies (for a review, see [3–6]) show that
the distribution of returns has pronounced tails, in striking
contrast to those of a Gaussian. To account for the fat tails,
Mandelbrot [7] proposed a simple generalization of the central
limit theorem to variables which lack a finite second moment,
which leads to Lévy-stable distributed returns [7, 8]. This
particularly simple way of obtaining fat-tailed distributions
is however shown to be inconsistent by empirical studies
on the decay of the tails of the return distribution [9–12].
In particular, alternative hypotheses for modelling the return
distribution were proposed, which include a log-normal
mixture of Gaussians [12], Student t distributions [9–11], and
exponentially truncated Lévy distributions [13, 14].

Conclusive results on the distribution of returns are
difficult to obtain, and require a large number of data to study
the rare events that give rise to the tails. In our study [15–17],
we analyse approximately 40 million records of stock prices
sampled at 5 min intervals for the 1000 leading US stocks for
the two-year period 1994–1995 and 30 million records of daily
returns for 6000 US stocks for the 35-year period 1962–1996.
For time scales shorter than one day, we analyse the data from
the TAQ database.

The basic quantity studied for individual companies is the
price Si(t). The time t runs over the working hours of the
stock exchange—excluding nights, weekends and holidays.
For each company, we calculate the return

Gi ≡ Gi(t,�t) ≡ ln Si(t + �t) − ln Si(t) . (1)

We then calculate the cumulative distributions—the
probability of a return larger than or equal to a threshold—
of returns Gi for �t = 5 min. For each stock i =
1, . . . , 1000, the asymptotic behaviour of the functional form
of the cumulative distribution is consistent with a power law,

P {Gi > x} ∼ 1

xαi
, (2)

where αi is the exponent characterizing the power-law decay.
In order to compare the returns of different stocks with
different volatilities, we define the normalized return gi ≡
(Gi − 〈Gi〉T )/vi , where 〈. . .〉T denotes a time average over
the 40 000 data points of each time series, for the two-year
period studied, and the time-averaged volatility vi of company
i is the standard deviation of the returns over the two-year
period vi

2 ≡ 〈Gi
2〉T − 〈Gi〉T 2. Values of the exponent αi

can be estimated by a power-law regression on each of these
distributions P {gi > x} ∼ x−α , whereby we obtain the
average value for the 1000 stocks,

α =
{

3.10 ± 0.03 (positive tail)

2.84 ± 0.12 (negative tail)
(3)
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where the fits are performed in the region 2 � g � 80.
In figure 1(a) we show the histogram for αi , obtained from
power-law regression-fits to the positive tails of the individual
cumulative distributions of all 1000 companies studied, which
shows an approximate Gaussian spread around the mean value
α = 3.10 ± 0.03. These estimates of the exponent α are well
outside the Lévy-stable range (which requires 0 < α < 2),
and is therefore consistent with a finite variance for returns.
However, moments larger than 3, in particular the kurtosis,
seem to be divergent [3, 18]. Our results are similar to the
results of the analysis of the daily returns of 30 German stocks
comprising the DAX index [19], daily CRSP returns [3], and
foreign exchange rates [20].

In order to obtain an alternative estimate for α, we use
the estimator of Hill [3, 21]. We calculate the inverse local
slope of the cumulative distribution function P(g), γ ≡
− (d logP(g)/d log g)−1 for the negative and the positive tail.
We obtain an estimator for γ , by sorting the normalized
increments by their size, g(1) > g(2) > ... > g(N). The
cumulative distribution can then be written as P(g(k)) = k/N ,
and we obtain for the local slope

γ =
[
(N − 1)

N−1∑
i=1

log g(i)
]

− log g(N) , (4)

where N is the number of tail events used. We use the criterion
thatN does not exceed 10% of the sample size, simultaneously
ensuring that the sample is restricted to the tail events [3]. Thus,
we obtain the average estimates for 1000 stocks,

α =
{

2.84 ± 0.12 (positive tail)

2.73 ± 0.13 (negative tail)
. (5)

Removing overnight events yields the average values of α =
3.11 ± 0.15 for the positive tail and α = 3.03 ± 0.21 for the
negative tail.

