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The supercooled and stretched regions of the phase diagram of simulated liquid water 
are investigated by calculating the equation of state of the ST2 and TIP4P pair-potentials. 
We find that simulated water does not display a re-entrant spinodal and that the pro- 
jection of the density maximum line in the plane of pressure and temperature becomes 
positively sloped on stretching. The well-known anomalous behavior of supercooled water 
is tentatively associated with the existence of an inaccessible critical point. Evidence is 
presented that suggests the association of this new critical point with the transition be- 
tween low density and high density amorphous solid water. We show how the observed 
transformation behavior of the two forms of amorphous solid water can be explained in 
terms of a first order phase transition, via a consideration of the limits of metastability 
associated with this kind of transition, and support this interpretation with simulations 
of the amorphous solid. We therefore propose a phase diagram which accounts for the 
behavior of both liquid and amorphous solid water. 

1. Introduction 

Liquid water is one of the most studied complex fluids. The possibility for 
the water molecule to form hydrogen bonds and to create an open network 
in both the solid and the liquid phases is at the basis of its peculiar behavior 
(figs. 1 and 2). The inverse correlation between the energy and the volume at a 
microscopic level, due to the strength and directionality of the hydrogen bond, 
is reflected in the anomalous behavior of the liquid state. In the supercooled 
and the stretched regions of the phase diagram, the well-known anomalies 
of liquid water become more pronounced [2,3]. The effects of the hydrogen 
bond network become more and more important with decreasing temperature 
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Fig. 1. The hydrogen bond network in a simulation of 216 water molecules is here visualized by 
showing not the molecules themselves, but the bonds between them. The colors represent the 
energy of the bonds, blue indicating the strongest bonds (i.e. most negative interaction energy) 
and red the weakest (i.e. least negative interaction energy). Courtesy of P. Trunfio. 

(lowering o f  the local energy) as well as with increasing negative pressure 
(increasing o f  the local vo lume)  [ 4 ]. In this article we give a report  o f  a s tudy 
on the phase behavior  o f  metastable water  based on analyses o f  extensive 
molecular  dynamics  simulations with wate r -wate r  potentials that mimic  the 
anomalous  behavior  o f  the real liquid. 

The well-known equi l ibr ium phase diagram of  water  is shown in fig. 3. In 
the dashed area the l iquid state is stable. When the equi l ibr ium sol id- l iquid or 
l iquid-gas lines are crossed, the l iquid enters into a the rmodynamic  state that 
is metastable compared  to the solid or to the gas. The  l iquid can be supercooled 
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Fig. 2. The local environment around a particular water molecule strongly effects its behavior 
[ 1 ]. For example, shown here are two sub-regions of a simulation of water. In one, the 
central molecule is surrounded by four tetrahedrally placed neighbors; this kind of environment 
promotes strong hydrogen bonding, and hence has a low energy, low mobility, and low local 
density. In the other, the environment of the central molecule contains five neighbors; in this 
case the hydrogen bonds are imperfect, leading to higher energy, higher mobility, and higher 
local density. By courtesy of B. Ostrovsky. 

o r  s t r e t c h e d  on ly  to  a f in i t e  ex ten t .  T h e n ,  e v e n  in  ve ry  c l ean  samples ,  i n t e r n a l  

f l u c t u a t i o n s  d r i v e  t he  s y s t e m  f r o m  the  m e t a s t a b l e  l i q u i d  s ta te  to  the  s t ab le  

so l id  o r  gas phase ,  i m p o s i n g  a l i m i t  o n  the  r ange  o f  t h e r m o d y n a m i c  s ta tes  

access ib le  to  e x p e r i m e n t s .  T h e s e  l i m i t s  o f  s u p e r c o o l i n g  a n d  s t r e t c h ing  d e f i n e  
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Fig. 3. Phase diagram of water: solid lines indicate the liquid-gas and the liquid-solid equilib- 
rium boundaries. Full circles indicate the limit of homogeneous nucleation. The dashed line is 
the spinodal line associated with the liquid-gas critical point. 

