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Abstract. We demonstrate that the critical properties of the percolation model can be
obtained with a rather high degree of accuracy by extrapolating to b =0 a sequence of
position-space renormalisation group calculations for finite cells of side b. For b<35 we
calculate the recursion relations in closed form, while for 4 < b < 500 we find the recursion
relations by Monte Carlo methods. We then obtain a sequence of estimates for the critical
concentration p. and the scaling powers y, and yj, at the various values of 5. Finally, we
introduce a transformation from a cell of side b to a cell of side b', which may be veiwed as
an ‘infinitesimal’ transformation with a scale change of b/b’.

1. Introduction

In this Letter we consider the position-space renormalisation group (PSRG) for the
percolation problem with a sequence of cells of ever increasing size. We show that we
can extrapolate the results of finite-cell PSRG calculations to get reliable numbers for
the critical concentration, p., the temperature-like scaling power, yp=v_‘, and also
the field-like scaling power y,.

The idea of very large cells for PSRG was put forth for the Ising model by Friedman
and Felsteiner (1977). However, it has never been tested for percolation. More
importantly, Friedman and Felsteiner considered cells of maximum size 729 spins.
Here we treat a sequence of cells up to size 250 000 sites. Clearly, if one is to
extrapolate from the results of finite-cell PSRG, it is desirable to have cells as large as
possible. In addition to its accuracy, this approach is further notable for the ease with
which it may be modified to treat related models.

This work is based on a PSRG cluster formulation of the percolation problem
(Reynolds et al 1977) in which a cell is renormalised to a site using a connectivity
weight function. For other PSRG approaches to percolation see, for example, Harris et
al (1975), Young and Stinchcombe (1975), Dasgupta (1976) and Kirkpatrick (1977).
In this approach to the site percolation problem on the two-dimensional (d =2)
square lattice, a cell is occupied if a connected path of occupied sites exists which
spans the cell either horizontally or vertically. We call this transformation Rq. We
have also treated other connectivity weight functions: the transformation R, requires
spanning in a single direction, while R, requires spanning both ways. Only two of
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these three transformations are independent since 2R,(p) = Ro(p)+ R2(p). Further-
more, Ro and R, obey matching relations with each other, and R, is ‘self-matching’
(Reynolds, Stanley, and Klein, to be published). All three transformations behave
qualitatively the same, so for this discussion we will treat only Ro.

We consider here the single- or independent-cell approximation, in which one
ignores the possible loss or gain of connecting paths between cells upon renor-
malisation (see figure 1(b) of Reynolds er al 1977). This appears to be a good
approximation in the large cell limit, where the connectivity between cells (which is a
surface effect) is negligible compared with the connectivity within a cell (which
involves the cell volume). Thus we expect this approximation to become more
accurate as b increases.

2. Renormalisation of the site occupation probability

Within the context of the independent-cell approximation, we have calculated exactly
the closed-form recursion relations

p'=R(b:p) )

for site percolation on the d = 2 square lattice with rescaling factors of b =2, 3,4 and
5. These recursion relations are polynomials of degree b, Here p is the probability
that a site on the original lattice is occupied, and p’ is the renormalised probability.
For each value of b, we have calculated both the fixed point, p*—the point at which
p' = p, corresponding to the critical point p = p.—and the scaling power y, = »~' which
may be calculated from

Ap=dR(p)/dplp=p»=b" @)

(see Wilson and Kogut 1974 or Niemeyer and Van Leeuwen 1974, for example). As
mentioned earlier, the larger cells should provide a better approximate PSRG trans-
formation, and this is indeed borne out upon comparison with series results. The 5x 5
cell (with its 22° states) is larger than any cell used for closed-form PSRG calculations
on the d =2 Ising model. However, using the PSRG to make a ‘one-shot’ approxima-
tion to the critical properties, even at this size, leads to values of p. and v (cf column 1
of table 1) which differ from series estimates by about 10%.

To proceed further, we have calculated the PSRG recursion relations of equation
(1) by Monte Carlo methods for » =8, 16, 32, 64, 100, 150, 200 and 500%. (For the
purpose of comparison, we have also calculated the recursion relations by Monte
Carlo for b =4, 5, for which we have closed-form expressions, and the agreement is
excellent.) Of course, b = 500 still amounts to a one-shot approximation (albeit a very
good one). However, we can do better by extrapolating these finite-cell results to the
b > oo limit. This limit essentially corresponds to an infinite cell comprising the entire
lattice, and the results of this extrapolation should be the true values. Although the
PSRG itself becomes singular at b = 0, our PSRG calculations are always for finite 5. It
is the result of successive finite transformations which we then extrapolate to b =, in
order to obtain reliable estimates of the true values of p. and v.