Motivated by scale-free phenomena observed in a wide
range of complex physical systems that have a large number of
interacting units, it was believed that the power-law behaviour
of the tails of the return distribution must apply to a wide
range of observations. However, economists [18, 19, 22]
have emphasized that power-law tails may apply only to a
small fraction of extreme events. In our case, we find the
power-law distribution of returns to hold for events larger than
approximately 2 standard deviations, below which the nature
of the distribution is affected by the discreteness of prices.

A parallel analysis on the distribution of S&P 500 index
returns shows consistent asymptotic behaviour [16], although
the central part of the distribution seems to display Lévy
behaviour for short time scales (< 30 min) [13]. One reason
for a different behaviour at the central part of the distribution
of S&P 500 returns is the discreteness [2, 23] of the prices
of individual stocks (which causes a cut-off for low values of
returns) that comprise the S&P 500 index.

4. Scaling of the distributions of returns
and correlations in the volatility
Since the values ofα we find are inconsistent with a statistically
stable law, we expect the distribution of returns P(G) on
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Figure 1. (a) The histogram of the tail exponents of the distribution
of returns obtained by power-law regressions to the cumulative
distribution functions of each stock, where the fit is for all x larger
than 2 standard deviations. This histogram is not normalized—the
y-axis indicates the number of occurrences of the exponent. (b) The
average values of the exponent α characterizing the asymptotic
power-law behaviour of the distribution of returns as a function of
the time scale �t obtained using Hill’s estimator. The values of α
for �t < 1 day are calculated from the 1000 stocks from the TAQ
database while for �t � 1 day they are calculated from 6000 stocks
from the CRSP database. The unshaded region, corresponding to
time scales larger than (�t)× ≈ 16 days (6240 min), indicates the
range of time scales where we find results consistent with the onset
of a slow convergence to Gaussian behaviour. The rate of
convergence to Gaussian appears to be slower for the negative tail.

larger time scales to converge to Gaussian. In contrast,
our analysis of daily returns from the CRSP database shows
that the distributions of returns retain the same functional
form for a wide range of time scales �t , varying over three
orders of magnitude, 5 min� �t � 6240 min = 16 days
(figure 1(b)). The onset of convergence to a Gaussian starts
to occur only for �t > 16 days [16, 17]. In contrast, n-
partial sums of computer-simulated time series of the same
length generated with a probability distribution with the same

264



QUANTITATIVE FI N A N C E Price fluctuations, market activity and trading volume

asymptotic behaviour agree well with Gaussian behaviour
for n � 256 [6, 16]. Thus, the rate of convergence of
the distribution P {G > x} to a Gaussian is remarkably
slow, indicative of time dependences [2, 24] which violate the
conditions necessary for the central limit theorem to apply.

To test for time dependences, we analysed the
autocorrelation function of returns, which we denote
〈G(t)G(t+τ)〉, using 5 min returns of 1000 stocks. Our results
show pronounced short-time (< 30 min) anti-correlations due
to the bid–ask bounce [2, 25]. For larger time scales, the
correlation function is at the level of noise, consistent with
the efficient market hypothesis [2, 26, 27]. However, lack of
linear correlation does not imply independent returns, since
there may exist higher-order correlations. Our recent studies
[28–30] show that the amplitude of the returns measured by
the absolute value or the square has long-range autocorrelations
with persistence [31] up to several months,

〈|G(t)| |G(t + τ)|〉 ∼ τ−a , (6)

where 〈. . .〉 denotes the autocorrelation function. We obtain
the average value for the exponent a = 0.34 ± 0.09 for
the 1000 stocks studied. In order to detect genuine long-
range correlations, the effects of the U-shaped intraday pattern
[32,33] for |G| has been removed [30]. This result is consistent
with previous studies [2, 34–36] which also report long-range
correlations. In addition to analysing the correlation function
directly, we apply power spectrum analysis and the recently
developed detrended fluctuation analysis [30, 37]. Both of
these methods yield consistent estimates of the exponent a.

