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The structure and the functioning of cardio-pulmonary system is complex and statistical physics ap-
pear to be suitable for their characterization. In this review, we examine scaling in cardio-pulmonary 
physiology. The focus will be on the interpretation of scaling behaviors and their relation to struc-
ture-function in the normal and diseased cardio-pulmonary system. First, we overview fluctuations 
and scaling in respiratory rate variability in terms of a neural network model. Next, we analyze fluc-
tuations in human heartbeat dynamics under healthy and pathologic conditions using wavelets and 
multifractal approaches. We then discuss avalanche behavior of airway openings as well as scaling 
behavior of crackling sound generated during the process of airway openings. We also examine the 
relationship between the observed scaling properties and the design features of the pulmonary vascu-
lar tree. Finally, we show how the network failure of lung tissue structure leads to emphysema, a 
leading cause of respiratory disability and death worldwide.  

Keywords: Fractal; respiratory rate; heart rate; blood flow; airway opening; crackle sound; lung 
tissue. 
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1. Introduction 

The central task of statistical physics is to study macroscopic phenomena that result from 
microscopic interactions among many individual components. This problem is akin to 
many investigations undertaken in physiology. In particular, physiological systems under 
neuroautonomic regulation, such as regulation of heart or breathing, are good candidates 
for such an approach since: 1) the systems often include multiple components, thus lead-
ing to very large numbers of degrees of freedom, and 2) the systems are usually driven by 
competing forces. Therefore, it seems reasonable to consider the possibility that physio-
logical systems may exhibit temporal dynamics that are similar to those found in physical 
systems. Indeed, concepts and techniques originating in statistical physics are promising 
for quantitative analysis of complex physiological systems. In this review, we apply vari-
ous tools from statistical physics to problems in cardio-vascular physiology. 

The essential physiological functions of the cardio-pulmonary system are to main-
tain gas exchange and supply the organs and cells of the body with oxygenated blood. 
Exchange of oxygen and carbon dioxide occurs in the lungs at the level of the air sacs 
called the alveoli. Fresh air flows into the lung through the airways which constitute a  
3-dimensional branching structure. The air diffuses through the thin walls of the capillar-
ies into the blood. The oxygenated blood then enters the heart through the pulmonary 
circulation. The coordinated electrical activity of the heart provides a rhythmic contrac-
tion of the heart muscles and the oxygenated blood is pumped through the arteries into 
the body including the brain and the extremities [1]. 

The structure as well as the functioning of the cardio-pulmonary system are complex 
and include subsystems that are themselves inhomogeneous and irregular. The three-
dimensional structure of the airways is a well-known example of a complex fractal  
structure where the branching pattern repeats itself over multiple length scales [2].  
In disease, segments of the airway tree can become blocked by fluid plugs during  
expiration. The reopening of the closed airway segments during inspiration occurs in  
avalanches and the size distribution of the avalanches follows a power law [3]. The pul-
monary vascular tree running parallel to the airway tree is also a fractal structure [4] and 
the resistance to blood flow of the tree shows scaling behavior [5]. Another example of 
tree-like structures is the electrical fiber network of the heart tissue, the His-Purkinje 
conduction system, through which propagating voltage pulses generate complex patterns 
with fractal properties [6].  

Physical measurements on various parts of the cardio-pulmonary system display 
fluctuations at scales spanning several orders of magnitude. However, not only the struc-
ture, but various physiological time series obtained in the cardiopulmonary system are 
extremely inhomogeneous and non-stationary, fluctuating in an irregular and complex 
manner. In the medical literature, these fluctuations are often regarded as noise and  
neglected. However, these fluctuations often carry important information about the struc-
ture and function of the heart and lungs. Examples include fluctuations in heart rate [7], 
respiratory rate [8], lung volume [9], ventilation and perfusion [10], tidal volume, end-
expiratory oxygen and carbon dioxide levels [11], and blood flow [12, 13]. 

In the following sections, we examine fluctuations and scaling relationships in 
cardio-pulmonary physiology in terms of distributions and correlations. Specifically, we 
explore the degree to which concepts developed in statistical physics can be usefully  
applied to physiological structures and signals. The focus will be on the interpretation of 
the various scaling behaviors in the normal and diseased states of the cardio-pulmonary 
system. First, we overview fluctuations and scaling respiratory rate variability in terms of 



March 24, 2003 15:47 WSPC/167-FNL 00114

Scaling in Cardio-Pulmonary Physiology R3

a neural network model. Next, we illustrate the problems related to physiologic signal 
analysis with representative examples of human heartbeat dynamics under healthy and 
pathologic conditions. We then examine the avalanche behavior of airway openings as 
well as the scaling behavior of crackling sound generated during the process of airway 
openings. We also examine the relationship between the scaling properties and the design 
features of the pulmonary vascular tree. Finally, we show how the network failure of 
lung tissue structure leads to emphysema, a leading cause of respiratory disability and 
death worldwide.  

2. Breathing Irregularities in Infants and the Singularity of the Respiratory 
Oscillator 

Newborns and premature infants often develop irregular breathing patterns suggesting 
that there are important developmental differences in respiratory regulation during the 
postnatal period compared with later life [14]. Such irregularities may potentially lead to 
life-threatening periods of insufficient breathing 
(hypopneas) that occur in early life in pre- 
term infants and which may also occur in  
infants at risk for sudden infant death syndrome 
(SIDS). The major underlying factors responsible 
for these irregularities may include immaturity of 
the brain stem rhythm generators [15] and 
immature central and peripheral chemoreceptors 
[16]. Scaling laws and modeling can have a 
significant impact on the characterization and 
understanding of the fluctuations in breathing 
irregularities. 
 
2.1  Irregularities and scaling in inter-breath 

intervals 

Recently, Frey et al. [8] reported long-term 
measurements of breathing pattern in term and 
preterm infants. Figure. 1 shows a typical example 
of inter-breath intervals of a preterm baby at  
post-conceptional ages of 39 (Fig. 1(A)) and 61 
(Fig. 1(B)) weeks. The inter-breath intervals were 
calculated from abdominal movements using a 
threshold algorithm. Each inter-breath interval 
includes an apneic period (time period between  
two full breaths) and potentially several small 
insufficient tidal excursions (hypopneas) which do 
not reach a certain threshold level and hence do 
not provide adequate gas exchange. From Fig. 1, it 
is apparent that this particular baby’s breathing 
pattern is highly irregular at 39 weeks, but the 
fluctuations are significantly reduced by 61 weeks  
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Fig. 1.  Time series of inter-breath inter-
vals  in a baby at post-conceptional ages of 
38 (A) and 61 (B) weeks. (C) Distribution 
of inter-breath intervals and regression 
lines. From Ref. 8 with permission. 
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when the baby’s breathing pattern is more mature. The mean and standard deviation (SD) 
of inter-breath intervals are 5.2 ± 8.2 s and 1.4 ± 0.9 s at 39 and 61 weeks, respectively. 
There is a four fold decrease in the mean, but the decrease in SD is nearly 10 fold  
suggesting that there is critical information in the fluctuations. Indeed, displayed on a 
double logarithmic graph, both distributions have a peak around 1 s followed by a linear 
decrease (Fig. 1(C)) which implies that the distributions have a power law tail. Interest-
ingly, while maturation preserved the power law form, the negative slope of a straight 
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statistically significantly (p < 0.002) from 2.56 ± 0.4 to 3.2 ± 0.4. These data imply that 
1) preterm babies have larger fluctuations with smaller exponents than term babies at the 
same postnatal age and 2) the exponent is well suited to characterize the fluctuations and 
maturations with advancing age. 
 
