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LE’ITER TO THE EDITOR 

Ghost fields, pair connectedness, and scaling: exact results in 
one-dimensional percolation? 

P J Reynolds$§, H E Stanley$§ and W Klein4 
$ Physics Department, Boston University, Boston, MA 02215, USA 
8 Physics Department, Massachusetts Institute of Technology, Cambridge, MA 02139, 
USA 

Received 22 August 1977 

Abstract. The percolation problem is solved exactly in one dimension. The functions 
obtained bear a strong resemblance to those of the n-vector model on the same lattice. 
Further, we include a ghost field exactly in all dimensions d, thereby treating the ‘ther- 
modynamics’ of percolation without appealing to the Potts model. In particular, we show 
for d = 1 that the nature of the singularities near the critical percolation probability, pE = 1, 
is described by CY, = yp = 1, /3, = 0, and 6, = CO. We also calculate the pair connectedness 
and correlation length explicitly, and find 7, = vP= 1, in agreement with the hyperscaling 
relation dv, = 2-up. Finally, scaling is demonstrated for both the cluster sue distribution 
and the percolation function analogous to the Gibbs free energy, and the scaling powers 
are explicitly evaluated; in particular, we find the exponents U = 1 and T = 2. 

1. Introduction 

Although the percolation problem has been studied extensively in recent years- 
particularly in d = 2 and 3 dimensions-little attention has been paid to the one- 
dimensional problem (see, e.g., Broadbent and Hammersley 1957, Shante and Kirk- 
patrick 1971, Essam 1972). The reason that many workers have felt one dimension 
‘uninteresting’ is that percolation occurs only when the lattice is completely full. That 
is, the critical value for the probability, p, that a site (or bond) is occupied, is unity. 
Thus the location of the critical point is trivial, just like for thermal phase transitions in 
d = 1. However, the precise form of the thermodynamic functions, and the nature of 
their singularities, is interesting. In this Letter we show the same is true for percola- 
tion. 

First we will derive the functions of interest to percolation directlyll, and then we 
will re-derive these as the anulogues of thermodynamic functions from a Gibbs 
potential G(p ,  h), with h a ‘ghost field’. In this way we find all the exponents to have 
their usual meanings. Moreover, we show explicitly that G(p, h)  is a generalised 
homogeneous function in (p-pc)  and h, and that all critical point exponents are 
related by the usual scaling laws. We also calculate the pair connectedness and 

t Work supported by NSF and AFOSR. 
(1 Wortis (1974) has solved the dilute Ising model exactly in d = 1 dimension. His results, in the limit of zero 
magnetic field and zero temperature, implicitly solve the one-dimensional percolation problem for the case 
of zero ‘ghost field’. Stauffer and Jayaprakash (unpublished) also use this limit of the dilute Ising model to 
study one-dimensional percolation. 
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correlation length explicitly, and demonstrate the analogue of the fluctuation-dis- 
sipation theorem for percolation (Essam 1971). Finally, we discuss cluster size 
scaling. 

In percolation, the fundamental quantities of interest are the mean number of 
clusters (normalised per site) of a given sue s, which we shall denote (ns)t. All the 
‘thermodynamic’ percolation functions can be determined from a knowledge of these 
(n,) for all s. The mean number of finite clusters of any size is given by 

where the prime on the sum denotes the exclusion of the infinite cluster (if one exists). 
The unrestricted first moment of (ns) provides an important sum rule: 

total number of occupied sites contained in all clusters on the lattice 
total number of sites on the lattice S 

c s(ns> = 

(site percolation) 
= 1; (bond percolation). 