Fig. 4. Van der Waals isotherms around the critical point (Tc = 1, ~ = 1, Pc = 1). The 
T = 1.2, T = 1.0, T = 0.8 and T = 0.6 isotherms are shown. 

the lines o f  homogeneous  nucleation.  
Another  impor tan t  t he rmodynamic  line is given by the limit of  stability 

o f  the liquid. As this line is crossed, the system becomes unstable and any 
fluctuation,  no mat te r  how small, is able to drive the system into a new phase. 
In mean  field approximat ion,  the system is stable whenever  

= - > O,  

where A ( V ,  T )  is the Helmhol tz  potential ,  V is the specific volume,  P the 
pressure and T the temperature .  In fig. 4 we show the P versus V isotherms 
for the mean  field (van der  Waals) case. We see that  the point  marked  o 
separates the stable l iquid phase f rom the unstable phase, while the point  x 
marks the equi l ibr ium point  between the gas and the l iquid phases. The liquid 
is metastable between x and o. Fig. 4 also makes clear that the van der Waals 
theory predicts the possibility o f  metastable liquid states at negative pressure. 
The  line connect ing the o points  as a funct ion o f  T and P gives informat ion  
on the limit o f  stability o f  the liquid. This line, named  the spinodal line, is also 
shown in fig. 3. On approaching the spinodal line, one observes an increase in 
the isothermal  compressibi l i ty  KT and in the isobaric specific heat Ce. Indeed, 
as shown by Compagner  [ 5], these quanti t ies diverge following a power-law 
form at the spinodal line, with exponents  o f -  1. 
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While the gas and the liquid phases have the same symmetry, the liquid 
and the solid phases cannot be described by the same free energy surface and 
no liquid-solid second order critical point exists. However, this fact does not 
prevent the possibility that the liquid or the solid free energy hypersurfaces 
terminate in the metastable region in a spinodal line, Indeed, recent work 
on stretched and compressed tetrahedral crystals seems to suggest that the 
metastable region in solids might terminate in a spinodal instability under 
particular conditions [6]. In the case of liquids, this line of reasoning was 
pursued 17 years ago by Speedy and Angell [ 7 ]. Triggered by the observation 
that liquid water shows an anomalous increase in Cp and KT on cooling, they 
postulated the existence of a thermodynamic anomaly in the free energy of the 
supercooled liquid. They argued that this anomalous line should run parallel 
to the homogeneous nucleation line on the experimentally inaccessible side. 
Since then, many static and dynamic quantities have been studied and shown 
to satisfy a power law relation at the lowest temperatures, as expected for such 
quantities near a spinodal [ 8-14]. However, theories which are not based on 
the existence of critical behavior in the supercooled region are also able to 
reproduce the experimental data with functional forms other than a power law 
[15]. 

Further important progress in this field has been made by Speedy [9] for 
the case of water and generalized to arbitrary fluids by Debenedetti and his 
colleagues [16-20]. They have observed that liquids having a line of den- 
sity maxima which has a negative slope in the P - T  plane of their phase dia- 
gram should possess a region where the line of density maxima and the liquid 
spinodal line meet. Based on thermodynamic argumentation, they show that 
the spinodal must change slope at the point where it meets the line of den- 
sity maxima. This phenomena means that the usual liquid spinodal can turn 
upward and be "re-entrant" from negative pressure back to positive pressure 
in the supercooled region of the phase diagram. This conclusion supports the 
possibility that the anomalies observed at positive pressure and low temper- 
ature are indeed connected with the ones observed at negative pressures. If 
this is the case, such a re-entrant spinodal represents a continuous limit of 
stability bounding the entire liquid state, preventing any continuity between 
amorphous ice and liquid water. 

2. The spinodal 

To test these hypotheses and to shed light on the behavior of liquid water 
in the metastable region, we perform an extensive set of  simulations in the 
stable and metastable regions of the liquid state [21,22 ]. Computer simula- 
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tions are particularly suitable for this kind of  study because of  the absence of  
any boundary and of  any impurity, which in real experiments prompt hetero- 
geneous nucleation. The limitations are given by the finite size of  the simula- 
tion box and by the available computer time. At low temperatures and close 
to a pseudo-critical point, slowing down of the dynamics is expected. Hence 
we have chosen to work with a small set of  particles but to perform very long 
equilibration and production runs. 