2.2  Neural network model of breathing 

To interpret these findings, Frey et al. [8] used a neural network model originally pro-
posed by Botros and Bruce [17] which offers a possible explanation of the statistical 
characteristics of the breathing pattern shown in Fig. 1. The model is based on the as-
sumptions that there is noise in the neural network regulating the control of breathing and 
that this noise level is changing with maturation. Possible biological evidence for this 
assumption is given below. 

To reproduce the observed irregularities, noise was added to the neural oscillator 
model of Botros and Bruce [17], which transforms tonic neural inputs (TNI) into a regu-
lar rhythm and hence breathing. The model consists of five coupled nonlinear differential 
equations corresponding to the activities of five neuron groups in the respiratory center. 
The ramp-inspiratory neuron group provides periodic outputs to the phrenic nerve similar 
to measured data. Therefore, the time interval 
between the peaks of the output of the ramp-
inspiratory neurons can be taken as proportional 
to inter-breath interval. As a first step, uniformly 
distributed noise with small SD was added to the 
TNI of the first or ramp-inspiratory group 
(TNI1). With suitable choice of parameters, the 
obtained time sequence reproduces the 
occurrences of high spikes similar to those in 
Figs. 1(A) and (B). The time series of the model 
has a power law distribu��
���������%�������#���
power law distributed inter-breath interval 
sequence is generated within the respiratory 
oscillator. First, fluctuations in TNI1 lead to 
irregularities in inter-breath intervals. Second, 
as TNI1 decreases, the inter-breath-intervals di-
verge (Fig. 2) with a singularity. If a uniformly 
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network. Inter-breath interval diverges as
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distributed noise explores such a singularity, i.e., it is subject to a power law transforma-
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the noise SD is small, then, in the vicinity of the mean of TNI1, a power law fit of the 
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�	����	pproximation (Fig. 2 inset). Thus, for small 
SD the uniform noise in TNI1 is transformed into a power law distributed noise due to 
the singularity. However, the exponent obtained from the simulations may be slightly 
������������
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�����	����%���(��)'��elationship, being determined by the average of 
the local slopes on the singularity curve sampled by TNI1. This model is also capable of 
accounting for maturation. Increasing the mean of TNI1 results in a decreas����'�+1�����.��
������ ��� �!��� �����	
�
� ��� 2��
�����ly, we conclude that maturation corresponds to a 
shift of the mean of TNI1 away from the singularity. Indeed, if we increase the mean 
TNI1 in the model, we find again a power law dis����!����,-,������
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which is in accord with the distribution in Fig. 1C at PCA = 61 weeks. Thus, by examin-
ing the effects of only TNI1, we can demonstrate a mechanism that generates a power 
law distribution of fluctuations in breathing pattern which also explains maturation. 
However, in reality, all TNIs can be noisy and the measured distribution of the inter-
breath intervals will be determined by their combined effects. Indeed, the singular behav-
ior in Fig. 2 is robust since the inter-breath intervals also diverge with respect to several 
other TNIs. 

The correspondence between the various neural functions and the parameters of  
the model are relatively well understood [17, 18] and the original model accounts for 
much of the neurophysiology of respiratory control in newborns [19]. This allows us to 
establish three key ingredients necessary to qualitatively and quantitatively reproduce  
the observed irregularities. First, the existence of inherent noise is responsible for the 
irregularities. Besides the noisy operation of neurons, the heterogeneity of maturation of 
the vagal nerve (myelination) may play a role in infants [20]. Since this myelination 
process mainly determines the speed of propagation of action potentials, noise appears 
due to the heterogeneity of transmission times in a nerve consisting of a bundle of paral-
lel neurons. Second, the existence of a singularity that produces large variations in  
inter-breath intervals for small variations in a TNI is needed to reproduce the statistical 
properties of irregularities. If the average value of one or more TNIs is sufficiently close 
to a singularity of the oscillator, then the irregularities will be distributed according to a 
power law. The existence of a certain type of singularity in the respiratory oscillator has 
indeed been experimentally observed [21]. Nevertheless, the precise nature of the singu-
larity in the infant respiratory oscillator is largely unknown. Third, with maturation, a 
shift in TNI away from this singularity significantly reduces the irregularities that appear 
in the breathing pattern of infants and accounts for the changes in the exponent with in-
creasing age. Finally, since the exponent is sensitive to maturation, it has the potential to 
be used as a simple index for evaluating the likelihood of very long insufficient breathing 
periods in various groups of infants such as preterms or those who are at risk for SIDS. 
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3. Scaling Behavior in Heart Rate 
Variability 

In recent years the study of the 
statistical properties of heartbeat 
interval sequences has attracted  
the attention of researchers from 
different fields [22–25]. Analysis has 
focused extensively on interbeat 
interval variability as an important 
quantity to help elucidate possibly 
nonhomeostatic physiologic vari-
ability because: (i) the heart rate is 
under direct neuroautonomic control, 
(ii) interbeat interval variability is 
readily measured by noninvasive 
means, and (iii) analysis of these 
heart rate dynamics may provide 
important practical diagnostic and 
prognostic information. Figure 3 top 
shows a cardiac interbeat time se- 
ries — the output of a spatially and 
temporally integrated neuroauto-
nomic control system. The time 
series shows “erratic” fluctuations 
and “patchiness”.  These fluctuations 
are usually ignored in conventional 
studies which focus on averaged 
quantities. In fact, these fluctuations 
are often labeled as “noise” to dis-
tinguish them from the true “signal”  
of interest. Generally, in the con-
ventional approach it is assumed that 
there is no meaningful structure in 
apparent noise and, therefore, one 
does not expect to gain  any under-
standing about the underlying system 
through the study of these fluctua-
tions. However, by adapting and 
extending methods developed in 
modern statistical physics and non-
linear dynamics [26], we find that the physiologic fluctuations shown in Fig. 3 top ex-
hibit an unexpected hidden scaling structure [7, 27, 28, 29, 30, 31].  Furthermore, the 
dynamical patterns of these fluctuations and the associated scaling features change with 
pathological perturbations. These findings raise the possibility that understanding the 
origin of such temporal structures and their alterations with disease may elucidate certain 
basic aspects of heart rate control mechanisms, and may have potential for clinical moni-
toring. 