We may write Z, s(ns)  =E’, s(n,)+(fraction of sites which belong to the infinite 
cluster). Hence we see immediately that P ( p ) ,  the fraction of occupied sites that 
belong to the infinite cluster, is given by 

where the denominator is given by equation (2). The quantity s(ns> is clearly the 
probability Ps that a given site in the lattice belongs to a cluster of size s. Thus, 
following Fisher and Essam (1961), we define the mean size of the (finite) clusters as 

2. Direct solution in one dimension 

To proceed we need to know (ns). On an infinite linear chain there is exactly one 
embedding per site of a cluster of size s. Because an s-site cluster must contain exactly 
s occupied sites and two unoccupied ends, we find that 

(site) 
(bond) $, 

2 s  

where q = 1 - p. 
To evaluate G ( p )  in (l), we need to specify the range of the sum. In bond 

percolation a one-site cluster occurs when two adjacent bonds are both vacant, as 
illustrated here ---a---. Hence ( n S ) = q 2  for s = 1. There can be no clusters of 

?The size s here is defined as the ‘site size’, which is the number of sites in a cluster, even for bond 
percolation. We can equally well define a quantity (nb), for either site or bond percolation, which is the 
mean number of clusters of ‘bond size’ b. 
$ In bond percolation, p is the bond occupation prbbability; however we shall still count ‘site size’. If we 
wished to count ‘bond size’, then (nb) = q2pb-’ for the site problem, while for the bond problem (nb) =q2pb. 
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zero sites, and therefore 

G ( p )  = 2 q2pS- l  = 1 - p  (bond). 
s - 1  

However, in one dimension the site and bond problems are isomorphic, and therefore 
we expect the mean number of clusters, G(p) ,  to be the same for both. But from 
equation (5 )  we see that if the lower limit on the sum in (1) is s = 1 for the bond 
problem, then for the site problem the lower limit must be s = 0, and thus we must 
consider zero-site clusters in site percolation. That such clusters exist is also easily 
seen: when two adjacent sites are vacant we have a cluster made simply of one bond 
(no sites) joining the two vacant sites (thus C-2). Hence for site percolation 
(n,) = q2 for s = 0, and 

a0 

G ( p )  = q2p' = 1 - p  (site). (66) 

The fraction of occupied sites that belongs to the infinite cluster is (cf equations (2), 

s=o 

(3), and (5) )  

and thus for both site and bond percolation, 

P ( p ) =  l - q 2 C ' s p  s - l = { ;  P < l  
S p = l .  

The mean cluster size is (cf equations (4) and (5) )  

It is interesting to note that the thermal susceptibility of the d = 1, n-vector model 
(Stanley 1969), is identical to S ( p )  with p replaced by y,,, the nearest-neighbour 
two-spin correlation function at H = 0. 

From (6)-(8) it follows that 

a p =  1, B p  = 0, yp= 1, and p c = l ,  (9) 

where the percolation exponents are defined by G ( p )  P ( p )  -(-E)" and 
S ( p )  - ~ - ' p ,  with E E ( p c - p ) / p c .  Equation (9) is useful for comparison with renor- 
malisation group calculations (Reynolds et al 1977, Marland and Stinchcombe 1977). 

3. 'Ibe generating function and 'thermodynamics' 

Just as in thermodynamics the Gibbs free energy is the 'generating function' from 
which one derives all other thermodynamic functions by taking appropriate deriva- 
tives with respect to either the temperature T or the magnetic field H, G is the 
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generating function for the percolation problem?. The role of T as a randomising or 
disordering field is played by q = 1 - p .  It is natural to ask what plays the role of H. 
For the thermal problem, the ‘ghost spin’ (Grfiths 1967) may be used as a means of 
including H. This idea has been carried over to the percolation problem by Kasteleyn 
and Fortuin (1969). What we shall do reduces to the Kasteleyn and Fortuin definition, 
though it is somewhat more general, applying also to problems which are not directly 
related to the Potts model (e.g. bond percolation with bond size counting or site 
percolation with either site size or bond size counting). 

