
Trails of the Wandering Albatross
Applying the mathematics of haphazard motion
By IVARS PETERSON

The wandering albatross flies extraordinary distances. Riding the wind on long, thin, rigidly
outstretched wings, it skims the waves as it glides for hours over the ocean surface.

Truly a world traveler, this seabird (Diomedea exulans) regularly circles the globe at south-
ern latitudes, plunging into the sea to scoop up squid and fish along the way. It sometimes fol-
lows cruise ships and other vessels to pick up scraps thrown overboard. Its white plumage,
white beak, black wing tips, and wingspan of 11 feet or more make it a dramatic sight in the
sky.

Biologists at the British Antarctic Survey in Cambridge, England, are investigating the role
of the albatross, other seabirds, and seals as the top predators in the marine food web of the
southern ocean. Their long-term goal is to assess the impact of these animals on the ecosys-
tem.

As one component of this effort, Peter A. Prince and his coworkers have equipped wander-
ing albatrosses with electronic activity recorders or radio transmitters for satellite tracking.
“We’re interested in the bird’s foraging behavior—what it does and how it does it,” Prince says.

The data show, for example, that a wandering albatross can travel nearly 4,000 kilometers
in just 8 days on a single foray to gather food for its chick. “It’s probably got the largest forag-
ing range of any [bird] species in the world,” Prince remarks.

To cope with the large quantities of data generated by such studies, the researchers have
enlisted the help of physicists to identify patterns in the paths these birds follow in their
search for food. Preliminary results show that the trails of wandering albatrosses—as they fly,
settle on the sea, then fly off again—fit a special type of random motion, in which the birds
make long journeys interspersed with short foraging flights clustered in a small area.

Physicists call this type of random motion a Lévy flight. The mathematics underlying Lévy
flights can model the distribution of matter in the universe, the diffusion of particles in turbu-
lent liquids, and the recovery of glassy materials from stress (SN: 3/11/89, p. 157). Now,
researchers are starting to apply this mathematics to biological systems, from the foraging of
birds to heartbeat rhythms (SN: 9/5/92, p. 156).

“There’s a growing interest in this area,” says physicist Bruce J. West, who heads the Center
for Nonlinear Science at the University of North Texas in Denton.

Random movements play a significant role in a wide variety of natural phenomena. A tiny
pollen grain suspended in water, for example, appears under a microscope to be in a state of
continuous, erratic activity. Known as Brownian motion, this constant jiggling arises from colli-
sions between randomly moving water molecules and the suspended particle, which gets
pushed in different directions by the combined effect of these small impacts.

One way to model Brownian motion mathematically is as a random walk. Suppose a walker
is confined to a long, narrow path and moves forward or backward according to the results of
repeatedly tossing a coin. The walker takes a step in one direction if the outcome is heads and
in the opposite direction if the outcome is tails.

The resulting trail wanders back and forth along the track, and the probability that the wan-
derer will be a certain distance away from the starting point after taking a given number of
steps is defined by a bell-shaped curve known as a Gaussian distribution. For infinitely many
coin tosses, a random walk confined to a line corresponds to one-dimensional Brownian
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motion.
It’s straightforward to extend this random-walk model to two dimensions by taking steps to

the east, west, north, or south, randomly choosing each direction with equal probability, or to
three dimensions by also including steps up and down. Researchers have used such random
walks to model a wide range of phenomena, from the diffusion of perfume molecules through
still air to the twists and turns of polymer strands.

It’s also possible, however, to have random walks in which the sizes of the steps are not
fixed but vary in particular ways. In the early part of this century, French mathematician Paul
Lévy explored these possibilities and discovered a class of random walks in which the steps
vary in size, from infinitesimally small to infinitely large, so no average or characteristic
length can be calculated. These are different from Brownian motion in that a Lévy walker takes
steps of different lengths, with longer steps occurring proportionally less often than shorter
steps. A jump 10 times longer than another, for example, would happen only one-tenth of the
time.

In two dimensions, these Lévy flights correspond roughly to a sequence of long jumps sep-
arated by what look like periods of shorter ventures in different directions, which the scien-
tists call stopovers. Each stopover, however, is itself made up of extended flights separated by
clusters of short flights, and so on. Magnifying any of the clusters or subclusters reveals a pat-
tern that closely resembles the original large-scale pattern, which means that Lévy flights have
a fractal geometry—the parts on all scales closely resemble the whole.

In two dimensions, the most striking visual difference between Brownian random walks and
Lévy flights is the area they cover in a given time. Lévy flights sample a much larger territory
than the corresponding Brownian random walks. “You can cover huge distances in a very short
time with a Lévy flight,” says physics graduate student Gandhimohan M. Viswanathan of
Boston University.