Fig. 3. (Top) Consecutive heartbeat intervals measured in
seconds are plotted vs beat number from a record of a
healthy subject. The time series exhibits very irregular and
nonstationary behavior. (Middle) Color coded wavelet
analysis of a heartbeat interval signal.  The x-axis repre-
sents time (~1700 beats) and the y-axis indicates the scale
of the wavelet used (a=1,2,…,80; i.e. from ~5 seconds to 5
minutes) with large scales at the top. This wavelet decom-
position reveals a self-similar fractal structure in the
healthy cardiac dynamics - a magnification of the central
portion of the top panel with 200 beats on the x-axis and
wavelet scale a=1,2,…,20 on the y-axis shows similar
branching patterns (bottom). From Ref. 30 with permis-
sion. 
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3.1  Generalized distributions of interbeat intervals 

Quantifying the probability distribution of heartbeat fluctuations can provide insights into 
the underlying dynamical processes because the distribution of interbeat intervals is di-
rectly related to the mechanisms which control heart rate variability. Therefore, by find-
ing consistent features of the distribution which are robust with respect to different 
healthy subjects, we can quantify physiologic dynamics. However there are important 
technical difficulties which must be overcome first. Among the possible reasons why an 
interbeat interval histogram can differ from case to case are: i) histograms can differ be-
cause they have different means and standard deviations but follow the same functional 
form ii) histograms are described by different functional forms i.e., they belong to differ-
ent classes of processes. The first type of difference is commonly observed in physio-
logical data and should be taken care of by properly “renormalizing” (with respect to the 
mean and standard deviation) the histogram. If we assume that heart rate control mecha-
nisms in healthy subjects follow the same general set of dynamical rules, then we expect 
that some variables of the system's output will be described by a single, well-defined dis-
tribution function. Functional differences between distributions, on the other hand, can be 
a result of altered mechanisms, and could be indicative of pathological behavior. 

Direct analysis of heartbeat interval histograms does not lead to separation between 
healthy and abnormal cardiac dynamics leading to the incorrect conclusions that no per-
tinent information related to the underlying dynamics can be extracted [32]. Such histo-
grams measured directly for each subject do not converge to a single representative curve 
describing healthy dynamics [27].  Even rescaling the time series to give all histograms 
identical means and variances does not lead to a common curve and does not  
distinguish clearly between signals from healthy and sick subjects. The problem is that:  
i) masking effects of non-stationarities in the signal have to be first properly reduced; and 
ii) different time scales of analysis have to be used to observe dynamical patterns corre-
sponding to the actual time scales of the underlying physiological processes. 

To address these problems, the 
cumulative variation amplitude analysis 
(CVAA) method was developed [7]. This 
method comprises sequential application 
of a set of algorithms based on wavelet and 
Hilbert transform analysis. The wavelet 
transform allows one to “extract” from the 
data particular features — it probes the 
fluctuations in the heart rate signal at 
different time scales. In addition to 
extracting the variations over given time-
scales in the heart rate signal, the wavelet 
transform reduces masking effects of the 
non-stationarities, since the analyzing 
wavelet can be chosen orthogonal to local 
polynomial trends [33]. The wavelet trans-
form is thus a cumulative measure of the 
variations in the heart rate signal over a 
region proportional to the wavelet scale  
a, so the study of the behavior of  
 

Fig. 4. Group average of the rescaled distributions of 
the cumulative variation amplitudes for the healthy 
individuals during nocturnal hours. The observed 
Gamma scaling remains stable for a wide range of the 
wavelet transform scales a. From Ref. 7 with permis-
sion. 
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the wavelet values can reveal intrinsic properties of the dynamics masked by non-
stationarity. The next step of the CVAA is to extract the amplitudes of the variations in 
the beat-to-beat signal by means of an analytic signal approach [34] which also does not 
require stationarity.  

Inspection of the distribution functions of the amplitudes of the cumulative varia-
tions for the healthy subjects reveals that these distributions are well fit by the general-
ized homogeneous form [36] - the Gamma distribution. Our results show that a common 
scaling function defines the probability density of the magnitudes of the variations in the 
beat-to-beat intervals for each healthy subject [7, 27]. To test the hypothesis that there is 
a hidden, possibly universal, structure to these heterogeneous time series, we rescale the 
distributions and find for all healthy subjects that the data conform to a single scaled plot 
(“data collapse”) [7, 37]. Such behavior is reminiscent of a wide class of well-studied 
physical systems with universal scaling properties [37]. In contrast, subjects with sleep 
apnea, a common cardio-pulmonary disorder, show individual probability distributions 
that fail to collapse [7, 36].  The collapse of the individual distributions for all healthy 
subjects after rescaling their individual parameter is indicative of a “universal” structure. 
The term “universal” is used in the sense that a closed mathematical scaling form is  
established describing in a unified quantitative way the cardiac dynamics of all healthy 
subjects.  

An analysis of the heart rate dynamics for healthy subjects during the daytime  
(noon – 6 p.m.) and nocturnal (12 a.m. – 6 a.m.)  hours indicates that the observed uni-
versal behavior holds not only for the night phase but for the day phase as well. Thus the 
observed feature is independent of apparent external activity-related influences but rather 
relates to the intrinsic mechanisms or cardiac regulation.  Semilog plots of the averaged 
distributions show a systematic deviation from the exponential form (slower decay) in 
the tails of the night-phase distributions, whereas the day-phase distributions follow the 
exponential form over practically the entire range [27].  Note that the tail of the distribu-
tion for the night phase surprisingly indicates higher probability of larger variations in the 
healthy heart dynamics during sleep hours in comparison with the daytime dynamics. 
Moreover, we observe for the healthy group good data collapse with a stable scaling form 
for a broad range of wavelet (time) scales a = 2 up to a = 64 corresponding to time scales 
from few seconds to 5–6 minutes (Fig. 4). The stability of this scaling form indicates that 
the underlying dynamical mechanisms regulating the healthy heart beat have similar sta-
tistical properties on different time scales.  
 
3.2  Correlation properties of interbeat intervals 

A quantity widely used to measure correlations in a time series is the power spectrum, 
which measures the relative frequency content of a signal. The analysis of heart beat fluc-
tuations focused initially on short time oscillations associated with breathing and blood 
pressure as well as other control [22]. Studies of longer heartbeat records revealed 1/f-
like scale-free behavior [38]. A power spectrum calculation assumes that the signal stud-
ied is stationary [34], and when applied to non-stationary time series can lead to mislead-
ing results.  However, time series of beat-to-beat (RR) heart rate intervals obtained from  
digitized electrocardiograms are typically non-stationary (Fig. 3 top). Recently, the  
detrended fluctuation analysis (DFA) method [39] was introduced to accurately quantify 
long-range correlations in physiological fluctuations when these are embedded in a seem-
ingly non-stationary time series. The advantage of the DFA method over conventional 
methods is that it avoids the spurious detection of apparent long-range correlations that 
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are an artifact of non-stationarity related 
to linear and higher order polynomial 
trends in the data.   