+ The algorithm we used both for the Monte Carlo calculations and the closed-form derivations was inspired
by Hoshen and Kopelman (1976), and uses the concept of cluster multi-labelling with the equivalence of
labels established by a rooted tree structure.
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There are several ways in which extrapolation of p. and » may proceed. We will
discuss certain of our methods here, some of which are analogous to series extrapola-
tion, and others are more similar to the analysis of experimental data in the vicinity of
a critical point (which in this case is b - ).

In order to extrapolate y,, first consider the eigenvalue, A, calculated from the
PSRG. We may write

A (B)=ABITE D), 3)

thereby defining A(b), a ‘correction’ whose magnitude (different from unity) is a
measure of the accuracy of the approximation. Then (cf equations 2 and 3) yp*° =
In A(b)/In b +yS*. Thus, if yo° is to approach yi" as b -, we need only impose
the relatively weak condition that A(b) must either not tend to zero or infinity, or do
so no faster than logarithmically. If A does not diverge we assume InA->c¢ or
oscillates about ¢. Thus asymptotically,

true calc

Yo =Yyp +c/Inb, (4a)
or
InAZ(B)=yp* Inb—c. (4b)

Equation (4a) suggests that the sequence y,(b) should be extrapolated against the
variable 1/In b, and that in the asymptotic region where (4a) is valid, this should be a
straight line with intercept of y:,"“. This procedure leads to v = 1-358f328fg, where the
error bars represent confidence limits much like those obtained when extrapolating
the results from series expansions. Furthermore, equation (4b) suggests that a plot of
In A3 (b) against In b should also be a straight line asymptotically, and this line should
have a slope of yp“*. Figure 1 shows this plot, and the inverse slope is » =
1-354+0-010. Both these values are somewhat larger than the series estimate v =
1-32%337 (Cox and Essam 1976).

Extrapolation of the sequence p*(b) is somewhat different. We expect from
finite-size-scaling considerations (Fisher 1971, Sur et al 1976) that

(P —p* ) ~b7"". (5)
In figure 2 we plot p*(b) against b~"/*, with a trial value of v, = 1-356. This leads to an

extrapolation for p¢™ at the intercept b~/*=0 (i.e. b=o). We find p.=
0-593625.005—slightly larger than, but consistent with, p. = 0-593 +0-02 predicted by
series (Sykes et al 1976). Other trial values of v do not fit the data as well, though the
sensitivity for determining » this way is not high. The predicted value of p. is

essentially unchanged for a range of reasonable choices of v.

3. Connection with finite-size scaling

Thus far we have presented the PSRG analysis. However, in the process of determin-
ing the recursion relations we generate p Monte Carlo realisations, where 5%p = 10”.
Each lattice realisation is filled with random numbers in the interval (0, 1), and the
Monte Carlo program asks the question: ‘At what p does this array of numbers first
span?’ (where numbers below p are wetted, and the rest not). We thus generate a
distribution, L(b:p), of p values at which spanning occurs, and this distribution
appears to be roughly Gaussian. The function R(b:p) (cf equation (1)) is actually
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Figure 1. Dependence on log b of log A, and log &', From PSRG, In Ap= v~ 1n b, while
from finite-size scaling, Ino '~ »~'In b; the calculated slopes yield v =1:354x0-010
and v =1-357+0-01S respectively. The symbol E (for b = 1-5) denotes that the recursion
relations for these cases are exact.
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Figure 2. The fixed points, p*(b), as well as the means, {p), at which one spans b X b cells,
are plotted against the variable b~'/*. Both plots extrapolate to virtually the same value of
pe="0-5935-0:39%3. We have chosen v, = 1-356 for this particular plot.
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determined by integrating L(b:p). However L(b:p) may be treated in a purely
statistical sense (Levinshtein ef al 1976), as may R(b:p) (Rousseng et al 1976). In
this case L(b:p)is called the probability density function, while R(b: p) is the cumula-
tive distribution function. For each b, we have calculated the mean, (p), of L(b:p) and
the standard deviation from the mean, o =[(p —(p))°]'/>. The mean is an estimate of
p.; for large b, both [(p)—pi™°] and o should scale as »~"/*. Figure 1 shows a plot of
In ™! against In b. From its inverse slope we find » = 1-357 +£0-015, which is consis-
tent with both PSRG and series analysis. We have also extrapolated (p) in a manner
entirely analogous to our extrapolation of p*, using trial values of » in linear plots of
(p) against b~"* (see figure 2). To check self-consistency we plotted In(pi™™ —(p))
against In b, From these plots we find p.=0-5933+0-0008 and »=1-34@0-08
respectively.