We perform simulations consisting of  systems of 216 particles enclosed 
in a cubic box with periodic boundary conditions. The effect of  long range 
Coulomb forces is estimated with the reaction field method. The number of  
particles and size of  the simulation box are fixed to give the desired specific 
volume, and initial equilibration to a desired temperature is achieved using 
Berendsen's velocity rescaling method, using a decay constant of  0.5 ps [23 ]. 
The time step for the update of  particle positions is fixed at 1.0 fs. Equilibration 
was considered complete when the unconstrained thermodynamic properties 
(pressure and potential energy) had relaxed into a steady state. We also check 
that particles had diffused a r m s  distance of  at least one molecular diameter 
from their starting positions to avoid trapping in glassy states. Also, in almost 
all cases, a given simulation was started using the final particle positions of  a 
previous simulation at as near a state point to the new one as was possible. 
The lengths of  the runs (equilibration plus production) varied depending on 
the time needed to obtain reliable equilibration and measurements, but in no 
case were less than 250 ps. Due to the slow relaxation seen in the systems at the 
lowest temperatures and highest specific volumes, run times of  600 to 1000 ps 
were common. By calculating the pressure for each of  the temperatures and 
volumes studied, we have reconstructed the P (1I, T) surface in a large part of  
the supercooled and stretched regions of  the phase diagram. 

Because the density maximum phenomenon is tightly connected with the 
possibility of  a re-entrant spinodal, simulations with the chosen water-water 
potential must exhibit, as a function of  temperature, a density maximum at 
constant pressure or a pressure minimum at constant volume. For this rea- 
son, we first perform simulations at a fixed density (1.0 g/cm 3 ) as a function 
of  temperature for different potentials commonly used to model liquid water. 
The resulting P - T  isochores are shown in fig. 5, together with the experimen- 
tal data [24]. All the potentials show a pressure minimum, even if at different 
temperatures and pressures. Compared with the experimental density maxi- 
mum, the SPC/E [25] and TIP4P [26] density maxima are shifted toward 
lower temperatures while the ST2 [27] density maximum is found at higher 
temperatures. 

This apparent drawback of  the ST2 potential is very useful for our numeri- 
cal study. Indeed the higher temperature of  the ST2 density maximum allows 
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Fig. 5. Isochores at density 1.0gm/cm 3 from experimental data (dotted line), SPC/E potential 
(A), TIP4P potential (D), and ST2 potential (o). 

equilibrium simulations of  states up to 100 K below its TMD. Therefore, ST2 
can be used to probe the thermodynamic properties and structure of the sys- 
tem in the region both where the liquid is strongly anomalous, and where the 
re-entrant spinodal is predicted to be found. For this reason, we focus our com- 
putational efforts on assemblies of ST2 particles. However, we also confirm 
that the results are not an artifact only of  the choice of  pair-potential. Hence, 
as indicated below, the important results obtained from ST2 simulations are 
confirmed in simulations using the TIP4P potential. 

As we have noted above, the density maximum line i f  negatively sloped in 
the P - T  plane must meet the spinodal line, forcing it to become re-entrant. 
Because ST2 water has a negatively-sloped density maximum line at positive 
pressures and a monotonically decreasing spinodal, we predict that the density 
maximum line in ST2 water must change slope in the vicinity of  the liquid 
spinodal. To test this prediction, we calculate the P - T  isochores for different 
densities and find for each density the temperature at which the pressure is 
at a minimum (fig. 7). The line of density maxima thus calculated is found 
to change slope around density 0 .9gm/cm 3, avoiding the intersection with 
the spinodal line (shown as a full line), and the thermodynamic behavior 
predicted by Speedy and Debenedetti. We are led to conclude, on the basis 
of the data shown in fig. 7, that the liquid spinodal is not re-entrant in ST2 
water [21,22]. This conclusion has been independently reached for ST2 by 
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Fig. 6. Fig. 7. 