5. Analysis of trading activity
5.1. Statistics of trading activity

In order to understand the reasons for the pronounced tails of
the return distribution and long-range correlations in volatility,
we follow an approach in the spirit of models of time
deformation proposed by Clark [12], Tauchen and Pitts [38],
Stock [39], Lamoureux and Lastrapes [40], Ghysels and Jasiak
[41], and Engle and Russell [42].

Returns G over a time interval �t can be expressed as the
sum of several changes δpi due to the i = 1, . . . , N�t trades
in the interval [t, t + �t],

G�t =
N�t∑
i=1

δpi . (7)

If �t is such that N�t 
 1, and δpi have finite variance, then
one can apply the central limit theorem, whereby one would
obtain the result that the unconditional distribution P(G) is
Gaussian [12, 43]. It is implicitly assumed in this description
that N�t has only narrow Gaussian fluctuations, i.e. has a
standard deviation much smaller than a large mean value 〈N�t 〉.

In order to ensure that the sampling time interval �t for
each stock contains a sufficient number of transactionsN�t , we
partition the set of 1000 stocks into six groups (I–VI) based
on the average time between trades 〈δt〉. Each group contains
approximately 150 stocks. For a specific group, we choose a
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Figure 2. Histogram of tail exponents β characterizing the decay of
the cumulative distributions P {N�t > x}, estimated using Hill’s
estimator for each of the 1000 stocks. We obtain an average value
β = 3.40 ± 0.05.

sampling time�t at least 10 times larger than the average value
of 〈δt〉 for that group. We choose the sampling time intervals
�t = 15, 39, 65, 78, 130 and 390 min respectively for groups
I–VI. Overnight returns have been excluded.

Our investigation of N�t [44] shows stark contrast with
a Gaussian time series with the same mean and variance—
there are several events of the magnitude of tens of standard
deviations which are inconsistent with Gaussian statistics
[42, 45–48]. Specifically, we find that the distribution of N�t

displays an asymptotic power-law decay [44]

P {N�t > x} ∼ x−β (x 
 1) . (8)

For the 1000 stocks that we analyse, we estimate β using
Hill’s method [21] and obtain a mean value β = 3.40 ± 0.05
(figure 2). Note that β > 2 is outside the Lévy-stable domain
0 < β < 2 and is inconsistent with a stable distribution for
N�t [49].

5.2. Price fluctuations and trading activity
Since we find that P {G�t > x} ∼ x−α , we can ask whether
the value of β we find for P {N�t > x} is sufficient to give rise
to the fat tails of returns. To test this possibility, we implement,
for each stock, the least-squares regression

ln |G�t(t)| = a + b lnN�t(t) + ψ(t) , (9)

where ψ(t) has mean zero and the equal time covariance
〈N�tψ(t)〉 = 0. Only those intervals having N�t � 20 are
considered for this regression. For 30 actively traded stocks,
we find the average value b = 0.55 ± 0.04.

Values of b ≈ 0.5 are consistent with what we would
expect from equation (7), if δpi are i.i.d. with finite variance.
In other words, suppose δpi are chosen only from the interval
[t, t + �t], and let us hypothesize that these δpi are mutually
independent, with a common distributionP(δpi |t ∈ [t, t+�t])
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Figure 3. (a) Positive tail of the cumulative distribution of ε
averaged over all stocks within each of the six groups I–VI (based
on the average time between trades). Each symbol shows the
average behaviour of the cumulative distributions of the scaled
variable ε for all stocks in each of the six groups. The negative tail
(not shown) displays similar behaviour. (b) Histogram of excess
kurtosis of ε. For the 1000 stocks studied, we obtain the average
value of kurtosis 0.46 ± 0.03 and skewness 0.018 ± 0.002.