Mathematician Benoit B. Mandelbrot of Yale University originally learned about these differ-
ent random walks from Lévy himself, and he later extended and applied Lévy’s ideas in his for-
mulation of fractal geometry.

Mandelbrot found that he could use Lévy flights to create convincing portraits of the distri-
bution of matter in the universe. He simply erased the long jumps and made each stopover
represent a star, galaxy, or some other blob of matter. The resulting pattern of clustered spots,
each of which in turn is made up of subclusters, resembles the sheets, bubbles, and other
aggregations of galaxies evident in astronomical observations.

Mandelbrot’s model doesn’t necessarily account for the way galaxies actually formed in the
universe, but it does suggest a fractal structure.

Lévy flights and the statistics associated with them also provide useful models of turbulent
diffusion. If you add a drop of cream to your coffee without unduly disturbing the liquid, the
random motion of the molecules slowly spreads the cream into the coffee. Stirring, however,
adds turbulence, and the liquids mix much more rapidly.

Mathematically, it’s possible to think of turbulence as the combined effect of a large num-
ber of vortices—whirlpools of all sizes and strengths. Any particles (or molecules of the con-
stituents of cream) caught in such whirlpools would be rapidly separated and dispersed. A plot
of changes in the distance between two initially adjacent particles would look much more like
a Lévy flight than a Brownian random walk.

In general, Lévy flights arise out of chaotic systems, in which a sensitive dependence on
initial conditions plays a crucial role. A new statistics based on Lévy flights must be used to
characterize these unpredictable phenomena. Such models may be useful for describing, for
example, the transport of pollutants and mixing of gases in Earth’s atmosphere.
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“In these complex systems, Lévy flights seem to be as prevalent as diffusion is in simpler
systems,” notes physicist Michael F. Shlesinger of the Office of Naval Research in Arlington,
Va., who pioneered the application of Lévy statistics to turbulent diffusion and other physical
phenomena.

Whether in the atmosphere or the ocean, fractal patterns associated with turbulence may
have a strong influence on ecosystems, affecting the foraging patterns of birds. Both weather
systems and the distribution of plankton, krill, and other organisms in the ocean may guide
flight patterns.

“In the southern ocean, krill in particular are patchily distributed,” says Eugene J. Murphy of
the British Antarctic Survey. “If the underlying physical environment and the distribution of
prey appear related, it raises all sorts of questions about how these distributions are generated
and maintained.”

To see how the wandering albatross fits into its ecosystem, Prince and his colleagues have
been studying the bird’s foraging strategy by tracking albatrosses nesting on Bird Island in the
South Georgia group of islands in the South Atlantic. In one experiment, the researchers
attached electronic activity recorders to the legs of five adult birds, which made 19 foraging
trips. The devices recorded the number of 15-second intervals in each hour for which the ani-
mal was wet for 9 seconds or more. The wet periods indicated interruptions in a bird’s flight
path when it alighted on the water to eat or rest.

In analyzing the data, Viswanathan, S.V. Buldyrev, and H. Eugene Stanley, also at Boston,
assumed that the distance the bird flew was roughly proportional to the time spent in the air
and that the flight direction changed randomly after each stopover.

Their analysis showed that the data appear to fit the pattern of a Lévy flight. The Boston
group and their collaborators at the British Antarctic Survey describe their results in the May
30 Nature.

“The results are very interesting, but it’s too early to tell yet how useful this approach will
be,” Prince says.

Ecologists speculate that the flight patterns of the wandering albatross have evolved to
exploit the patchy distribution of fish and squid, which may reflect the distribution of plank-
ton in the restless ocean.

“The most interesting thing is that these distributions exist for these organisms, and now
we’ve got to try to understand how they come about,” Murphy says.

Researchers at the British Antarctic Survey have recently combined satellite tracking data
with wandering albatross activity data to provide a more complete picture of the bird’s forag-
ing behavior. They are also collecting similar information on other albatross species, which
have different foraging strategies. These data have yet to be analyzed for Lévy flight patterns.

Such patterns may also arise in other biological systems. Some scientists are now looking at
potential applications of Lévy random walks and Lévy statistics to the foraging behavior of
ants and bees. Others are studying possible uses of these models in physiology and medicine,
including the characterization of heartbeat rhythms and the branched structure of the lung’s
airways.

“When you look at biological systems, there seems to be an evolutionary advantage to hav-
ing Lévy statistics,” West says.

Because the environment appears to be fractal, an organism that behaves fractally can bet-
ter take advantage of these patchy opportunities, West argues.

For the wandering albatross, it means wide-ranging, stop-and-go searches for food that may
be unpredictably scattered across the ocean. ■■
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