We have also calculated the first nine moments and central moments of L(b:p), as
well as its skewness, kurtosis, and fourth cumulant. We find that although L(b:p) is
not Gaussian for any finite b, it becomes more Gaussian as b increases, and in the limit
b -0 it tends toward a delta-function. Furthermore, all ‘p-like’ quantities (e.g. nth
roots of nth central moments) vanish as ™'/, to within the statistical errors inherent
in determination of these higher moments.

We see here a rather intimate relationship between finite-size scaling and the
renormalisation group (see also Suzuki 1977). The eigenvalue of the PSRG is the
value, L(b:p*), of the distribution function at p =p*. This approaches a constant
times the value, L(b:pmax), Of the distribution at its peak. The limiting value of
L(b:p*)/L(b: pmsx) appears to be very close to one. Because the integral over the
entire distribution function is unity, L(b:pmax)—>1/ («57—7 o) if the distribution
approaches a Gaussian, and in general A,—constant/o. Then, the renormalisation
group statement that v=Inb/InA, implies finite-size scaling: asymptotically,
—vIno =Inb+constant. From a log-log plot, with at least two values of b, this
constant may be eliminated, and » determined. Our two values of » must, of course,
both be in the asymptotic region, or we will not eliminate the constant properly. The
renormalisation group chooses A, (its ‘o-like’ parameter) in such a way that if o is
replaced by A, !, the constant is zero, and we need not be in any asymptotic region.
This is because A,(b =1)=1, since the eigenvalue of the identity transformation is
unity. One might say that the renormalisation group ‘knows’ a priori its eigenvalue at
one other value of b, b = 1. However, since our A5 is only an approximation to A 5™,
asymptotically the intercept need not be zero with the renormalisation group either (cf
equation (45)), and only asymptotically need the slope of In A, against In 5 actually
become » .

4. Renormalisation of the ghost bond

In order to obtain the remaining percolation exponents we need to find the ‘magnetic’
scaling power yn. To this end we introduce ‘ghost-bonds’ from every site in the lattice
to the single ‘ghost-site’ (figure 3(a))t, and these are independently occupied with

t The ghost-site was originally introduced by Griffiths (1967) as a formal way of introducing a magnetic field
in an Ising model. Later Kasteleyn and Fortuin (1969) applied the idea to percolation. In a PSRG context,
the ghost was used by Reynolds et al (1977), and later by Marland and Stinchcome (1977).
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Figure 3. In (a) we show an example of the PSRG transformation for the case b =2. On
the original lattice, sites are occupied with probability p, and ghost-bonds with probability
h. If we can traverse the cell either horizontally or vertically, the renormalised site is
occupied, and this happens with probability p’. Thus, p' =p‘+4p3(1 -p)+
4p*(1-p)2+2p*(1 - p)*h?, where the last term comes from traversing the cell diagonally
through the ghost-site (which cannot be done by nearest-neighbour bonds alone). Like-
wise, the probability of getting o the ghost site—which necessitates getting into the cell in
the first place—occurs with probability p'h' = p*[1—(1-h)*}+4p° 1 -p)1-(1-h)*] +
5p%(1-p)Y[1~(1-h)*]+p*(1 - p)’h +3p(1-p)*h. This is readily brought into the form
of equation (6). Evaluated at either p=p'=p* or p=p'=p., the eigenvalue, Ay, is
calculated at the fixed point h =0. Part (b) shows, schematically, a cell-to-cell trans-
formation. The usual cell-to-site transformation, R(b:p), has an inverse, as may be seen
from its shape, above. Thus, we may follow a cell-to-site transformation, by the inverse of
another cell-to-site transformation, thereby achieving a cell-to-cell transformation with
rescaling length 5/b'. Just as the fixed point of the cell-to-site transformation occurs when
p=R(b:p), so the fixed point value of p in the cell-to-cell transformation occurs at the
solution to R(b:p)=R(b":p).

probability 4. The recursion relation analogous to equation (1) is then
h'=hRu(b:p, h), (6)

where we renormalise the probability of reaching the ghost, again by a horizontal or
vertical path through the cell. Since one ghost-bond is always necessary to reach the
ghost, we have factored out an h in equation (6).