having a finite varianceW 2
�t . Under this hypothesis, the central

limit theorem, applied to the sum of δpi in equation (7), implies
that the ratio

ε ≡ G�t

W�t

√
N�t

(10)

must be a Gaussian-distributed random variable with zero
mean and unit variance [38, 43]. We test this hypothesis by
analysing the distribution P(ε) and the correlations in ε. Our
results indicate that the distribution P(ε) is consistent with a
Gaussian (figures 3(a) and (b)), with mean values of excess
kurtosis ≈ 0.46 for all 1000 stocks [44]. This is noteworthy
since, for the unconditional distribution P(G�t), the kurtosis
is divergent (empirical estimates yield mean values ≈ 80 for
1000 stocks). Similar results have also been reported by recent
independent studies [46–48].
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Figure 4. Histogram of power-law exponents γ for the cumulative
distribution P {W�t > x}, obtained using Hill’s estimator for each of
the 1000 stocks separately. We obtain an average value
γ = 2.9 ± 0.1.

One implication of our result is that the fat tails of
P {G�t > x} ∼ x−α cannot be caused solely due to
P {N�t > x} ∼ x−β , because by conservation of probabilities
P {√N�t > x} ∼ x−2β with 2β ≈ 6.8. Equation (10) then
implies that N�t alone cannot explain the value α ≈ 3. Since
N�t is not sufficient to account for the fat tails inG�t , one other
possibility is that it arises from the local variance W 2

�t . By
definition W 2

�t is the variance of all δpi in �t . We investigate
the statistics of W�t and examine if the distribution of W�t is
sufficient to explain the value of α found for P {G�t > x}. We
find that the distribution ofW�t displays power-law asymptotic
behaviour, P {W�t > x} ∼ x−γ . For the 1000 stocks analysed,
we obtain the average value γ = 2.9 ± 0.1 [44], consistent
with the estimates of α for the same stocks (figure 4). Thus,
the pronounced tails of the distribution of returns are largely
due to those of W�t .

5.3. Volatility correlations and trading activity

Thus far we discussed equation (10) from the point of view
of distributions. Next, we analyse time correlations in N�t ,
and relate them to the time correlations of |G�t | [44]. To
detect genuine long-range correlations, we first remove the
marked U-shaped intradaily pattern [32, 33] in N�t using the
procedure of [30]. We find that the autocorrelation function
〈N�t(t)N�t (t + τ)〉 ∼ τ ν . We obtain the mean value of the
exponents ν = 0.30 ± 0.02 for all 1000 stocks (figure 5) using
the detrended fluctuation analysis method [37].

In addition, we investigate how the exponent ν of the
autocorrelation function of N�t is related to that of |G�t |. To
this end, we also estimate the time correlations in W�t and
|ε| and find only short-range correlations. Thus, the long-
range correlations in volatility (W�t

√
N�t ) arise due to those

of N�t . Indeed, our estimate of the average value of the
exponent a = 0.34 ± 0.09 is consistent with our estimate
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Figure 5. Histogram of exponents ν characterizing the power-law
decay of the autocorrelation function 〈N�t(t)N�t (t + τ)〉. We find
the mean value for 1000 stocks ν = 0.30 ± 0.02, consistent with
long memory. In order to detect genuine long-range correlations, the
U-shaped intraday pattern for N�t has been removed by dividing
each N�t by the intraday pattern [30].

of ν = 0.30 ± 0.02. Together with the above discussion
on distribution functions, these results suggest an interesting
dichotomy—that the fat tails of the distribution of returns G�t

arise from W�t and the long-range volatility correlations arise
from trading activity N�t [44].

6. Statistics of share volume traded
Understanding the equal-time correlations between volume
and volatility and, more importantly, understanding how the
number of shares traded impacts the price has long been a
topic of active research [2, 12, 23, 38, 46, 50–53]. Using an
approach similar to the above, we analyse the statistics of the
number of shares Q�t traded in a time interval �t [54]. We
find that the probability distributions P {Q�t > x} display a
power-law asymptotic behaviour

P {Q�t > x} ∼ 1

xλ
. (11)

Using Hill’s estimator, we obtain an average value λ =
1.7 ± 0.1 [54], within the Lévy-stable domain 0 < λ < 2.