Fig. 6. ST2 P - V  isotherms at T = 390K (/x), T = 360K (V), T = 330K (n) and T = 
290K (o). This figure shows the P - V  isotherms at four temperatures. At all the temperatures 
we are able to simulate metastable states at negative pressure. The 390 K, 360 K and 330K 
P - V  isotherms show van der Waals like behavior on stretching. The volumes and the pressures 
at which the system become unstable are a decreasing function of the temperature as expected 
in the case of normal liquids. The 290K P - V  isotherm crosses the 330K P - V  isotherm, 
displaying the existence of a density maximum at this temperature (i.e., a density maximum 
is a pressure minimum at constant volume). Interestingly enough, the spinodal pressure Ps at 
this temperature is lower than Ps at T = 330K, indicating that the spinodal line Ps(T) does 
not turn around but continues decreasing in pressure on lowering the temperature. 

Fig. 7. ST2 isochores for different densities. From top to bottom: 1.05gm/cm 3, 1.0gm/cm 3, 
0.95 gm/cm 3, 0.9 grn/cm 3, 0.85 gm/cm 3, 0.8 gm/cm 3. The full line connecting the filled circles 
is the spinodal line for the ST2 potential. 

Striemann [28]. In our simulations using TIP4P [22], we also find that both 
the density maximum line changes slope in the region of P < 0, and that the 
spinodal is not re-entrant. 

In a separate study, we have conducted an analogous set of  simulations 
of SLOE, as modeled by a rigid-ion Born-Mayer-Huggins (BMH) potential 
[29]. SiO2, both in experiments and simulations, has been shown to exhibit 
a density maximum similar in character to that found in water [30]. It is also 
a system topologically similar to water in that the liquid state is characterized 
by tetrahedrally coordinated species. Although the interparticle bonds in SiO2 
are orders of  magnitude stronger than the hydrogen bonds found in water, the 
thermodynamic reasoning that has been applied to predict the EOS for water 
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Fig. 8. (a) Liquid isochores of P as a function of T as calculated in simulations of SiO2 (BMH 
potential). The spinodal is shown as a thick line. Note that p decreases from 2.6 g/cm 3 (.) to 
1.9 g/cm 3 (o) in steps of 0.1 g/cm 3. (b) Representative low T isotherms of P as a function 
of V for two H20 models, TIP4P (T = 200 K, V* = 1.0 cm3/g, P* = 0.5 MPa) and ST2 
(T = 250 K, V* = 1.0 cm3/g, P* = 1.0 MPa), and for SiO 2 as modeled by a rigid-ion BMH 
potential (T = 7000 K, V* = 0.455 cm3/g, P* = 20 MPa). 

m a y  equally apply  to SIO2. Hence,  there arises the quest ion as to whether  a 
s imula t ion  o f  SiOz would reproduce  the results o f  ST2 and TIP4P ,  or  perhaps  
instead satisfy predic t ions  o f  a re-entrant  spinodal.  

Fig. 8a shows some pre l iminary  results o f  our  SiO2 simulat ions,  in the P - T  

plane. Though  the scale of  T and  P has changed enormously ,  the qual i ta t ive 
similari ty to the ST2 behav io r  given in fig. 7 is striking. In  this regard, it 
is impor t an t  to note  the difference be tween the water  and  SiO2 potent ia ls  
used: ST2 and  T I P 4 P  bo th  mode l  a water  molecule  as a rigid assembly of  
charged force centers,  where the te t rahedral  a r rangement  of  a toms  has been  
imposed  on the in te rmolecular  potential .  The  rigid-ion potent ia l  used for SiO2 
however ,  models  the sys tem as a set o f  uncons t ra ined  charged soft spheres, 
wi thout  or ienta t ional  constraints  or three-body forces. The  fact that  these two 

very different potent ia ls  yield the same equat ion  o f  state behav io r  suggests the 
possibil i ty that  such behav io r  m a y  be a c o m m o n  feature in any liquid which 
forms  a te t rahedral  network.  

