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Portfolio optimization and the random magnet problem
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Abstract. — Diversification of an investment into independently fluctuating assets reduces
its risk. In reality, movements of assets are mutually correlated and therefore knowledge of
cross-correlations among asset price movements are of great importance. Our results support
the possibility that the problem of finding an investment in stocks which exposes invested funds
to a minimum level of risk is analogous to the problem of finding the magnetization of a random
magnet. The interactions for this “random magnet problem” are given by the cross-correlation
matrix C of stock returns. We find that random matrix theory allows us to make an estimate
for C which outperforms the standard estimate in terms of constructing an investment which
carries a minimum level of risk.

Challenging optimization problems are encountered in many branches of science. Typical
examples include the traveling salesman problem [1-3] and the traveling tourist problem [4].
Another type of optimization problem occurs when system parameters are not accurately
known and only estimates are available, such as in the problem of finding the least risky
investment in the stock market which earns a given return. Such an investment is called an
optimal portfolio and was introduced by Markowitz [5]. It has been suggested [6] that the
calculation of an optimal portfolio has an analogy in pure physics: finding the ground state of
a random magnet. However, the portfolio optimization problem is more intricate due to the
fact that many “system” parameters such as correlations are not known with any degree of
accuracy, but can only be estimated from empirical data.

Two relevant pieces of information are necessary for an investor to judge the quality of an
investment: the investor must know (i) the expected relative change in price (“return”), and
(ii) the uncertainty of the return (“risk”), usually measured by the standard deviation of the
returns over some preselected time intervals. Given two investments with the same return, the
investment with smaller risk is preferred. One way to reduce risk is to diversify the investment,
i-e., to buy stocks of not one, but of N different companies [5,7]. Diversifying the investment
would work best if the fluctuations of stock prices were completely uncorrelated; the risk
would then decrease with N as 1/ V/N. In reality, the price fluctuations of different stocks are
correlated. The challenging optimization problem is to choose the fraction of money to be
invested into each stock m; where ¢ runs over all NV stocks, in such a way as to minimize the
effect of correlations on risk of the N-stock portfolio. We define the return G; as the relative
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price change of stock 7, ¢ = 1,..., N in a time interval At, At = 30 minutes in the empirical
study. We denote the expected total return in the investment period 7' (in our empirical study
half a year) by R = Zfil m;R;, where R; = (T/At)(G;) is the average return of stock i in
the investment period.

The variance of R is
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where the elements of the cross-correlation matrix C are given by
(GiG;) — (Gi)(G;)
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and 0; = 1/ 1/(G2?) — (G;)? is the standard deviation of stock i in the investment period.

We use the variance as a measure of risk and do not concentrate on the effects of large
fluctuations on the investment problem [8]. To study the influence of the cross-correlation
matrix on investment decisions we consider a straightforward investment problem first, where
short selling of stocks (i.e. borrowing stocks and selling them) is allowed at no extra cost.
In addition, we consider a problem where all the capital is invested in stocks. Enforcing the
constraints of fixed return R and fixed total capital Zf\il m; = 1 by Lagrange multipliers p
and h, the optimal portfolio is defined as the set {m,} found by minimizing the function [5,7]

N N N
1
F = 5 igl(CijJiaj)mimj — u;mlRl — h;m,, (3)

which is equivalent to the free energy of an Ising model with random couplings C;;0;0; and
a random magnetic field R;. From a physics point of view, selecting an optimal portfolio
amounts to calculating the mean-field magnetizations m; of this random Ising model with
the constraint of total magnetization one. An analytical solution exists since the free energy
is quadratic. The expected return R is a monotonically increasing function of the standard
deviation D. Thus, for accepting a large standard deviation (risk) the investor is rewarded
with a high expected return.