In order to obtain equation (6), we calculate p'h’' = f(p, h) for each cell size b
(figure 3). Just as equation (1) is already calculated at k=0, the fixed point of
equation (6), so (6) is calculated at p*, the fixed point of (1). Thus Ryu(p*, k)=
f(p*, h)/p*h. We have also calculated equation (6) by choosing p=p'=p™. In
analogy with equation (2), the scaling power yj is obtained from the eigenvalue of the
linear part of equation (6),

An=dh'/dh|u=0= Ru(p*, h =0)=b". )
p=p
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We have calculated equations (6) and (7) in closed form for b =2, 3 and 4 (cf table
1). For b =4 we have used Monte Carlo methods to find R,(p, 0). Extrapolation of y,
follows precisely the same arguments as for y, (see equations (3) and (4)), leading to
1/In b as the appropriate extrapolation variable.

Table 1. The results of a cell-to-cell transformation in the cases where we have closed-
form recursion relations. These transformations are from cells of side b to cells of side &',
corresponding to a length rescaling of b/b’. The case b'=1 is the usual cell-to-site
transformation, with a rescaling length 5. The fixed point p*, the correlation length
exponent v =y, ! and the field-like scaling power, yy, (obtained by evaluating equation (7)
both at p=p* and at p=p.) are displayed. Series estimates for these quantities are
Pe=0-593+0-002, v =1-3275.52 and y, = 1-895+0-004.

From To

b= b'= 2 3 4

2 p¥ 0-382 — — —
v 1-64 — — —_
y, at p* 1-86 — — —
yh at pe 1.94 — — —

3 p* 0-473 0:560 — —
v 1-51 1-28 — —
yn at p* 1-86 1-87 —_ —
Yn at p¢ 193 1-91 — —

4 p* 0-509 0-574 0-591 —
v 1-49 1-32 1-38 -
yn at p* 1-87 1-88 1-89 —
Vi at pe 1-92 191 1-90 —

5 p* 0529 0-581 0-594 0-598
v 1-47 1-34 1-39 1-40

5. Cell-to-cell transformation

Thus far all our transformations have been from cells of ever increasing size, b to a
single site. One would also like to be able to go in the other direction, toward an
‘infinitesimal transformation’ in which 4 > 1 (Wilson and Kogut 1974). In principle,
our large cells enable one to achieve this goal.

By rescaling from a cell of side b to a site, we obtain a transformation p'(b)=
R(b:p) (cf equation (1)). Another cell with side 5’ only slightly smaller than b has an
analogous transformation. Both transformations are analytic and, in the range (0, 1),
have inversest. Hence, one can find a recursion relation

p'(6)=R[b:R™'(b":p'(b")]=R(b/b":p'(b")), ®

which gives the probability of having an occupied cell of side b as a function of having
an occupied cell of side b’ (see figure 3(b)). The value of p at which p'(b)=p'(d’), or
equivalently at which R(b:p)=R(b’:p), corresponds to p.. The exponent » is

 This is because p'(p)—the probability of getting across a cell at a given site probability p—is an increasing
function of p, and the transformation R: p » p' is one-to-one and onto.
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obtained from

_In(scale change) In b/b’ _ Inb—Inb’
v In(eigenvalue) Indp'(b)/dp'(s") [IndR(b:p)/dp—IndR(b':p)/dp]lp=p~

where p* is the fixed point value of p in the cell-to-cell transformation. The scaling
power yj is calculated analogously.

While the Monte Carlo accuracy is not yet sufficient for reliable cell-to-
cell estimates, our closed-form results for b, b’ <35 lead to estimates of p., v, and yy
(table 1) whose discrepancy with series results is comparable to the single-shot cell-
to-site transformation for b = 100.

©

6. Conclusion

In summary, we have demonstrated that critical properties for the percolation
threshold can be obtained with a rather high degree of accuracy by extrapolation to
b =00 of a sequence of PSRG calculations for finite cells of side . We find that the
critical properties are essentially the same regardless of the method used. Our best
estimates for the two scaling powers are y,=0-737520.004: and y,=1-898+0-003
from which we obtain

a=-0:712+0-030, B=0-138%30%%, y=2:435+0:035, &=186+06,

v=1:356+0-015 and 2-7=1-796=+0-006, (10)
which compare well with estimates obtained by other methods (see, e.g., table 1 of
+0-0005

Stanley 1977). The site percolation threshold is found to occur at p.=0:5935"0.0010
on the square lattice. We have recently learned that Kirkpatrick (private com-
munication) is applying our method of studying R(b:p) to the bond problem. His
results thus far confirm our contention that this method produces highly accurate
estimates for the critical properties of the percolation problem. In addition, Klein,
Stanley, Reynolds and Coniglio (to be published) have provided detailed renor-
malisation group analysis to support the validity of the closed-form expression v =
Inv3/In3=1-3547 ... obtained for the triangular lattice in Reynolds et al (1977).
This value of v is in excellent agreement with the value » = 1356 reported above.
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