We analyze the nocturnal and diurnal 
fractions of the dataset of each subject, 
which correspond to the 6h  (n ��22,000 
beats) from midnight to 6am and noon to 
6pm. These periods include segments 
with the lowest and highest heart rates in 
the time series, which we and others 
found to be the best indirect marker of 
sleep. We find that the data during wake 
hours display long-range power-law 
correlations over several decades with 
average exponent �W ��1.05 for the 
healthy group [28], suggesting fractal 
organization in heartbeat fluctuations. 
These correlations change for the heart 
failure patients which are characterized by 
�W ��1.2 during wake hours. For the sleep 
data, we find a systematic crossover at 
scale n ��60 beats followed by a scaling 
regime extending over two decades char-
acterized by a smaller exponent: �S ��0.85 
for the healthy and �S � 0.95 for the heart 
failure group (Fig. 5) [40].  We also find 
that for all individuals studied, the heartbeat dynamics during sleep are characterized by a 
smaller exponent [40].  To test the robustness of our results, we analyze datasets from 
cosmonauts during long-term orbital flight on the Mir space station under the extreme 
conditions of zero gravity and high stress activity.  Each dataset contains continuous pe-
riods of 6h data under both sleep and wake conditions.  We find that for all cosmonauts 
the heartbeat interval series exhibit long-range correlations with scaling exponents con-
sistent with those found for the healthy terrestrial group: �W ��1.04 for the wake phase 
and �S ��0.82 for the sleep phase [40]. The values of these exponents indicate that the 
fluctuations in the interbeat intervals are anticorrelated for the wake phases and even 
stronger anticorrelated for the sleep phase. This sleep-wake scaling difference is observed 
not only for the group averaged exponents but for each individual cosmonaut dataset 
(Fig. 5(b)).  Moreover, the scaling differences are persistent in time, since records of the 
same cosmonaut taken on different days (ranging from the 3rd to the 158th day in orbit), 
exhibit a higher degree of anticorrelation in sleep. Thus, the larger values for the wake 
phase scaling exponents observed for healthy subjects cannot be a trivial artifact of activ-
ity. Furthermore, the larger value of the average wake exponent for the heart failure 
group compared to the other two groups cannot be attributed to external stimuli either, 
since patients with severe cardiac disease are strongly restricted in their physical activity. 
We note, however, that the average sleep-wake scaling difference remains the same 
(��0.2) for all three groups.  Such sleep-wake changes in the scaling characteristics may 
indicate different regimes of intrinsic neuroautonomic regulation of the cardiac dynam-
ics, which may “switch” on and off in accordance with circadian rhythms. A recent study 

Fig. 5. Log-log plots of the average root-mean-
square fluctuation function F(n) vs. number of beats 
n for 6h wake (open circles) and sleep records 
(filled triangles) of (a) one typical healthy subject; 
and (b) one cosmonaut (during orbital flight). Note 
the systematic lower exponent for the sleep phase 
(filled triangles), indicating stronger anticorrelations 
in the heartbeat fluctuations. From Ref. 40 with 
permission. 
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confirms our finding of lower value for the scaling exponent during sleep and shows that 
different stages of sleep (e.g. light sleep, deep sleep, rapid eye movement stages) could 
be associated with different correlations in the heartbeat fluctuations [41]. The findings 
of stronger anticorrelations [40], as well as higher probability for larger heartbeat 
fluctuations during sleep [7, 27, 36] are of interest from a physiological viewpoint, since 
they suggest that the above dynamical characteristics are related to intrinsic mechanisms 
of neuroautonomic control, and support a reassessment of the sleep as a surprisingly 
active dynamical state.  

The finding of scaling features in the human heartbeat and their change with disease 
or sleep-wake transition have motivated new modeling approaches to better understand 
heart rate regulation [42]. The statistical self-similarity, as observed in the stable form of 
the probability distributions (Fig. 4) as well as in the power-law long-range correlations 
of the heart beat fluctuations (Fig. 5), is an important characteristic of fractal objects [43]. 
The wavelet decomposition of beat-to-beat heart rate signals can be used to provide a 
visual representation of this fractal structure (Fig. 3 middle and bottom). The brighter 
colors indicate larger values of the wavelet amplitudes (corresponding to large heartbeat 
fluctuations) and white tracks represent the wavelet transform maxima lines.  The struc-
ture of these maxima lines shows the evolution of the heartbeat fluctuations with scale 
and time revealing a self-similar cascade — a magnification of the central portion of the 
top panel shows similar branching patterns (Fig. 3 bottom).  Such fractal cascade results 
from the interaction of many nonlinearly coupled physiological components, operating 
on different scales (polynomial trends due to daily activity are filtered out).  

3.3  Multifractal behavior in heart rate 
control 

Monofractal signals are homogeneous in  
the sense that they have the same sca- 
ling properties, characterized locally by  
a single singularity exponent h0, through-
out the entire signal. Therefore, mono-
fractal signals can be indexed by a single 
global exponent — the Hurst exponent  
H ��h0 [44] — which suggests that they  
are stationary from the viewpoint of their 
local scaling properties.  However, there is 
growing evidence that heartbeat dynamics 
exhibits nonlinear properties [7,23,25] 
which are often associated with multi-
fractal behavior. Multifractal signals can 
be decomposed into many subsets —  
possibly infinitely many — characterized 
by different local Hurst exponents h,  
which quantify the local singular behavior 
and hence relate to the local scaling of  
the time series. Thus, multifractal sig- 
nals require many exponents to fully 
characterize their scaling properties [43]  
 

Fig. 6. Multifractal spectrum D(h). The shape of D(h)
for the individual records and for the group average
is broad (∆h ≈ 0.25),  indicating multifractal behavior
for healthy heart beat dynamics.  On the other hand,
D(h) for the heart failure group is very narrow (∆h ≈
0.05), indicating loss of multifractality.  The different
form of D(h) for the heart failure group may reflect
perturbation of the cardiac neuroautonomic control
mechanisms associated with this pathology. Note,
that for q=2 the heartbeat fluctuations of healthy
subjects are characterized by h≈0.1, which corre-
sponds to α≈1.1 for the interbeat interval series ob-
tained from DFA analysis. From Ref. 29 with per-
mission. 
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and are intrinsically more complex, and inhomogeneous, than monofractals. The statisti-
cal properties of the different subsets characterized by these different exponents h can be 
quantified by the function D(h), where D(ho) is the fractal dimension of the subset of the 
time series characterized by the local Hurst exponent ho. Thus, the multifractal approach 
has the potential to describe a wide class of signals that are more complex than those 
characterized by a single fractal dimension. 