For the calculation of an optimal portfolio, one requires the 2N expectation values for
future returns and standard deviations of stock returns, and estimates for the N(N — 1)/2
independent elements C;;. In practice, returns and standard deviations are estimated by com-
bining historical values with the judgement of analysts [9]. In contrast, cross-correlations are
estimated purely from historical time series as analysts usually have expertise in a specific in-
dustry and therefore have difficulties evaluating cross-correlations between different industries.

The problem of estimating cross-correlations is similar to knowing only Monte Carlo time
series for the dynamics of spins and estimating the interactions between them from their
correlations. In this physics problem, interactions are stationary in time and one can in
principle calculate the exact correlation matrix by using infinitely long time series. In the
stock market problem, correlations may not be stationary, and the use of long time series may
not be possible. Estimating correlations from short time series is plagued by considerable
statistical error.

Random matrix theory (RMT) serves in many branches of physics as a zero information
hypothesis as it describes the statistical properties of generic systems. Agreement between
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RMT predictions and the statistical properties of a given system is an indication for generic
system features, whereas deviations between system statistics and RMT predictions are an
indication of system specific properties [10,11]. This concept has been applied to separate
noise and information in the cross-correlation matrix C [12-19]: the statistical properties of C
are compared to the properties of a random control R constructed from i.i.d. time series. As
the control R is constructed from statistically independent time series, it contains only spurious
correlations due to the finite length of the time series. Hence, agreement between C and R is
a signature of spurious correlations in C, whereas deviations indicate meaningful information.

In the following, we focus on the statistical properties of eigenvalues and eigenvectors,
which are described by RMT in the case of a random matrix. In the limit of large matrix
dimension, the eigenvalue spectrum of R has a lower bound A_ and an upper bound A;. The
eigenvalue spectrum of C is quite similar to the spectrum of R, as 98% of the eigenvalues
of C lie between A\_ and A; as well. The statistics of the spacings between consecutive
eigenvalues in this part of the spectrum is described by the universal predictions of RMT.
Hence, one concludes that the bulk of the eigenvalues of C describes spurious correlations
and does not contain information about the stock market. However, it was found that the
few eigenvectors with eigenvalues larger than the upper edge Ay of the random part of the
eigenvalues spectrum of C contain information about groups of correlated firms [14] and are
useful for the construction of optimal portfolios [14,17,19]. This result is corroborated by the
finding that the statistics of the components of these deviating eigenvectors is not described
by RMT predictions. A related Monte Carlo study was presented in [20]. Here, we go
considerably beyond the analysis in previous approaches. We i) compare portfolios constructed
with RMT methods to those constructed under the standard assumption that the only common
influence on different stocks is the whole market and ii) systematically study whether portfolios
constructed with the RMT method have the lowest possible risk.

We diagonalize C and rank-order its eigenvalues A\ such that Ay > Ax. To filter from C
the effects of the random part, we calculate the upper edge Ay of the random part of C and
find that Aggg is the smallest eigenvalue larger than Ay. In order to keep only the part of C
which contains information about correlated groups of companies, we construct a “filtered”
diagonal matrix A’, whose elements are

0, 1<14<989,
r={ . (@
Aiy 989 <4 < 1000.
We obtain the filtered correlation matrix C’ by transforming A’ to the basis of C. In addition,
we set the diagonal elements to one as every time series is completely correlated with itself.