3. A new critical point? 

I f  the spinodal  is not  re-ent rant  in real water,  what  is the origin o f  the increase 
in Ce and  K r  in the supercooled region? Is the ST2 potent ia l  able to reproduce  
this anomalous  behav io r  with a m e c h a n i s m  different f rom that  occurring when 
there is a re-entrant  spinodal? To  address  these questions,  we have  calculated 
the P - V  i so therms at lower t empera tu res  [21 ]. As shown in fig. 9, on lowering 
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the temperature the isotherms develop a stronger and stronger inflection which 
ends in a critical isotherm around 220 K. The data shown in fig. 9 are indeed 
very similar to the van der Waals isotherm shown in fig. 4 once we remember 
that, being in the region with negative expansion coefficient, the pressure 
increases at constant volume on decreasing the temperature. ST2 water thus 
seems to display a novel critical point c' at about T¢, = 220 K and Pc, = 

200 MPa at a density close to 1.0 gm/cm 3. Again, both the presence of an 
inflection, and the trend for it to become stronger at lower T is confirmed in 
our TIP4P simulations [22], though the estimated critical temperature is a 
few tens of  degrees K lower in this system. Notably, our simulations of  SiO2 
also show inflections in the isotherms of P versus V for the low T liquid: see 
fig. 8b. Thus, again, it appears that these equation of state features may be 
generic to many tetrahedral liquids, rather than a peculiarity of a particular 
pair-potential. 

If  this critical point exists then we should be able to identify two phases 
with the same symmetry and a coexistence line between them. To investigate 
the structural difference between the two phases we study the structure of the 
liquid at a temperature close to but lower than To, at two densities far from 
the critical density. This is the same as looking at the structure of a liquid-gas 
system along a supercritical isotherm for densities respectively smaller and 
larger than the liquid-gas critical density. In this case the high density structure 
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Fig. 10, Neu t ron-averaged  Four ie r  t r ans fo rm o f  the  s t ructure  factor h(r). D a s h e d  line: 
p = 0 . 9 2 g m / c m 3 ;  full line: p = 1.05 g m / e m  3. In the  inset,  the  exper imenta l ly  measu red  h (r)  
func t ions  for the  low dens i ty  a m o r p h o u s  ice (dashed  line) and  the  high densi ty  a m o r p h o u s  ice 
(full l ine) f rom ref. [24] are shown.  

would resemble the liquid structure, while the low density structure would 
resemble the one characteristic of  the gas phase. The comparison between the 
two ST2 structures is shown in fig. 10, where we show the h (r) function, i.e., 
the neutron-averaged Fourier transform of the structure factor, for density 
0.92 gm/cm 3 and 1.05 gm/cm 3 at T = 235 K. The difference between the two 
structures strikingly resembles the difference observed experimentally between 
the structures of  high density amorphous (HDA) and low density amorphous 
(LDA) ice [31,32]. 

Then, in ST2 water, for pressure lower than 200 MPa, it is possible to find 
completely reversible paths continuously connecting states where the structure 
of  the liquid is similar to the HDA and to the LDA structure. In the same 
range of  pressure, a completely reversible path connects the low temperature 
glassy state to the normal liquid. 

As is well known from the theory of  critical phenomena [33], the presence 
of  a critical point affects the response functions in an area around the critical 
point; as seen in fig. 9, the supercritical isotherms are affected by the existence 
of  the critical point. Along paths in the P-T plane in the one-phase region 
(i.e. on lowering the temperature at constant pressure) one expects maxima 
in Cp and in Kr because the response functions increase on approaching the 
critical point and decrease on getting further away. 

Are the experimentally-observed increases in Ce and KT related to the exis- 
tence of  an unreachable critical point? To test this possibility we compare Cp 
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Fig. 11. Temperature dependence of  the density at atmospheric pressure in water (full line) 
and simulated ST2 water (dashed line). 

and KT calculated from our simulations with the experimentally measured Ce 
and Kr. We compare the experimental data for each temperature and pres- 
sure with the corresponding ST2 data at temperature 34 K higher and a pres- 
sure 95 MPa higher to take into account the different positions of the density 
maxima in the P-T  plane. To support the validity of  this procedure, we show 
in fig. 11 the comparison of the experimental density at atmospheric pressure 
with the shifted ST2 data. The agreement is rather good. Using the same shift 
we compare in fig. 12 Ce and Kr.  Again remarkable agreement is observed, 
both qualitatively and quantitatively. 