We next analyse time correlations in Q�t . We consider
the family of correlation functions 〈[Q�t(t)]a[Q�t(t + τ)]a〉,
where the parameter a (< λ/2) is required to ensure that the
correlation function is well defined. Instead of analysing the
correlation function directly, we use the method of detrended
fluctuation analysis [37]. We find a power-law decay of the
autocorrelation function,

〈[Q�t(t)]
a[Q�t(t + τ)]a〉 ∼ τ−κ . (12)

For the parameter a = 0.5,4 we obtain the average value
4 Here, κ is the exponent characterizing the decay of the autocorrelation
function, compactly denoted 〈[Q�t (t)]a[Q�t (t + τ)]a〉. Values of a in the
range 0.1 < a < 1 yield δ in the range 0.75 < δ < 0.88—consistent with
long-range correlations in Q�t .
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Figure 6. Histogram of the values of the tail exponent ζ of the
distribution of the number of shares traded per trade P {q > x}
obtained for each of the 1000 stocks using Hill’s estimator, whereby
we find the average value ζ = 1.53 ± 0.07. The dotted curve shows
a Gaussian distribution with the same mean and variance.

κ = 0.34 ± 0.04 [54]. We also investigate if the qi are
correlated in ‘transaction time’, defined by i, and we find only
short-range correlations.

6.1. Share volume traded and number of trades

To investigate the reasons for the observed power-law tails of
P(Q�t) and the long-range correlations in Q�t , we first note
that

Q�t ≡
N�t∑
i=1

qi , (13)

is the sum of the number of shares qi traded for all i =
1, . . . , N�t transactions in �t . Hence, we next analyse the
statistical properties of the number of shares traded during
each trade qi and find that the distribution P {q > x} displays
a power-law decay

P {q > x} ∼ 1

qζ
, (14)

where ζ has the average value ζ = 1.53 ± 0.07 (figure 6) for
1000 stocks [54].

Note that ζ is within the interval 0 < ζ < 2, indicating
that P {q > x} is a positive (or one-sided) distribution within
the Lévy-stable domain [55].5 Therefore, the reason why the
distribution P {Q�t > x} has similar asymptotic behaviour to
P {q > x}, is that P {q > x} lacks a finite second moment, and
Q�t is related to q through equation (13). Indeed, our estimate
of ζ is comparable within error bounds to our estimate of λ.

5 The general form of a characteristic function φ(x) of a Lévy-stable

distribution P(q) is ln ϕ(x) ≡ iµx − γ |x|ζ
[
1 + iβ x

|x| tan
(
π
2 ζ

)]
[ζ �= 1],

where 0 < ζ < 2, γ is a positive number,µ is the mean, andβ is an asymmetry
parameter. An inverse Fourier tranformation shows that these distributions
have asymptotic behaviour described by a power-law decay P {q > y} ∼ y−ζ

characterized by the exponent ζ . The case where the parameter β = 1 gives
a positive or one-sided Lévy-stable distribution.
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To confirm thatP(q) is within the Lévy-stable domain, we
also examine the behaviour ofQn ≡ ∑n

i=1 qi . We first analyse
the asymptotic behaviour of P(Qn) for increasing n. For
a Lévy-stable distribution, n1/ζ P ([Qn − 〈Qn〉]/n1/ζ ) should
have the same functional form as P(q), where 〈Qn〉 = n 〈q〉
and 〈. . .〉 denotes average values. We find that the distribution
P(Qn) retains its asymptotic behaviour for a range of n—
consistent with a Lévy-stable distribution [54]. We obtain
an independent estimate of the exponent ζ by analysing the
scaling behaviour of the moments µr(n) ≡ 〈|Qn − 〈Qn〉|r〉,
where r < ζ .6 For a Lévy-stable distribution [µr(n)]1/r ∼
n1/ζ . Hence, we plot [µr(n)]1/r as a function of n and obtain
an inverse slope of ζ = 1.45 ± 0.03—consistent with our
previous estimate of ζ [54].7