First, change the original percolation problem slightly by adding one additional 
‘ghost site’ somewhere, not on the lattice (see figure 1). Then connect bonds from the 
ghost site to each lattice sites with a probability h. This fundamentally changes the 
connectivity of the lattice for h # 0. In particular we have an infinite cluster even for 
p < p c  (i.e. all the sites that have an h-bond to the ghost site are connected through the 
ghost site). This is precisely the effect of turning on a magnetic field in a thermal 
problem, thereby creating a magnetisation even for T > T,. (Unlike the usual thermal 
problems, however, in percolation we cannot turn on the field in a direction to destroy 
the order. This can be interpreted as there being only one direction for the field, 
which is as it must be, since percolation is the Q + 1 limit of the Q-state Potts model.) 

probability h 

... ... 
i a1 l b )  

Figure 1. The ghost-site joins to the lattice with ghost bonds. These are randomly 
‘connective’ with probability h, and ‘non-connective’ with probability 1 -h.  In ( a )  the 
ghost bonds join to the sites of the lattice, thereby keeping track of the cluster ‘site size’, 
while in (b)  they join to the bonds of the lattice, and so keep track of cluster ‘bond size’. In 
both (a )  and (b),  the lattice itself may be either site or bond connective-corresponding at 
h = 0 to the usual site or bond percolation problems. 

We now examine the effect of h on the (ns). For a cluster to contain s sites it must 
have the same structure as before, and in addition must have no h-bonds connected to 
the ghost site (or else it would be part of the infinite cluster). Thus the total number of 
finite clusters is given by 

since (1 - h)s  is the probability that none of the sites in an s-site cluster is connected to 

t ConigIio (1976) defines a generating function C?(x)=Z, (n,)x’. Earlier, Fisher and Essam (1961) had 
used a similar form without the x ,  recognising that x was contained implicitly in (n,) = D,(q)p’, by treatingp 
and q as independent. Here D,(q) is the perimeter polynomial. In our formulation, the generating function 
also needs no artificial parameter x ,  nor do we need to treat p and q as independent. 
$ We automatically keep track of the cluster site size by connecting bonds from the ghost site to every site in 
the lattice (figure l (a) ) .  Conversely, if we are interested in bond size, the ghost site should be connected to 
every bond in the lattice (figure l(b)). Thus the coupling of the ghost site depends on the cluster counting 
procedure, not on whether we are doing bond or site percolation. 
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the ghost site. Equation (10) is the analogue of the Gibbs free energy (and also serves 
as a generating function for the percolation functions P(p ,  h )  and S(p,  h)) .  One ‘field’ 
derivative of G(p, h )  gives us the ‘order parameter’ for the percolation problem, 

Here ps is the probability that a site is occupied, which is simply p in the site problem 
and unity in the bond problem. The percolation ‘susceptibility’, which is the mean 
cluster size, is related to G(p, h )  by two ‘field’ derivatives, 

d2G( p, h)/dh2 
dG(p, h)ldh . 

S (  p, h )  = 1 - ( 1  - h )  

In particular, for d = 1 we find from equation (10) 

From equation ( 1  l ) ,  we find for both site and bond percolation 

And, similarly, from equation (12) 

1 +p( l  - h )  
1 -p( l  - h)’  S(p,  h )  = 

Equations (13)-(15) reproduce the results of equations (6)-(8) when h + 0. Further- 
more, equation (14) enables us to calculate an additional exponent s,, which is defined 
by 

P ( p  =pc, h)-h”’p. (16a) 

s, = 00 (16b) 

Since P ( p  = 1, h )  = 1 for all h, 

fo rd  = 1. 
We may also take derivatives of G(p, h )  with respect to p. We expect to 

find functions analogous to the entropy and specific heat in this way. However, 
G(p,  h = 0)  is an analytic function, since 

G(p, h = O >  - ( P  -pc)2-ap, (17) 
with 2 -ap  = 1. Hence we can never see a ‘specific heat’ singularity C ( p ,  h = 0)  - 
A ( p  - P ~ ) - “ ~  because A is identically zero. We must therefore taken the meaning of 
aP from the ‘Gibbs potential’. 

