
version of normal (if premature) ageing than
does dyskeratosis congenita. In people with
dyskeratosis congenita and in telomerase-
deficient mice, it is tissues that normally
express telomerase that one would predict to
suffer most from its loss, and this proves to 
be the case.

People with dyskeratosis congenita, as
well as late-generation telomerase-deficient
mice, also suffer from a higher rate of cancer.
This can likewise be explained by the lack 
of telomerase, which results in unstable
chromosomes — in dyskeratosis congenita
sufferers and the mutant mice, many chro-
mosomes fuse end-to-end8,9, probably
because their telomeres are terminally 
eroded (discussed in ref. 10).

In short, the symptoms of this disease
provide a glimpse of the effects of telom-
erase defects on the maintenance of human
tissues. Cells in rapidly dividing tissues, with
progenitors that usually express telomerase,
are more strongly affected. It will be inter-

esting to see whether Werner’s syndrome
and related premature-ageing disorders
affect the maintenance of telomeres in tis-
sues that do not have telomerase-expressing
progenitors. ■
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cannot revisit a vertex, or if the grid has
some randomly scattered sites that can trap
the walker.

Similarly, the travelling tourist problem
exhibits some surprising behaviour. For
example, after visiting a few cities the tourist
will visit city A, whose nearest neighbour,
city B, has no other neighbour closer than 
A. So as soon as the tourist visits either A or 
B, he will thereafter simply oscillate between
them, in what is called a two-city limit cycle.
Such two-cycles act as effective ‘tourist traps’
with the tourist going back and forth, like
Sisyphus, for eternity.

Lima et al.4 enrich the travelling tourist
problem by assuming that the idealized
tourist is more like a real tourist and does not
wish to visit the city he went to last, so they
introduce a rule that prevents this. The same
sort of logic applies as before, except that
now the tourist can be trapped in a three-
cycle (three cities that form a triangle A-B-C
such that a tourist starting at A will pass to 
B and then to C, before returning to A). 
Surprisingly, in addition to three-cycle traps,
there are also p-cycle traps, where p is as large
as desired. 

This simple rule can be further general-
ized if the tourist cannot visit a city already
visited in the previous V visits (in the two
previous cases, V40 and 1, respectively).
Remarkably, after a trip exploring several
cities, the tourist is always trapped into
repeatedly revisiting a subset of them.
Indeed, the entire set of N cities can be par-
titioned into a large number of ‘free cities’
that the tourist can enter and then leave, 
and a number of tourist traps, in which he is 
condemned to revisit repeatedly the same
subset of p cities (Fig. 1).

So, at first sight, the travelling tourist
confronts a landscape not so different from
that confronted in the random-walk prob-
lem with traps. But in the random-walk
problem, the traps are typically assumed to
have sizes that follow a normal distribution
centred around a typical size. In the travel-
ling tourist problem, the p-cycle traps can
have a range of p-values, so the number of
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The travelling salesman problem is of
fundamental interest to mathemati-
cians and physicists, and has a number

of practical applications, such as computer
design. At first sight, the related travelling
tourist problem might seem to be of little
interest to anyone except perhaps quarrel-
ling travelling companions.

What are these two problems? The travel-
ling salesman problem is the question of
what is the shortest possible route followed
by a salesman assigned to visit N clients
spread across a huge territory; it is a classic
example of a class of problems called global
optimization problems. Because the sales-
man’s next step depends on his knowledge of
the location of every client yet to be visited,
the solution to the travelling salesman prob-
lem is far from trivial, and has attracted some
of the best minds1–3.

In Physical Review Letters, Lima et al.4

introduce a new example from a class of
problems known as local optimization 
problems, and name it the travelling tourist
problem. This is the question of what is the
best path to be followed by a tourist not 
constrained to only one visit per city, but
constrained — say by his budget — to visit
the nearest city. Note that the tourist wants 
to minimize only the distance to the next city,
a local optimization, not the sum of all 
the distances along the trajectory as in the

travelling salesman problem. So, at first
sight, the travelling tourist problem would
seem to be trivial.

Nonetheless, even a trivial-sounding
problem can yield rich behaviour. For exam-
ple, the random-walk problem considers a
walker limited to the vertices of a square
grid. At each step the walker moves to the
neighbouring north, south, east or west 
vertex depending on the throw of a four-
sided die. Clearly the walker does not need
to know more than his immediate environ-
ment. Even so, his behaviour cannot be 
predicted in many cases, such as when he

Statistical physics

The salesman and the tourist 
H. Eugene Stanley and Sergey V. Buldyrev

Solutions to optimization problems, such as that faced by the travelling
salesman, have many practical applications. Might a related problem 
offer insight into the behaviour of foraging animals?