In a recent study, by means of a wavelet-based multifractal formalism [33], we estab-
lish the relevance of the multifractal formalism for the description of a physiological sig-
nal - the human heartbeat. We have shown that healthy human heartbeat dynamics ex-
hibit higher complexity (than previously expected from the finding of fractal 1/f scaling) 
which is characterized by a broad multifractal spectrum (Fig. 6) [29]. In particular, we 
find that that for healthy subjects, D(h) has nonzero values for a broad range of local 
Hurst exponents h (Fig. 6). The multifractality of healthy heartbeat dynamics cannot be 
explained by activity, as we analyze data from subjects during nocturnal hours.  Further-
more, this multifractal behavior cannot be attributed to sleep-stage transitions, as we find 
multifractal features during daytime hours as well [45].  The range of scaling exponents 
— 0 < h < 0.3 — with nonzero fractal dimension D(h), suggests that the fluctuations in 
the healthy heartbeat dynamics exhibit anti-correlated behavior (h = 1/2 corresponds to 
uncorrelated behavior while h > 1/2 corresponds to correlated behavior).  

In contrast, we find that heart rate data from subjects with a pathological condition — 
congestive heart failure — show a clear loss of multifractality.  For the heart failure 
subjects D(h) is non-zero only over a very narrow range of exponents h indicating  
monofractal behaviour (Fig. 6). Furthermore, our tests indicate that the observed multi-
fractality is related to nonlinear features of the healthy heartbeat dynamics — we find an 
explicit relation between the nonlinear features (represented by the Fourier phase interac-
tions) and the multifractality of healthy cardiac dynamics [29, 31]. The origin and nature 
of these Fourier phase interactions remain an open question. Nevertheless, the detection 
of robust fractal and multifractal scaling in the heart rate dynamics is of interest because 
it raises the intriguing possibility that the control mechanisms regulating the heartbeat 
interact as part of a coupled cascade of feedback loops in a system operating far from 
equilibrium — an extraordinarily complex behavior which in physical systems has been 
connected with turbulence and related multiscale phenomena [46]. 

4. Dynamics of Airway Opening and Crackles 

The ventilation of the lung occurs via the airway tree which is a 3-dimensional binary 
tree forming a fractal structure [2]. In the normal lung and under natural breathing condi-
tions, all airways are open providing only airflow resistance to breathing. The airways 
and alveoli are coated with a thin liquid layer containing surfactant. When the outward 
elastic tethering forces become smaller than the inward surface tension generated forces, 
the segment closes either via developing a liquid bridge [47, 48]. Thus, airway segments 
can develop closure when lung volume is lowered below the so called closing volume. 
Additionally, in diseases such as asthma, airway closure can also develop during normal 
breathing [49] due to the inward force generated by the contractile apparatus of airway 
smooth muscle cells. If the closed segment do not reopen during inspiration, then ventila-
tion and gas exchange will be seriously impaired leading to potentially lethal situations 
such as an asthma attack. However, if a closed segment reopens, a short “explosive'' tran-
sient waves, called crackle, is generated.  Forgacs was the first to propose that crackles 
are associated with sudden opening of closed airways [50]. The discrete emission of 
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crackles from the lung tissue has also been 
modeled as a stress-relaxation quadrupole [51], 
and this work has received experimental support 
[52]. Despite the fact that characteristics of 
individual crackles have long been used as 
diagnostic tools [53, 54], the statistical 
properties of crackles have only been recently 
analyzed [55, 56]. In the next sections, we 
examine the avalanche-like re-opening pheno-
menon and the statistical properties associated 
crackle sound. 

4.1  Avalanches in airway opening 

We examine the phenomenon of airway 
closure and reopening using a simple model 
of the periphery of the airway tree (Fig. 7). 
To mimic closure, we assume that every seg-
ment of the tree is collapsed. An airway re-
opens when the pressure across it reaches a 
critical threshold, the opening pressure Pth 
[48]. It is unlikely that two airways would have the same opening pressure and we as-
sume that Pth is uniformly distributed between 0 and 1 [3, 57]. Here 0 corresponds to the 
pressure at the lowest lung volume (residual volume) whereas 1 corresponds the pressure 
at total lung capacity. During inflation, the pressure P is increased at the root of the tree 
(segment #1) at a constant rate. If the pressure behind the closures is 0 then the pressure 
across a collapsed segment is also P. When P reaches the opening pressure Pth of an air-
way, the airway suddenly opens. The local process of opening is an sudden rupture of the 
liquid film between the walls of the airway and consequently a short sound burst, called 
crackle, is generated locally 
[50, 55, 56]. As inflation 
proceeds, segment #2 would 
open at P = 0.3. However, 
segment #2 will not exper-
ience this pressure until the 
root opens. When the root 
opens, segment #2 suddenly 
becomes exposed to a higher 
pressure than its own open- 
ing pressure and opens in a 
short time. Once segment #2 
opened, segment #3 also be-
comes exposed to P = 0.5 and 
it too opens with segment #2. 
This process leads to an ava-
lanche of openings [3]. The 
avalanche-like opening is a 

Fig. 7. A 4-generation tree model of the airways.
The numbers in brackets are segments opening in
an avalanche (thick lines) when pressure P=0.5.
Thin lines are segments that have not opened.
The numbers to the right of the segments are the
normalized opening pressures. 

Fig. 8. 3-dimensional model of the airway tree before (left) and
after (right) an avalanche suddenly opens many segments. White
and red are open and closed segments, respectively.  
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consequence of the hierarchical structure of the tree because the connectivity of the tree 
imposes constraints on the possible sequence of openings [3,57]. An avalanche in a 3-
dimensional tree structure [2] is visualized in Fig. 8. 

 
4.2  Scaling in crackling sound  

To characterize the avalanche process, one can analyze the time series of crackles emitted 
during opening. A crackle consists of an initial acoustic spike corresponding to the rup-
ture of the liquid film followed by a damped acoustic ringing . The presence of the initial 
spike makes it easy detect a crackle. The time series of inter-crackle intervals measured 
in a real lung at the root of the tree (trachea) during inflation shows a complex behavior. 
Indeed, recent experiments have provided evidence of two separate scaling regions in the 
distribution of inter-crackle in-
tervals (Fig. 9). The first regime, 
between time intervals of 10-4 and 
10-3 s, is due to the fact that the 
avalanche propagation speed is 
finite. Numerical simulations 
suggest that this first power law 
region is related to the distribution 
of opening time delays, which in 
turn is related to the length 
distribution of the airway segments 
[56]. Since the airway tree is self-
similar [2, 58] the length distribu-
tion is a power law. Thus, the 
exponent is likely to be related to 
the exponent of the airway length 
distribution. The second regime, 
between time intervals of 0.1 and 
10 s, is due to inter-avalanche 
timing. This process is related to 
the propagation of an “active 
surface”, defined as the closed seg-
ments connected to the root via 
open segments, on a Cayley tree. It 
has been shown using mean field 
calculations that the waiting times 
between avalanches are distributed 
according to a power law with an exponent that is close to 2 with a correction factor in-
versely proportional to the size of the tree [56]. Figure 9 shows that the numerical model 
developed by Alencar et al. [56] is able to fit the data over a range of 5 orders of magni-
tude in inter-crackle intervals. Additionally, as crackles propagate up the tree, the sound 
amplitude is attenuated at successive bifurcations. Interestingly, the distribution of 
crackle amplitudes measured in the bronchi is also a power law with an exponent that is 
related to airway geometry at bifurcations [55]. An analytical scaling relation has also 
been developed for the amplitude distribution [55]. We conclude that by measuring 
crackles in the lung and analyzing the distributions of the amplitudes and time intervals,  
 