The agreement between the experimental data and the ST2 shifted data 
appears to validate the description of  the liquid state offered by our ST2 
calculations, and as confirmed in TIP4P. However, the results shown here 
must be submitted to extensive tests, particularly using much larger systems. 
We have begun this task, by confirming the properties found in the vicinity of  
the spinodal of  the 216 molecule ST2 system, in simulations employing 1728 
molecules [22]. However, more tests of  this nature need to be done close to 
the region of new critical phenomena that we propose. The importance of 
this task argues for a strong effort in implementing MD programs for water- 
like potentials on new powerful parallel computers. Analytical work on simple 
potentials showing a density maximum should also be pursued; already such 
approaches have revealed a rich set of  possible behaviors [ 16-20,34-37 ]. 
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Fig. 12. (a) Temperature dependence of KT at atmospheric pressure in water (D) and simulated 
ST2 water (o). (b) Temperature dependence of Ce at atmospheric pressure in water (D) and 
simulated ST2 water (o). 

If  our data are confirmed by these extensive checks, then it will become 
important to perform experiments as close as possible to the new critical point, 
which according to the P and T shift used above, should be located in real water 
at T = 185 K and P = 120 Pa. At the same time, we hope that measurements 
in the stretched region can be extended to search for the change in slope of 
the line of density maxima [38 ]. 

4. Amorphous solid water 

Evidence for the occurrence of a critical point in supercooled water may also 
be found in the behavior of amorphous solid water. Though amorphous solid 
water may be prepared by a number of different procedures [ 39], in general it 
appears that one of LDA or HDA ice is the result. LDA ice has been observed 
to abruptly transform into HDA ice when isothermally compressed at 77 K, 
in a process described as an "apparently first-order phase transition" [40]. 

To investigate a possible connection between the apparent phase transition 
observed in amorphous solid water, and the occurrence of a critical point in su- 
percooled liquid water, we use computer simulations to study the L D A ~ H D A  
ice transformation over a wider range of T than has been attempted in exper- 
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iments #! [41 ]. We first prepare a LDA ice configuration by quenching a liq- 
uid state configuration to low T, and then isothermally compress it. Fig. 13 
shows the results for this process for both ST2 and TIP4P, both of  which dis- 
play a region of  P over which p changes abruptly, qualitatively reproducing 
the LDA--,HDA ice transition. Furthermore, if we decompress the resulting 
high density phase through P = 0, and into the region of  hydrostatic tension, 
the results indicate that the reverse H D A ~ L D A  ice transition occurs. The fact 
that both the forward and reverse transformations may be observed is consis- 
tent with the interpretation that LDA and HDA ice are separated in the P -  
T plane by a line of  first-order phase transitions. As described in detail else- 
where [41 ], the observation that the forward and reverse transitions do not 
occur at the same P is a reflection of  the suppression of  nucleation kinetics in 
this low T region where molecular mobility is strongly hindered. 

The compression/decompression cycles at different T in fig. 13 indicate that 
the observed size of  the hysteresis loop decreases as T increases [41 ]. This 
behavior is consistent with the possibility that the line of  first-order transitions 
separating LDA and HDA ice comes to an end near the low T limit of  the 
region where the supercooled liquid is observed. A second-order critical point 
is typically found at the termination of  a line of  first-order phase transitions, 
and its existence is consistent with that of  the critical point inferred to exist 
from the liquid state data. 

Given the calculated thermodynamic behavior discussed thus far, what kind 
of  phase diagram arises for water in the supercooled and stretched regions? 
The phase diagram we propose (see fig. 14) postulates the existence of  a line 
of  first order phase transitions that separates LDA and HDA ice. The observed 
properties of  amorphous ice can be understood through a consideration of  the 
behavior of  the limits ofmetastability (also spinodals) that must be associated 
with a first order phase transition line ending in a critical point. These two new 
spinodal lines, distinct from the liquid spinodal examined above, and denoted 
by L and H in fig. 14, define the absolute limits of  thermal and mechanical 
stability for the two phases. The line L is the metastability limit for LDA ice, 
while H defines the metastability limit for HDA ice. Hence, LDA ice is the 
more stable amorphous solid below the first order transition line F, yet may 
also be observed in the region above F but below L, where it is metastable with 
respect to HDA ice. Above L, LDA ice becomes unstable. Similarly, HDA 
ice is the more stable form above F, is metastable with respect to LDA ice 
between F and H, and is unstable below H. The critical point that terminates 

