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Abstract

Random magnets provide a paradigm for the study of competing interactions and frustration

in physics. Here, we suggest that this paradigm is also useful for the study and explanation of

correlations between stock price changes of di/erent companies: it (i) provides for a mechanism

to explain the origin of correlations, (ii) allows to understand the occurrence of power-law

correlations in the time series of highly correlated eigenmodes, and (iii) is a useful framework

for the analysis of optimal investment strategies where the knowledge of (anti-)correlations is

an important prerequisite for the reduction of risk. c© 2002 Elsevier Science B.V. All rights

reserved.
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The theoretical analysis of a physical system often starts by setting up a Hamilto-

nian describing both the dynamics of the basic constituents and the interactions between

them. Then, one proceeds to calculate correlation functions relating physical observ-

ables to the microscopic Hamiltonian and compares them to experimental data. This

procedure is possible because one has an a priori idea about the description of the

system. The situation is di/erent when describing economical systems, as there exists

no microscopic theory which is applicable to all types of systems. For this reason, an

inductive procedure starting with the analysis of empirical correlation function is more

adequate. After getting an intuition for the system under consideration, one can proceed
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to construct an e/ective theory which is able to reproduce the empirical Andings and

make additional predictions, which can be checked empirically.

In recent years, physics methods have been successfully applied to the study of A-

nancial markets [1–4]. In this paper, we suggest that cross-correlations between the

price $uctuations of di/erent stocks can be explained in terms of a magnetic model.

Using methods of random matrix theory [5,6] to estimate the coupling strengths of

the magnetic model from the empirically measured correlations, we And that the in-

teractions are predominantly ferromagnetic with a long-range part and several clus-

ter components. In a random magnet picture, the long-range interaction gives rise

to correlated $uctuations of the whole market, whereas the cluster interactions

describe common $uctuations of stocks from the same business sector. In the prob-

lem of Anding an investment in the stock market which exposes the invested capi-

tal to a minimum level of risk only, the expected returns of individual stocks add

the complication of local random Aelds to the physics of ferromagnetic

clusters.

The subject of our study are cross-correlations in the stock market. In the empirical

part, we analyze stock prize changes of the 1000 largest publicly traded US companies

for the years 1994=1995. The data of these transactions are recorded in the Trades

and Quotes (TAQ) database published by the New York stock exchange. 1 From the

time series of prices Si(t) of stock i; i = 1 : : : 1000, we calculate the returns Gi(t) =

ln Si(t + Jt) − ln Si(t). The time di/erence Jt is chosen as 30 min to ensure that

there is suKcient trading activity in the time interval on the one hand and that the

empirical time series are suKciently long on the other hand. Equal time correlations

between returns of di/erent stocks are measured by the cross-correlation matrix C with

elements

Cij =
〈GiGj〉 − 〈Gi〉〈Gj〉

√

〈G2
i 〉 − 〈Gi〉2

√

〈G2
j 〉 − 〈Gj〉2

: (1)

In analogy to the analysis of correlation functions in physical systems, we study the

eigenvalues and eigenvectors of C to make the huge amount of information (5 × 105

independent elements) more accessible. We diagonalize C, rank order its eigenvalues


i such that 
k ¡
k+1, and denote the corresponding eigenvectors by uk . The bulk of

the eigenvalues are smaller than two, their statistics is well described by random matrix

theory (RMT) [7–13]. The agreement of most of the eigenvalues and eigenvectors with

RMT predictions implies that they do not contain information and should be discarded

when analyzing the information content of C. For this reason, we look for correlations

captured by eigenvectors with corresponding eigenvalues larger than the RMT bound.

An analysis of the components of these deviating eigenvectors shows that they describe

the in$uence of collective $uctuations of the whole market, of companies with a large

1 Analyzed are data taken from the Trades and Quotes database published by the New York Stock

Exchange, for the 1-year period 1994, recorded at 30 min intervals. Only those companies that survive

the entire period are considered in our analysis.
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market capitalization, of companies in the same business sector, and of companies with

business activities in the same geographic region [9].

Can Anancial correlations described by a model of interacting stocks? A generic

physics model for the description of interacting particles is the soft spin model. Here,

the fundamental spin variables are the instantaneous returns gi(t) = �0(d=dt) ln Si(t),

which describe price changes between successive price ticks on the microscopic time

scale �0. The dynamics of the price changes gi(t) is governed by a system of coupled

di/erential equations [9]

�0
d

dt
gi(t) =−rigi(t)− �g3i (t) +

∑

j

Jijgj(t) + �i(t) : (2)

The noise terms �i(t) have correlators 〈�i(t)�j(t′)〉=�ij�0�(t−t′), the term proportional

to ri describes di/usion of returns, the interaction term with couplings Jij gives rise

to correlations between returns of di/erent stocks, and the cubic term is included to

stabilize the theory in the vicinity of a critical point. To describe the fat tails of

empirically observed distributions of price changes in our model, we must allow that

the {ri} change with time and introduce multiplicative noise in the stochastic di/erential

equation [14].

Starting from Eq. (2), we calculate cross-correlations of returns on a time scale

Jt��0. In a weak coupling analysis under neglection of the cubic term in Eq. (2),

one Ands that the elements of the cross-correlation matrix C and of the coupling matrix

J are related by

Cij = �ij + Jij(1=ri + 1=rj) : (3)

In this picture, the market correlations are caused by a long-range ferromagnetic cou-

pling, and the industry sectors can be interpreted as local ferromagnetic clusters.