We compare the proposed method to a method in which the cross-correlation matrix C” is
calculated under the assumption that the only common influence on two stocks is the whole
market, i.e. the one factor model [7]. This assumption is widespread as on the one hand it is
known that the price of a market index as the S&P500 (comprising the 500 largest US stocks)
has big influence on the price of individual stocks. On the other hand, there have been many
attempts to identify further factors influencing the price of groups of stocks but none of these
models was found to have larger predictive power than the simple assumption that only the
market index influences stock prices [7]. If GM(t) denotes the return of the market index (we
use the S&P500 index), then the return of stock i is G;(t) = R; + 3;GM(t) + €;(t), where
€;(t) are random variables describing the component of the return of stock i which is both
independent of the market and independent of all other stocks, and [3; describes the response
of stock i to a price change of the market. The cross-correlation matrix C” has elements
Clh = 6i5(1 — Bioyy/o?) + BiBjox;/(0i0;), where the standard deviations of GM and ¢; are
om and o;.
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To compare the quality of the RMT forecast with that of the control, we analyze 30 min
returns of N = 1000 largest US stocks for the year 1994 [21]. The choice of the number of
stocks and of the length of the time period is guided by the following considerations: on the
one hand, the estimation period should be as long as possible to decrease the amount of noise
in the estimation, but, on the other hand, economic correlations are not stationary. In [19]
the overlap of correlation matrices was found to decrease significantly already over a period
of half a year. For this reason, we chose to measure correlations over six months to make a
prediction for the following six months. Furthermore, it is advantageous to include a large
number of stocks in the sample because the large eigenvalues of the cross-correlation matrix
increase with the number of stocks included. For this reason, including a larger number of
stocks in the sample allows to find more eigenvalues outside the random matrix part of the
spectrum and, as a consequence, to include more information in the investment process.

We partition the year 1994 into two six-month periods A and B and use the first period to
calculate the RMT forecast C’ and the one-factor model forecast C” for the empirical matrix CB
in the second period. As can be seen from eq. (3), one needs the future returns and standard
deviations as an input in addition to C in order to calculate a portfolio. In practice these
quantities are estimated by specialists [9]. We use instead the returns and volatilities actually
realized in the second period [7,17]. In this way, we probe only the effect of randomness in
the correlations coefficients and our results are not influenced by uncertainties in returns and
standard deviations. With this input we calculate optimal portfolios, i.e., the weights {m,}
of investment made into stock i for C*, C’, and C”. Given these weights, we calculate the risk
for a given value of return.

We use three different tests to evaluate the performance of the RMT method as regards
reducing risk. First, we compare the predicted risk to the risk which would have been realized
if someone had invested using the set of weights {m;}. We calculate this realized risk by using
the empirical cross-correlation matrix CB in eq. (1). In agreement with [7,17] we find that the
empirical matrix C* is a very poor forecast for CP as the realized risk is 170% higher than the
predicted one (relative difference). For portfolios constructed with the RMT forecast C' [17]
and with the standard forecast C” the relative difference between predicted and realized risk
is only 22% and 33%, respectively. In addition to the higher accuracy in forecasting risk,
the realized risk for both C’ and C” is considerably smaller than for the empirical matrix C*
(fig. 1).

Next, we compare portfolios constructed with the standard forecast C” against portfolios
constructed with the RMT forecast C'. We find that for a return of 15% the realized risk for
the “filtered” portfolios is 5% smaller than the realized risk for the “standard” portfolios. A
similar reduction of risk is also apparent for other expected returns (fig. 2). Thus, the RMT
method not only provides better estimates of future risks than the standard method, but also
allows to calculate portfolios with a considerably reduced realized risk.

Finally, we study whether the RMT method really suggests the optimal number of eigen-
values which should be kept when constructing the cleaned cross-correlation matrix. We
calculate a family of cross-correlation matrices C, by keeping the largest p eigenvalues in the
diagonal matrix A’ instead of keeping 12 as in eq. (4). In fig. 3 the realized risk for 15% return
is plotted against the number p of eigenvalues. For a range of 4 < p < 25 the level of realized
risk fluctuates around the risk for p = 12 (RMT suggestion). Hence we conclude that the
RMT method provides a good estimate for the forecast of future cross-correlations.

Having found that the cleaned cross-correlation matrix C’ is indeed a good choice for
portfolio optimization, we want to come back to the random magnet analogy and ask to what
type of random magnet the portfolio problem corresponds.