#1 In this regard, we were motivated by the successful observation in computer simulation of 
the transition from ice I h to HDA ice, see [42]. 
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Fig. 13. Response of the density p during isothermal compression (up-arrows) and decom- 
pression (down-arrows) of  amorphous solid water simulated with ST2 (top panel) and TIP4P 
(bottom panel), at several different T. The systems fracture at the points of  lowest P and p 
shown along the decompression paths. 

the line of  first order phase transitions itself accounts for the thermodynamic 
anomalies observed in both supercooled and stable liquid water. 

5. Conclusion 

In summary, the ST2 and TIP4P data show no re-entrant spinodal at nega- 
tive pressure. They do show a novel critical point at low temperature and high 
pressure, which appears to be related to a transition between two structures 
that we have shown to be similar to the HDA and LDA structures. Also the 
data do not predict any "real" critical behavior in Kr or Ce at atmospheric 
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Fig. 14. A schematic phase diagram for water, incorporating the features proposed in the text 
so as to account for experimental observations. The equilibrium solid-liquid, solid-gas and 
liquid-gas phase transitions are shown as heavy lines. The liquid-gas transition line ends in 
the liquid-gas critical point (o). Metastable equilibrium features for the extension of the liquid 
state phase diagram into the supercooled and stretched regions are also shown: the liquid 
spinodal (thin solid line) is monotonic in T and does not intersect the TMD line (dot-dashed 
line), which itself changes slope at P < 0. A line of first-order phase transitions F separates 
LDA and HDA ice, and ends in a critical point (o). Two spinodals, L (long-dashed) and 
H (short-dashed) must occur above and below the LDA/HDA ice transition line, and their 
locations determine the observed transformations of amorphous solid water. 

pressure, but rather a maximum in Kr and Ce for pressures lower than the 
critical pressure. The high density structure (defective tetrahedral network) 
that smoothly transforms into the low density structure (random tetrahe- 
dral network) on lowering the temperature is reminiscent of the progressive 
growth of  four-bonded clusters implied by the model of Stanley and Teixeira 
[15 ]. The temperature at which KT is maximum, which indicates the point 
of  smooth transition between the two structures in the ST2 system, is similar 
to the percolation point of  low density tetrahedrally coordinated molecules in 
the Stanley-Teixeira model. 

The data also support the possibility of a continuity of states connecting 
liquid water with the amorphous substance obtained experimentally by hy- 
perquenching small liquid droplets or by vapor deposition. On a slow cool- 
ing of  the liquid, the glass transition is prevented by the homogeneous nucle- 
ation event. Indeed, since the growing cluster has a structure with a local order 
roughly similar to the ice structure, the probability that one of  these clusters 
will have the correct shape (topology) and size to irreversibly transform the 
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system into the solid state is large. The simulation data also suggest that the 
amorphous substance that one obtains at low temperature and atmospheric 
pressure is, if truly in metastable equilibrium, on the same free energy surface 
as the liquid state. From an experimental point of  view the situation is still 
unclear. The possibility of a continuity of states between amorphous and liq- 
uid phases [43,44] as well as the opposite behavior [45] has been suggested 
on the basis of  different thermodynamic arguments based on measured values 
of Ce and estimated entropies. A recent analysis [46], however, indicates that 
a "fragile-to-strong" liquid transformation occurs during hyperquenching of 
liquid water. Such a phenomenon is consistent with the passage of the (frag- 
ile) equilibrium liquid through the neighborhood of the critical point into the 
region dominated by the (presumably strong) LDA ice. Molecular dynamics 
simulations, where the nucleation event can be bypassed by the cleanness of 
the sample and by the finite size, should be used to refute or confirm these 
arguments. 
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