Figure 1 The travelling tourist problem. An
example in which the tourist is allowed to visit
any one of 1,600 random ‘cities’, subject only to
the condition that he does not revisit a city
visited in the previous V visits, where V410. 
As well as a great number of free-standing cities
to which the tourist can come and go, there are
378 cities that belong to one or more p-cycles,
which serve as ‘tourist traps’ by constraining 
the tourist to visit the same set of cities over 
and over again. The 29 traps shown here occur 
in a range of sizes and shapes. Lima et al.4 show
that the distribution of these p-cycles follows a
power-law function. Such a distribution is
normally associated with random processes,
rather than the completely deterministic walk
followed by the tourist.
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traps of a given size might be expected to 
follow a normal distribution. But Lima et
al.4 find that the number of p-cycles follows a
monotonically decreasing power-law func-
tion of p, with an exponent of about 2.7. This
is a surprising result because power laws 
are typically associated with systems domi-
nated by random processes, but here the
walk is completely deterministic. The power
law must somehow arise from the initial
random distribution of the cities, so it is
intriguing to think there may be deep simi-
larities between this problem and typical
power-law systems5.

There are many examples of trivial-
sounding problems having unexpected
applications; for example, random-walk
problems can describe a rich range of diffu-
sive motion6, and are even used as a crude
model of price movements on the stock 
market7. Accordingly, the travelling tourist
problem could apply to some interesting
questions. Some animals such as birds follow
migratory routes in which they revisit an
identical set of feeding spots in the same
sequence (Fig. 2). These animals may not be
altogether unlike the tourist, choosing deter-
ministically the closest feeding ground to
where they are, and conditioned by the fact
that if they revisit the same feeding area with-
out waiting a certain time the food supply
will not have had the chance to rejuvenate
itself. So the travelling tourist might provide
new insights into the foraging behaviour of
insects, mammals and birds, which can fol-
low power-law functions8,9.

Many humans tend, after some time, to
fall into a rut — to revisit the same sequence
of cities on their travels, to revisit the same
sequence of restaurants in their social life,
and even for some scientists to revisit the
same set of ideas in their scholarship — all
actions seemingly occurring as if by magic
when in fact there may be a simple underly-
ing reason. Indeed, this type of behaviour 
is more like the travelling tourist problem
than the travelling salesman problem. Nor-
mally we think of our behaviour as emerging

from free will. It is possible that some behav-
iour patterns are the result of applying deter-
ministic rules to a stochastic (random) envi-

ronment, perhaps not altogether unlike the
rules governing the journey of the travelling
tourist. ■
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Figure 2 A wandering albatross looking for food. This bird may follow a stable migratory route — it
visits the same sites (typically feeding areas) over and over again in much the same way as the hapless
tourist in Fig. 1. (Reproduced with permission of the British Antarctic Survey.)

If you’re a plant you cannot get by without
auxin, for it regulates various essential
aspects of growth and development. In

their paper on page 425 of this issue1, Geldner
et al. provide a surprise for biologists study-
ing auxin transport. But their results will 
also be of wider interest, for they bear more
generally on the questions of how cell polarity
is established and maintained, and on protein
trafficking in plant cells.

Auxin is a hormone that operates
through its effects on cell division and elon-
gation. It is transported through files of 
cells by a process that is thought to depend
on the asymmetric distribution of auxin
‘efflux carriers’ acting at a cell’s plasma
membrane. The importance of this trans-
port system has been amply demonstrated
using synthetic inhibitors of polar auxin
transport, which were believed to interfere
specifically with the action of the efflux car-
rier. Geldner et al. now show that the efflux
carriers cycle rapidly between the plasma
membrane and an as-yet-unspecified cellu-
lar compartment, and that the inhibitors
prevent this cycling. Further, they find that
auxin-transport inhibitors are not specific:
they have a general effect on the transport of
membrane proteins.

Auxin is produced in young organs, 
primarily near the plant apex. It is then
transported to other parts of the plant by
influx and efflux carriers, located at the plas-

ma membrane, which move the hormone
through files of cells by successive rounds 
of transport into and out of these cells2. The
key to this mechanism is the asymmetric
distribution of the efflux carrier. For exam-
ple, auxin in the stem is transported in a
highly directional fashion from the top
towards the base of the plant. The PIN1 
protein is a member of a large family of 
putative efflux carriers, and in the model
plant Arabidopsis (and by implication all
plants) it is required for this polar transport
of auxins. Various studies in different plant
organs found, in each case, that the efflux
carrier is located on the downstream side of
the transporting cell3–5. 

Our understanding of auxin transport
comes largely from studies using artificial
inhibitor compounds2,6. Two of the best-
characterized are called TIBA and NPA.
These compounds reduce polar auxin trans-
port in stem segments by blocking cellular
auxin efflux, implying that they specifically
interfere with the efflux carriers. The biolog-
ical effects of transport inhibition are diverse
and dramatic. Treatment of developing
embryos with NPA causes defects in pattern
formation and behaviour of the meristems,
the groups of stem cells that give rise to all
postembyronic structures7. Later in develop-
ment, the inhibitors prevent proper growth
of roots and shoots in response to environ-
mental cues such as light or gravity8. Bio-

Plant hormones

Transporters on the move
Mark Estelle

The hormone auxin is moved across plant cells by transporters called
efflux carriers. It now looks as if these carriers behave much more
dynamically than had been thought.
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