We now show that G(p,  h )  is asymptotically a generalised homogeneous function 
(GHF) of ( p  -pc) and h. As p +pc and h +O, we have from (13) 

E 2  
G(E, h )  -- 

h + E  
(site or bond), 
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where here E = 1 -p = q. This is indeed a GHF, since asymptotically 

G(h %, A ahh) = ~ G ( E ,  h)  (19) 

with scaling powers uE = ah = 1, from which our previously derived exponent results 
again follow: 2 - ap = a;' = 1, pp = (1 - uh)/ac = 0, -yp = (1 - 2ah)/u, = - 1, and 
8,' = (1 -ah)/uh = 0 (Hankey and Stanley 1972). We thus find all the usual 'weak' (or 
'three-exponent') scaling laws; even their explicit form is unchanged, since the 
exponent terminology is appropriate to the particular derivative of G(p, h)  in the 
corresponding thermal problem. 

4. The pair connectedness 

The pair connectedness C2(r) is the conditional probability that given an occupied site 
at the origin, a site at a distance r away is in the same cluster?; thus this function is 
analogous to the two-spin correlation function in the magnetic problem. For d = 1 
and h = 0, 

C2(r) = pr (site or  bond), (20) 

since all the sites (or bonds) between the origin and point r must be occupied for them 
to be in the same cluster. (Here we note that the correlation function for the d = 1, 
n-vector model is identical to the pair connectedness with p replaced by y,,). The 
critical exponent qp, characterising the decay as r + 00 of the pair connectedness at 
p = p c ,  is defined by C2(r) - r-(d--2+'p) , and hence from (20) it follows that 

qp= 1. (21) 
We may now define the correlation length, which for percolation is the RMS cluster 

diameter, from the normalised second moment of C2(r): 

Since ep - (p we find 

v p =  1, (23) 
which is in agreement with the renormalisation group results of Kirkpatrick (1977), 
Reynolds et u1 (1977), and Marland and Stinchcombe (1977). Alternatively, one can 
define a correlation length from C2(r) -e-"'p. Noting thsrt (cf equation (20)) 

C2(r)=exp(r ln[l-(l-p)]}-exp[-r(l-p)], 

we have tP-(l-p)-'. 
In the usual thermal problem, the fluctuation-dissipation theorem relates the sum 

over r of C2(r) to the susceptibility. For percolation, Essam (1971) has given a graph 
theoretical proof of the analogous theorem. In particular, for d = 1 we find 

t Essam (1971) defines the pair connectedness as the probability that two occupied sites belong to the same 
cluster. For site percolation (only), his definition differs from ours by a factor of p. We prefer our definition 
because of the analogy with the correlation function of thermal phenomena. 
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5. Scaling of the duster size distribution (n,) 

Stauffer (1975a,b) has proposed that for small values of E, and for large s, the 
asymptotic form of (n,) should obey the scaling relation 

(It,(€)) -s-Tf(€su) .  (25) 
It is of interest to ask whether or not the d = 1 functions of equation (5 )  obey the 
Stauffer scaling assumption. For small E, p s  = exp[s In( 1 -E)], and hence for both site 
and bond percolation 

(risk)) -s-’f(d ( 2 6 ~  1 

f ( x ) = x 2  e-x. (266 1 
Thus, in (25), ~7 = 1 and 7 = 2. 

In summary, we have discussed percolation, including a ghost field, without appeal 
to the Potts model. In particular, for d = 1 we have solved for the ‘thermodynamic’ 
functions, the ‘correlation’ function, and its associated correlation length. We have 
calculated the critical exponents, and explicitly demonstrated the validity, for d = 1, of 
the ‘thermodynamic’ scaling hypothesis (Essam and Gwilym 1971) and the cluster size 
scaling hypothesis (Stauffer 1975a,b). 

for all s, with 
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