The soft spin model Eq. (2) can be used to relate the strength of a correlated mode

to its relaxation time. One important result from the theory of critical phenomena is

the observation that strong correlations are accompanied by long relaxation times. At

a critical point, one even observes power-law correlations. For the special case of

ri ≡ r and without the cubic coupling one can derive an analytic relation between an

eigenvalue 
i of C and the relaxation time �i of the eigenmode i


i = N�2i

/

N
∑

i=1

�2i : (4)

To check the prediction of slow relaxation for modes with large eigenvalues empiri-

cally, we associate a time series of returns G(k)(t)=
∑N

i=1 u
k
i Gi(t) with every eigenvector

uk . The autocorrelation function for eigenmode k is then given by c(k)(�) = 〈G(k)(t +

�)G(k)(t)〉. We estimate the exponent of the correlation function by using the method

of detrended $uctuation analysis (DFA) [15]. Empirically, we And power-law auto-

correlations for the time series calculated from eigenvectors outside the random matrix

bound (Fig. 1) [9]. The time series G999 shows signiAcant autocorrelations over several

hours (Fig. 2). We consider the appearance of power law correlated eigenmodes as an



B. Rosenow et al. / Physica A 314 (2002) 762–767 765

100 101 102

Eigenvalue λ 

0.3

0.4

0.5

0.6

0.7

0.8

D
F

A
 e

xp
on

en
t

Fig. 1. Exponents of the detrended $uctuation function F(�) ∼ ��k for time series G(k)(t) deAned by eigen-

vector uk plotted against the eigenvalue 
k . An exponent � ≈ 0:5 indicates the absences of autocorrelation,

whereas an exponent �¿ 0:5 indicates autocorrelations decaying according to a power law �−� with an ex-

ponent �=2−2�. For all eigenvectors, which are outside the RMT bound and can be identiAed with business

sectors, we And exponents � signiAcantly larger than 0.5 indicating long-range power-law autocorrelations.
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Fig. 2. Autocorrelation function c(999)(�) for the time series deAned by the eigenvector u999. The solid line

is a At to a power law c(999)(�) ∼ �−0:61. The error in determining the exponent is ±0:06.
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indication of strong correlations in market subsectors and in that part of the market

index G(1000)(t) which is not described by the S&P500.

The knowledge of correlations between stock price changes is interesting not only

from a fundamental point of view but also for practical applications. An investor in

the stock market wants to expose the invested capital to a minimum level of risk only.

Here, we measure the risk of an investment by the variance D2 of its return R. The

risk of an investment can be reduced by diversiAcation, i.e., by investing not in one

but in a portfolio of N stocks. If stock prices were $uctuating completely uncorrelated,

the risk of a diversiAed investment would decrease like 1=
√
N . In reality, stock price

$uctuations are correlated and knowledge of the cross-correlation matrix C is necessary

to calculate the risk of an investment. If one considers a simple situation, where short

selling of stocks is allowed at no extra fee and where one invests into stocks only,

the problem of calculating an investment with minimum risk for a given return is

equivalent to minimize the free energy [16]

F =
1

2

N
∑

i; j=1

(Cij�i�j)mimj − �

N
∑

i=1

miRi − h

N
∑

i=1

mi : (5)

The Arst term on the r.h.s. of Eq. (5) describes the risk of an investment in the stock

market with a fraction of money mi invested into stock i. The requirement of a Axed

total return R=
∑N

i Ri is included into the minimization problem by using a Lagrange

multiplier �, and the constraint of a Axed total capital is included by adding a term

h
∑N

i mi.

In Eq. (5), the correlation matrix times volatilities is the coupling matrix in a

mean-Aeld magnetic model. As discussed in the last section, the dominant interaction

is a long-range ferromagnetic coupling describing correlations in the whole market. In

addition, there are interactions between clusters of companies from the same business

sector. The constraint of a Axed total return gives rise to a random Aeld term in Eq.

(5). From this point of view, the calculation of an optimal portfolio is equivalent to

calculating the mean Aeld solution for a random Aeld ferromagnet.

In [9,17–19] RMT techniques were applied to the problem of forecasting correlations

as an input for portfolio construction. In [19] it was shown that portfolios constructed

using just the ferromagnetic coupling and the local clusters have a lower risk than

portfolios calculated by using the empirical correlation matrix or the standard method

of including just the market index as a source of correlations.

The problem of Anding an optimal investment in futures markets is more complicated

because there the investor must make a deposit for all transactions. Therefor, the linear

constraint of Axed total capital in Eq. (5) must be replaced by a nonlinear constraint
∑N

i=1 |mi| = 1. With the nonlinear constraint, the portfolio problem is equivalent to

Anding the ground state of a spin system instead of the mean Aeld solution. If one

uses the empirical cross-correlation matrix C to calculate the interaction matrix of

the portfolio free energy, the optimization problem has a spin glass type complexity

[20]. When keeping only the ferromagnetic couplings describing the market and cluster

correlations, the complexity of the optimization problem is reduced that of a random

Aeld ferromagnet [19].
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In summary, we have shown that the framework of magnetic systems is useful

for describing and explaining cross-correlations between stock price $uctuations. The

empirically observed market correlation can be related to a long-range ferromagnetic

coupling in a spin model, whereas correlations within business sectors correspond to

cluster interactions. Critical slowing down for strongly correlated modes as predicted

by the spin model is observed in empirical data. Finally, we have argued that the

problem of Anding an optimal investment in the stock market is related to the solution

of a random magnet problem in physics.
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