6.2. Share volume traded and trading activity

Since the qi have only weak correlations, we ask how Q�t ≡∑N�t

i=1 qi can show much stronger correlations. To address this
question, we note that (i) N�t is long-range correlated [44],
and (ii) P(q) is within the Lévy-stable domain with exponent
ζ , and therefore, N1/ζ

�t P ([Q�t −〈q〉N�t ]/N
1/ζ
�t ) should, from

equation (13), have the same distribution as any of the qi . Thus,
we hypothesize that the dependence of Q�t on N�t can be
separated by defining [54]

χ ≡ Q�t − 〈q〉N�t

N
1/λ
�t

, (15)

where χ is a one-sided Lévy-distributed variable with zero
mean and exponent ζ [55].8 Since N�t is a random variable,
one crucial condition for the hypothesis (equation (15)) to be
valid is that the distribution P {N�t > x} must have a tail
that decays much more rapidly than that of qi [56], which
is indeed what we have seen in the previous sections (our
estimates of the tail exponent of N�t , β are significantly larger
than those of ζ ).9 To test the hypothesis of equation (15), we
first analyse P(χ) and find similar asymptotic behaviour to
P(Q�t). Next, we analyse correlations in χ and find only
weak correlations—implying that the correlations in Q�t are
largely due to those of N�t [54]. Indeed, our estimates of the
exponent κ = 0.34 ± 0.04 is consistent with our estimate of
the exponent ν = 0.30 ± 0.02 for N�t .

6.3. Price fluctuations and share volume traded

One interesting implication of these results is an explanation
for the previously observed [12,50–53] equal-time correlations
between Q�t and volatility V�t , which is the local standard
deviation of price changes G�t . Now, V�t = W�t

√
N�t from

6 The values of ζ reported are using r = 0.5. Varying r in the range
0.2 < r < 1 yields similar values.
7 To avoid the effect of weak correlations in q on the estimate of ζ , the
moments [µr(n)]1/r are constructed after randomizing each time series of
qi . Without randomizing, the same procedure gives an estimate of ζ =
1.31 ± 0.03.
8 See footnote 5.
9 If N�t were independent, it can be proved that this condition is sufficient
for equation (15). However, in the presence of long-range correlations in N�t ,
although an exact proof is beyond the scope of this paper, based on numerical
evidence, it seems reasonable to conjecture the sufficiency of this condition.

equation (10). Consider the equal-time correlation, 〈Q�t V�t 〉,
where the means are subtracted from Q�t and V�t . Since Q�t

depends on N�t through Q�t = 〈q〉N�t + N
1/ζ
�t χ , and if the

equal-time correlations 〈N�t W�t 〉, 〈N�t χ〉, and 〈W�t χ〉 are
small (correlation coefficients ≈ 0.1), it follows that the equal-
time correlation 〈Q�t V�t 〉 ∝ 〈N3/2

�t 〉 − 〈N�t 〉〈N1/2
�t 〉, which

is positive due to the Cauchy–Schwartz inequality. Thus, the
previously observed volume–volatility co-movement is largely
due toN�t—consistent with the results of [50] that, on average,
the size of trades has no more information content than that
contained in the number of transactions.

Another implication concerns the relationship between
price fluctuations G�t and order-imbalances φ ≡ qb − qs ,
defined as the difference between the number of shares traded
in buyer-initiated trades qb and seller-initiated trades qs [2].
Since the tail statistics of the distribution of returns P {G�t >

x} has a power-law asymptotic behaviour with exponentα ≈ 3,
and that of the number of shares traded P {q > x} has the
exponent ζ ≈ 1.7, one can rule out a linear relationship
between G�t and φ. In order for the statistics to be consistent,
the relationship has to be ‘weaker’ than linear, such as a
square-root relationship [57]. This is consistent with empirical
findings ([2] and references therein), which show a nonlinear
relationship between price fluctuations and order imbalances.
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Scientifiques de l’Ecole Normale Supérieure III-17 21 PhD
Thesis in mathematics