Fig. 9.  Data analysis. (a) Linear-log plot of one example of
inter-crackle intervals, in seconds, against consecutive spike
numbers. (b) Histogram of inter-crackle intervals measured
during the inflation of dog lungs (symbols). Dashed lines
show linear regression with exponents.  The arrows indicate
the beginning and ending of the plateau region. Solid line is
model simulation. From Ref. 56 with permission. 
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significant structural information can be obtained about the airway tree structure and the 
nature of airway closure [59]. Further studies are needed to assess whether these expo-
nents are sensitive for the presence of disease in the lung. 

5. Pulmonary Arterial Tree Design 

The pulmonary arterial tree, like many other biological distribution networks, is a  
complex structure (Fig. 10(A)).  Its primary functions are to deliver the blood to the pul-
monary capillaries in proportion to local ventilation while providing the appropriate im-
pedance for the output of the right ventricle.  Its complex appearance tends to obscure a 
direct intuitive assessment of its key design features with respect to these functions.  The 
following represents one approach to this question.  

 

5.1  Morphometry 

The initial step is a quantitative summary of the tree structure referred to as morphome-
try.  Morphometric data have generally been obtained from plastic corrosion casts 
[60,63,66,67,68,76,79,82], and data obtained using imaging methods are becoming avail-
able [62,70,75].  The data consist of measurements of diameters lengths and numbers of 
vessels, and are commonly summarized by binning according to some ordering scheme 
[4,66,68].  

Figure 10(B) is one graphic representation of the resulting binned or ordered data, 
wherein the number, N, of vessels in order j is plotted against mean diameter, D , in order 
j.  Despite differences in branching patterns observable at a macroscopic level, these 
graphs are remarkably similar for all the species studied, with the most notable difference 
being in the intercept values reflecting the differences in lung size.  The value 
of β (defined as minus the slope of the log Nj vs. log D ) is a measure of the taper be-
tween bifurcations along a pathway through the tree.  The range in the values 
of β obtainable from morphometric analysis of pulmonary arterial trees provided in Table 
1 is rather small, suggesting that deviations beyond this range incur a significant penalty 
in the evolutionary sense.  

The most common ordering system used to provide summary data such as in  
Fig. 10(B) and Table 1 is the Strahler system.  The Strahler system (Fig. 10(C)) starts 
with the terminal arterioles designated as order 1 [4,66,68]. When two vessel segments of 
the same order meet at a bifurcation, they converge into a parent vessel segment of the 
next higher order number.  When two vessel segments of different orders meet, the par-
ent order number is the higher of the two daughter orders.  Once the vessel segment or-
ders have been assigned, contiguous segments of a common order are combined into ves-
sels having the mean diameter and sum of the lengths of the combined segments.  Then 
the number, and the averages of the diameters and lengths of the vessels comprising each 
order make up the morphometric summary of the tree, which can be represented in 
graphical form as in Fig. 10(B).  Strahler ordering also captures the asymmetry of the tree 
as shown in Fig. 10(C).  That is, the average number ratio, B, between orders (reflected 
in the vertical differences between the points on a given plot in Fig. 10(B) is a measure of 
asymmetry defined as inequality in the numbers of bifurcations from inlet artery to ter-
minal arterioles among the various pathways through the tree. 
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Fig. 10. (A) A surface shaded rendering of a CT scan of a rat 
pulmonary arterial tree. (B) Graph of the number of vessels, 
N, in order j vs. the average diameter, D , of the vessels in j 
for the pulmonary arterial trees from several species. (C) A 
diagrammatic representation of Strahler ordering of a 
symmetrical tree on the left, for which B = 2, and an 
asymmetrical tree on the right, for which B = 2.85. The 
numbers beside the branches are the Strahler order numbers. 
(D) Model simulation intravascular pressure, P (normalized 
to the difference between the arterial inlet pressure and the 
pressure at the outlet of the terminal arteries) vs. the volume 
upstream from all of the locations within the tree at which 
pressure = P, Qcum (normalized to the total arterial volume), 
for three values of β (2, 2.5, and 3) and two values of B (2.0 
and 2.95).  (E) Model simulation coefficient of variation in 
terminal flows, CV, vs. β for three values of B (2.36, 2.7, and 
2.95).  The arrows identify the minimum CV for each value 
of B. Panels B and C reprinted from [4, pp. 407 and 410], by 
courtesy of Marcel Dekker. Inc. 
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For a symmetrical bifurcating tree, B = 2; B increases above 2 as the tree becomes more 
asymmetrical [4]. Values of B obtainable from the pulmonary arterial morphmetric litera-
ture are also presented in Table 1. 

 
Table 1. 

Species [ref] β B 

Dog  [76] 2.52  

Dog  [63] 2.55 3.67 

Cat  [82] 2.35 3.58 

Rat  [78] 2.15 2.76 

Rabbit  [61] 2.76  

Human  [66] 2.40 3.10 

Human  [67] 2.71 3.36 

5.2  Model 

An approach for examining the functional implications of the values of these mor-
phometric parameters is to construct a model that is consistent with obvious features of 
the real structure and in which the morphometric parameters obtainable from the data can 
be systematically varied to examine their effects [4,62,72].  In other words, with such a 
model, one can examine what deviations from the observed parameters values might pro-
duce a functional error signal upon which signal transduction mechanisms or evolution-
ary forces might act to constrain the network structure. 

5.3  Assignment of model vessel dimensions 

To construct a model tree for this purpose, we begin with the assumption that no two 
vessel segments have exactly the same diameter.  Each vessel segment that will comprise 
the tree is assigned a number (or rank) Ncum, that is 1 plus the number of vessels having 
diameter larger than D(Ncum).  Then, the diameter D of vessel Ncum is assigned by  
Eq. (1) [69]. 

 

D(Ncum) = D(1) Ncum + 0.5
1.5

– 1/β
 .                         (1) 

 
Another characteristic of the pulmonary arterial network established by the mor-

phometric data is that the average lengths, L, of the vessels are in nearly constant propor-
tion to their diameters [62, 78].  Thus, in the model, vessel lengths are also determined by 
equation 1 as a fixed multiple of diameter, D.  