For an investment in the stock market as described by a linear constraint fixing the total
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Fig. 1 — Portfolio return R as a function of risk D for the families of optimal portfolios constructed
from (a) the original matrix C, (b) the filtered matrix C’, and (c) the control C”'. The curves on the left
show the predicted level of risk, whereas the curves on the right show the realized risk D calculated
using the correlation matrix CP for the second half of 1994. The ratio of realized to predicted risk is
smallest for the RMT method (b), followed by the control (c), and largest for the original matrix (a).

invested capital, eq. (2), the difficulty of the optimization problem is founded in the problem
of parameter estimation and not in the optimization procedure itself. An even more difficult
optimization problem is encountered when considering an investment in futures markets, where
the investor is asked to leave a deposit proportional to the value of the asset. This leads to a
nonlinear constraint Y., |m;| instead of the magnetic field term in eq. (2). By decomposing
the weights m; into sign and absolute value, extrema of the free energy can be described by
coupled equations [6] for the signs S; = sign[m;],

N
S; = sign [Z Jij (uR; + th)] ; (5)

i=1

where (J71);; = Cjjoi05. In ref. [6] this optimization problem was studied for a historical
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Fig. 2 — Comparison of the realized risk for the family of portfolios constructed from C' (RMT method)
and C” (conventional method). For a given return, the RMT portfolios are characterized by a lower
level of risk than the conventional portfolios.

Fig. 3 — Dependence of the realized risk on the number of eigenvalues kept in the calculation of the
cleaned cross-correlation matrix C’. For this plot, the level of realized return is chosen as 15%. RMT
suggests that keeping 12 eigenvalues is the best choice for minimizing risk.

cross-correlation matrix and found to be related to spin glasses. Due to the multitude of local
minima this type of optimization problem is exponentially hard.

Here, we argue that for the cleaned matrix C’ one has to solve the problem of a ferromagnet
with local clusters in a random magnetic field. To this end, we compare the eigenvectors of
A= (C{?Jiaj)_l and J' = (C};0i05)~". For each eigenvector, we are interested in the num-
ber N of significant components which can be measured by one over the inverse participation
ratio (IPR) [22]. The number of significant components of the eigenvectors of J* and J' is
displayed in fig. 4. Many of the eigenvectors of J* have more than 200 significant components
and describe long-range frustrated interactions giving rise to a spin-glass—type magnetic prob-

Rank of eigenvector

Fig. 4 — The number N; of significant components of the eigenvectors of J* (circles) and J' (triangles)
is plotted against the rank of the eigenvector. Nj is defined as one over the inverse participation ratio.
Most of the eigenvectors of J* have a large N, whereas all but one of the eigenvectors of J' have a
small Ny indicating individually fluctuating stocks or interactions between small clusters of stocks.
The last eigenvector with Ny = 285 describes the influence of the whole market and corresponds to a
long-range ferromagnetic interaction in the magnetic analogy.



506 EUROPHYSICS LETTERS

lem [6]. On the other hand, all but one of the eigenvectors of J' have less than 30 significant
components. The eigenvector corresponding to the largest eigenvalue has 285 significant com-
ponents and describes the influence of the whole market on the price dynamics of an individual
stock. In terms of the magnetic model, it describes a long-range ferromagnetic interaction.
The 999 eigenvectors with a small number of significant components describe the fluctuations
of individual stocks or ferromagnetic interaction of small clusters of stocks which can be iden-
tified as business sectors [14]. Hence we suggest that the magnetic problem equivalent to the
portfolio problem with a cleaned cross-correlation matrix is a random field ferromagnet.

In summary, we used random matrix theory to estimate cross-correlations and find that
this method allows us to find investments with substantially reduced risk compared to conven-
tionally used methods. To accomplish this, we exploited a formal analogy with the “random
magnet problem”, and analyzed the cross-correlation matrix C of stock returns for short time
intervals extending over a one-year period. We find an estimate for C that outperforms the
standard estimate, and allows us to construct an investment which exposes the invested capital
to only a minimum level of risk.
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