[2] Campbell J, Lo A W and MacKinlay A 1997 The
Econometrics of Financial Markets (Princeton, NJ:
Princeton University Press)

[3] Pagan A 1996 The econometrics of financial markets
J. Empirical Finance 3 15–102

[4] Farmer J D 1999 Physicists attempt to scale the ivory towers of
finance Comput. Sci. Engng 1 26–39

[5] Mantegna R N and Stanley H E 2000 An Introduction to
Econophysics: Correlations and Complexity in Finance
(Cambridge: Cambridge University Press)

[6] Bouchaud J-P and Potters M 2000 Theory of Financial Risk
(Cambridge: Cambridge University Press)

[7] Mandelbrot B B 1963 The variation of certain speculative
prices J. Business 36 394–419

[8] Fama E and Roll R 1971 Parameter estimates for symmetric
stable distributions J. Am. Statist. Assoc. 66 331–38

[9] Officer R R 1972 The distribution of stock returns J. Am.
Statist. Assoc. 67 807–12

[10] Praetz P D 1972 The distribution of share price changes
J. Business 45 49–55

[11] Blattberg R C and Gonedes N 1974 A comparison of the stable
Paretian and Student distributions as statistical models for
prices J. Business 47 244–80

[12] Clark P K 1973 A subordinated stochastic process model with
finite variance for speculative prices Econometrica 41
135–55

[13] Mantegna R N and Stanley H E 1995 Scaling behavior in the
dynamics of an economic index Nature 376 46–9

[14] Mantegna R N and Stanley H E 1994 Stochastic process with
ultraslow convergence to a Gaussian: the truncated Lévy
flight Phys. Rev. Lett. 73 2946

[15] Gopikrishnan P, Meyer M, Amaral L A N and Stanley H E
1998 Inverse cubic law for the distribution of stock price
variations Eur. Phys. J. B 3 139–40

268



QUANTITATIVE FI N A N C E Price fluctuations, market activity and trading volume

[16] Gopikrishnan P, Plerou V, Amaral L A N, Meyer M and
Stanley H E 1999 Scaling of the distributions of fluctuations
of financial market indices Phys. Rev. E 60 5305

[17] Plerou V, Gopikrishnan P, Amaral L A N, Meyer M and
Stanley H E 1999 Scaling of the distribution of price
fluctuations of individual companies Phys. Rev. E 60
6519–29

[18] Loretan M and Phillips P C B 1994 Testing the covariance
stationarity of heavy-tailed time series J. Empirical Finance
1 211–48

[19] Lux T 1996 The stable Paretian hypothesis and the frequency
of large returns: an examination of major German stocks
Appl. Financial Economics 6 463–75

[20] Muller U A, Dacorogna M M and Pictet O V 1998 Heavy tails
in high-frequency financial data A Practical Guide to Heavy
Tails ed R J Adler, R E Feldman and M S Taqqu (Basle:
Birkhäuser) pp 83–311

[21] Hill B M 1975 A robust estimator for the asymptotic behavior
of certain time series Ann. Math. Stat. 3 1163

[22] Jansen D and de Vries C 1991 On the frequency of large stock
returns: putting booms and busts into perspective Rev.
Econ. Stat. 73 18–24

[23] Haussman J, Lo A and MacKinlay A C 1992 An ordered
probit analysis of stock transaction prices J. Finance
Economics 31 319–79

[24] Lo A and MacKinlay A C 1988 Stock prices do not follow
random walks: evidence from a simple specification test
Rev. Financial Studies 1 41–66

[25] Roll R 1984 A simple implicit measure of the effective
bid–ask spread in an efficient market J. Finance 39 1127–40

[26] Fama E F 1970 Efficient capital markets: a review of theory
and empirical work J. Finance 25 383–420

[27] Fama E F 1991 Efficient capital markets: II J. Finance 46
1575–617

[28] Liu Y , Cizeau P, Meyer M, Peng C-K and Stanley H E 1997
Quantification of correlations in economic time series
Physica A 245 437–40