5.4  Connecting vessels into a model tree structure 

The vessel segments are then connected together into a tree structure.  Asymmetry is  
controlled during the process of connecting the vessel segments by a parameter φ as  
follows.  The algorithm begins with vessel segment Ncum = 1 and proceeds through 
Ncum = (Ntot - 1)/2 (where Ntot is the total number of segments comprising the tree).  
Each vessel segment is randomly assigned one daughter (which will ultimately be the 
larger of the two daughters) from the unattached segments left in the sequence Ncum — 
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1 to 2Ncum.  After each Ncum through (Ntot - 1)/2 vessel has had one daughter attached, 
the remaining vessel segments (each of which will be the smaller of the two daughters at 
a bifurcation) are assigned to parents in the sequence of largest remaining daughter at-
tached to largest remaining parent.  To vary the asymmetry of the tree, limits are placed 
on the initial daughter assignment so that the choice of the largest daughter is among ves-
sel segments having Ncum less than or equal to, 2 times the parent Ncum but larger than 
the closest integer equal to or smaller than φ times the parent Ncum, where 1 < φ < 2.  
Thus, as φ approaches 1 or 2 the tree will be, respectively, more or less asymmetrical.  
Regardless of the degree of asymmetry the terminal vessels are from the Ncum sequence 
from (Ntot + 1)/2 to Ntot.  In other words, the terminal arterioles, i.e., those that would 
connect to the capillaries, are the smallest vessel segments in the tree.  This is a general 
characteristic of arterial trees, which ultimately have to connect to capillaries that have 
virtually a common diameter. 

When such a tree is Strahler ordered, the log Nj vs. log D  is approximately linear, 
with the model input value of -β as its slope [69].  Thus, an asymmetrical tree is con-
structed with this morphometric relationship predetermined.  In addition, as φ approaches 
1, the average number of vessels comprising an order, Bn-j, approaches 3n-j (where n is the 
total number of orders) rather than the 2n-j in a symmetrical tree, as in the Strahler or-
dered morphometric data from the human lung reported by Horsfield [66] and Table 1. 

5.5  Pressure and flow calculations 

Having constructed the simulated tree as indicated above, the individual vessel segment 
flow rate is determined by first calculating the Poiseuille resistance of each segment.  The 
total downstream resistance at each branch point is then calculated successively begin-
ning with the subtended terminal vessel segments.  Then for a given total flow and a 
common terminal outlet pressure, the pressure and the flow division at each bifurcation 
can be recursively calculated for each bifurcation from the two parallel total downstream 
resistances.  Recognizing that in a real arterial tree the vessel diameters are pressure de-
pendent, an implicit assumption is that the model vessel diameters are those that would 
exist at the vascular pressures output by the simulations. 

5.6  Simulations 

For the simulations presented herein the model trees are comprised of approximately one 
million vessel segments.  The local pressure, flow, volume, and diameter outputs are 
normalized to the total arterial pressure drop, inlet flow, and total arterial volume, and 
inlet diameter, respectively, because particular values can be achieved by adjusting scal-
ing factors: total inlet flow, viscosity, D(1), and L/D.  In addition, the longitudinal (inlet 
artery to terminal arteriole) distribution of intravascular pressure is expressed as a func-
tion of cumulative intravascular volume, Qcum (defined as the total volume upstream 
from all those sites within the arterial tree where the pressures are equal).  The intravas-
cular pressure, P(Qcum), is plotted as a function of Qcum rather than diameter or dis-
tance from the arterial inlet, because, in the asymmetrical heterogeneous tree, there is no 
common isobaric diameter or distance.  Thus, Qcum is a more concisely stated independ-
ent variable in this context.  The parallel distribution of terminal flows is represented by 
its coefficient of variation. 

Model simulations presented in Figs. 10(D) and 10(E) show how the longitudinal 
distribution of intravascular pressure (the longitudinal distribution of resistance being one 
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determinant of the arterial impedance) and the distribution of terminal flows (the capil-
lary perfusion distribution being one determinant of efficency of transport between blood 
and tissue or between blood and alveolar gas), respectively, are affected by variations 
in β and B. It can be seen that β is a key determinant of the longitudinal pressure profile, 
P vs Qcum, and that P vs Qcum is robust with respect to the asymmetry of the tree re-
flected in B.  On the other hand, the parallel distribution of terminal flows is affected by 
both β and B (Fig. 10(E)).  It is not surprising that the coefficient of variation, CV, in 
terminal flows would depend on the asymmetry of the tree, but the effect of β on the flow 
distribution may be less easily anticipated.  For a given B, there is a β that minimizes the 
variation in flows.   

The model simulations suggest that in a vascular tree that is consistent with the 
model assumptions, there is an optimal value of the taper reflected by β resulting in a 
minimum variation in terminal flows, the greater the asymmetry (larger B) the greater the 
taper (smaller β) will need to be.  The reason for the impact of the value of β on the dis-
tribution of terminal flows is apparently as follows.  The smaller the value b, the larger is 
the fraction of the total vascular the resistance concentrated in the small vessels and the 
more the larger arteries act as a relatively constant pressure manifold through which flow 
can be distributed among parallel pathways with relatively small resistance over a rela-
tively large fraction of the distance along each pathway. This would tend to reduce the 
impact of the variation in distances traveled on terminal flows.  However, as β gets 
smaller the variation in diameters at a given level in the tree increases, tending to in-
crease the heterogeneity in flows among asymmetrically arranged parallel vessels.  Thus, 
if β is too small, the variation in diameters among parallel vessels begins to have a more 
dominant effect on the distribution of terminal flows.   

Of course the model is a simplified version of any real vascular tree.  For example, 
values of B obtainable from available morphometric studies fall between about 2.8 and 
3.7 (Table 1), whereas the model maximum is 3.  However, the trends suggest that the 
results with more asymmetrical trees are predicable.  While it is clear that the local flows 
can be quite heterogeneous in normal lungs [64], there are limits on the heterogeneity 
in local flows consistent with optimal gas exchange efficiency, and, in general, the  
efficiency of solute transport between blood and tissue is inversely proportional to the 
variance in the distribution of flows in the vessels involved in the transport [65].  Thus, it 
is conceivable that, given the asymmetry needed to distribute flow throughout an odd 
shaped structure like the lungs, efficiency with regard to the transport within the  
microvasculature may be part of the evolutionary pressure determining the taper ex-
pressed by β.  Other optimality criteria have been evaluated as they might apply to the 
vascular structure-function relationship.  Probably the most extensively studied is that  
of Murray’s Law, which links structure, energy cost, and shear stress distribution 
[4,71,73,74,76,78,83].  Deviations from Murray’s law in real vascular trees [4,60,80,81] 
suggests that other aspects of organ function may need to be considered as well.  These 
may include those affected by the heterogeneity of the flow distribution. 