[29] Cizeau P, Liu Y, Meyer M, Peng C-K and Stanley H E 1997
Volatility distribution in the S&P 500 stock index Physica A
245 441–5

[30] Liu Y, Gopikrishnan P, Cizeau P, Meyer M, Peng C-K and
Stanley H E 1999 The statistical properties of the volatility
of price fluctuations Phys. Rev. E 60 1390–400

[31] Beran J 1994 Statistics for Long-Memory Processes (New
York: Chapman & Hall)

[32] Wood R A, McInish T H and Ord J K 1985 An investigation of
transactions data for NYSE stocks J. Finance 40 723–739

[33] Admati A and Pfleiderer P 1988 A theory of intraday patterns:
volume and price variability Rev. Financial Studies 1
723–39

[34] Ding Z, Granger C W J and Engle R F 1993 A long memory
property of stock market returns and a new model
J. Empirical Finance 1 83–105

[35] Granger C W J and Ding Z 1996 Varieties of long memory
models J. Econometrics 73 61

[36] Anderson T, Bollerslev T, Diebold F and Labys P 1999 The
distribution of exchange rate volatility NBER Working

Paper WP6961
[37] Peng C-K, Buldyrev S V, Havlin S, Simons M, Stanley H E

and Goldberger A L 1994 Mosaic organization of DNA
nucleotides Phys. Rev. E 49 1685–89

[38] Tauchen G and Pitts M 1983 The price variability–volume
relationship on speculative markets Econometrica 57
485–505

[39] Stock J 1988 Estimating continuous time processes subject to
time deformation J. Am. Statist. Assoc. 83 77–85

[40] Lamoureux C G and Lastrapes W D 1990 Heteroskedasticity
in stock return data: volume versus GARCH effects
J. Finance 45 221–9

[41] Ghysels E and Jasiak J Stochastic volatility and time
deformation: an application to trading volume and leverage
effects Preprint CRDE, Universite de Montreal

[42] Engle R F and Russell J R 1999 Forecasting transaction rates:
the autoregressive conditional duration model
Econometrica 67 387–402

[43] Feller W 1966 An Introduction to Probability Theory and its
Applications (New York: Wiley)

[44] Plerou V, Gopikrishnan P, Amaral L A N, Gabaix X and
Stanley H E 2000 Diffusion and economic fluctuations
Phys. Rev. E 62 R3023

[45] Guillaume D M, Pictet O V, Muller U A and Dacorogna M M
1995 Unveiling non-linearities through time scale
transformations Preprint Olsen group OVP.1994-06-26
available at http://www.olsen.ch

[46] Ane T and Geman H 2000 Order flow, transaction clock and
normality of asset returns J. Finance 55 2259–84

[47] Anderson T, Bollerslev T, Diebold F and Ebens H 2000 The
distribution of stock return volatility NBER Working Paper
WP7933

[48] Anderson T G, Bollerslev T, Diebold F and Labys P 2000
Exchange rate returns standardized by realized volatility are
(nearly) Gaussian NBER Working Paper WP7488

[49] Mandelbrot B B and Taylor H 1962 On the distribution of
stock price differences Operations Res. 15 1057–62

[50] Jones C, Gautam K and Lipson M 1994 Transactions, volumes
and volatility Rev. Financial Studies 7 631–51

[51] Gallant A R, Rossi and Tauchen 1992 Stock prices and volume
Rev. Financial Studies 5 199

[52] Karpoff J 1987 Price variability and volume: a review
J. Financial Quantitative Anal. 22 109

[53] Epps T W and Epps M L 1676 The stochastic dependence of
security price changes and transaction volumes:
implications of the mixture-of-distributions hypothesis
Econometrica 44 305–21

[54] Gopikrishnan P, Plerou V, Gabaix X and Stanley H E 2000
Statistical properties of share volume traded in financial
markets Phys. Rev. E 62 4493–6

[55] Shlesinger M F et al (ed) 1995 Lévy Flights and Related
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