6. Alveolar Tissue Structure in Emphysema 

Emphysema, one type of chronic obstructive pulmonary disease (COPD) mostly induced 
by smoking, is a disease of the elastic fiber network of the lung tissue which is slowly 
destructed over a time period of 5-20 years [84]. High resolution computed tomography 
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(CT) is a sensitive method to examine lung structure and its alterations induced by COPD 
or other diseases such as fibrosis [85, 86].  
 
6.1  Distribution of low attenuation area clusters in CT images 

Characterization of CT images can be achieved as 
follows.  First, we generate low attenuation area (LAA) 
clusters. Pixels in the image with density less than a 
selected threshold (-960 Hounsfield units) are 
designated as low density tissue (containing mostly air) 
and assigned a value of 1, whereas pixels with density 
larger than the threshold are designated as tissue 
assigned a value of 0. A LAA cluster is then defined as a 
contiguous region with values of 1. The total number of 
pixels of such a LAA cluster provides the cluster size. 
These binary maps exhibit spatial heterogeneity with 
many irregular clusters of widely varying sizes (Fig. 11). 
In clinical applications, the sum of the clusters, the total 
LAA, is used  to characterize the progression of the 
disease. The total LAA is, however, the same as the  
average cluster size which does not reflect the 
irregularities in cluster size and shape. Thus, it is 
important to examine the probability distribution of 
LAA cluster sizes. Indeed, it has been reported that the 
size distribution of LAA clusters follows a power law 
for both normal subjects and patients with chronic obstructive pulmonary disease 
(COPD) [87]. The exponents of the LAA cluster distribution are sensitive to the pro-
gression of emphysema because 
as Fig. 12 shows, the exponent 
decreases with disease severity 
[87]. Thus, the likelihood of 
finding a large LAA cluster, 
where elastic recoil of the tissue 
and gas exchange are compro-
mised, is much higher in COPD 
than in normal subjects. Interest-
ingly, normal subjects and pa-
tients with early emphysema have 
similar total LAA. However, the 
exponent is smaller in early 
emphysema (Fig. 13). This sug-
gests that the spatial organization 
of LAA clusters is different in 
COPD than in normal subjects 
[87]. Thus, the exponent is 
sensitive to early microstructural 
reorganization of the tissue due to 
the progression of emphysema. 
 

Fig. 11. CT image of the lung of an
emphysematous patient. Color clus-
ters represent contiguous Low At-
tenuation Areas. From Ref. 87 with
permission. 

Fig. 12. Cumulative distribution of cluster sizes in 5 emphy-
sematous patients. Severity of emphysema increase from 1
to 5. The exponent of the distributions decreases with
increasing severity. From Ref. 87 with permission. 
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6.2  An elastic network model of CT images 

The relative total LAA (total LAA normalized by the number of pixels in the lung filed) 
is similar to the probability of occupying a site in percolation. One might be attempted to 
use percolation models [88] to describe the process of tissue breakdown. However, since 
the exponent of the distribution varies from subject to subject even at the same relative 
total LAA, general percolation models are not appropriate. In order to better understand 
the breakdown of lung tissue structure, a large 2-dimensional elastic network model  
representing a slice of lung tissue has been developed [87]. The network consists of a  
500 x 500 square lattice of Hookean springs having identical spring constants. The bor-
der nodes of the lattice are fixed, but the internal nodes are free to move. To account for 
an LAA cluster in a CT image, we first randomly remove a node from the lattice. Next, 
we perform a random walk starting from the removed node. Along this random walk, we 
remove S adjoining nodes, each time cutting all springs that are connected to the nodes. 
This produces a cluster of S+1 points removed from the original lattice. To create multi-
ple LAA clusters, we repeat this process NP times with a different randomly selected 
seed point and vary S uniformly between 0 and Smax. The equilibrium configuration of 
the remaining nodes can be found by simulated annealing [87, 89]. The coordinates of 
each node are changed in small steps along the direction of the resultant force acting on it 
by its connecting springs, until the elastic potential energy of the entire network is mini-
mized. The area enclosed by the LAA clusters are measured numerically and the cluster 
size distribution and the total LAA are calculated.  

 
6.3  Network breakdown 

The elastic network model has only two parameters: Smax and NP. The total LAA can be 
increased by increasing Smax and/or increasing NP. We choose Smax to be either 10 or 
20 and varied NP between 1% and 16% of the total number of nodes. The cluster distri-
butions from the model simulations also follow power laws (not shown) similar to those 
in Fig. 12. As NP is increased the 
distribution becomes wider, covering 
almost 4 orders of magnitude when 
NP=16%. The solid line in Fig. 13 
shows that the variation of the 
exponents with the normalized total 
LAA from the model is in quantita-
tive agreement with those obtained 
from the CT images. 

The process of tissue break-
down is based on the assumption  
that mechanical forces can rupture 
the tissue [87]. We set up a threshold 
force and eliminate all the springs 
from the network which carries a 
force higher than the threshold. Next, 
the threshold is lowered and more 
springs are eliminated from the net-
work. The underlying assumption is 
that with the progression of the 

Fig. 13. Exponent D of the cumulative distributions of
cluster sizes from Ref. [89] as a function of the percent
Low Attenuation Area (LAA%) in normal (open symbols)
and emphysematous (filled symbols) subjects. Solid line is
model simulation. Based on Ref. 87 with permission. 
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disease, enzymes chemically weaken the tissue and the tissue breaks at points of high 
force concentration. This model predicts that initially an LAA cluster grows slowly 
around its perimeters, but soon significant stress concentration develops on alveolar walls 
separating two neighboring LAA clusters. When the wall separating two clusters breaks, 
the clusters coalesce which results in a sudden rearrangement of the structure. Next, the 
forces are redistributed along the perimeter of the new cluster which starts growing 
slowly until it coalesces with another cluster. This process is similar to crack propagation 
in plastic materials which occurs in avalanches following a power law distribution [90]. 
Thus, it is not surprising that the shape of the LAA distribution remains a power law fol-
lowing the propagation of cracks. However, the coalescence of clusters decreases the 
exponent because essentially we take away two small clusters (decreasing their probabil-
ity) and add one larger cluster (increasing their probability) so the distribution flattens. 
Additionally, following a coalescence of two neighboring clusters, only a narrow region 
of non-LAA pixels separating the clusters change to LAA pixels. Therefore, the total 
LAA increases minimally. This explains that the total LAA in early emphysema is nearly 
normal, but the exponent is sensitive to small changes in cluster reorganization [87]. Fi-
nally, we also note that experiments have recently been reported supporting the notion 
that mechanical forces during breathing are capable of rupturing lung tissue structure 
[91]. 

7. Conclusion 

Fluctuations in the cardiopulmonary system carry important information about its struc-
ture and/or functioning. Quantifying the fluctuations using statistical mechanical tools 
can reveal hidden dynamics and may help early detection of diseases or improve progno-
sis of exacerbations. Analytical and numerical modeling can help better understand these 
scaling laws which may shed light on the origins of the fluctuations and perhaps the 
mechanism of how a particular disease develops or propagates. 
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