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Abstract

This manuscript is a brief summary of a talk designed to address the question of whether

two of the pillars of the 2eld of phase transitions and critical phenomena—scale invariance

and universality—can be useful in guiding research on interpreting empirical data on economic

"uctuations. Using this conceptual framework as a guide, we empirically quantify the relation

between trading activity—measured by the number of transactions N—and the price change G(t)

for a given stock, over a time interval [t; t + 7t]. We relate the time-dependent standard de-

viation of price changes—volatility—to two microscopic quantities: the number of transactions

N (t) in 7t and the variance W 2(t) of the price changes for all transactions in 7t. We 2nd

that the long-ranged volatility correlations are largely due to those of N . We then argue that the

tail-exponent of the distribution of N is insu<cient to account for the tail-exponent of P{G¿x}.
Since N and W display only weak inter-dependency, our results show that the fat tails of the

distribution P{G¿x} arises from W . Finally, we review recent work on quantifying collective

behavior among stocks by applying the conceptual framework of random matrix theory (RMT).

RMT makes predictions for “universal” properties that do not depend on the interactions be-

tween the elements comprising the system, and deviations from RMT provide clues regarding

system-speci2c properties. We compare the statistics of the cross-correlation matrix C—whose

elements Cij are the correlation coe<cients of price "uctuations of stock i and j—against a

random matrix having the same symmetry properties. It is found that RMT methods can distin-

guish random and non-random parts of C. The non-random part of C which deviates from RMT

results, provides information regarding genuine collective behavior among stocks. We also discuss

results that are reminiscent of phase transitions in spin systems, where the divergent behavior of

the response function at the critical point (zero magnetic 2eld) leads to large "uctuations, and

we discuss a curious “symmetry breaking”, a feature qualitatively identical to the behavior of

the probability density of the magnetization for 2xed values of the inverse temperature. c© 2001

Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, physicists have started applying concepts and methods of statistical

physics to study economic problems. The word “Econophysics” is sometimes used

to refer to this work. Much recent work is focused on understanding the statistical

properties of 2nancial time series. One reason for this interest is that 2nancial markets

are examples of complex interacting systems for which huge amounts of data exist and

it is possible that 2nancial time series viewed from a diOerent perspective might yield

new results. This article reviews the results of several recent studies, with emphasis on

studies carried out by the authors.

(i) The probability distribution of stock price 6uctuations. Stock price "uctuations

occur in all magnitudes, in analogy to earthquakes—from tiny "uctuations to drastic

events, such as market crashes. The distribution of price "uctuations decays with a

power-law tail well outside the LLevy stable regime and describes "uctuations that

diOer by as much as 8 orders of magnitude. In addition, this distribution preserves its

functional form for "uctuations on time scales that diOer by 3 orders of magnitude,

from 1 min up to approximately 10 days.

(ii) Correlations in 7nancial time series. While price "uctuations themselves have

rapidly decaying correlations, the magnitude of "uctuations measured by either the

absolute value or the square of the price "uctuations has correlations that decay as a

power-law and persist for several months.

(iii) Correlations among di8erent companies. The third result bears on the appli-

cation of random matrix theory to understand the correlations among price "uctua-

tions of any two diOerent stocks. From a study of the eigenvalue statistics of the

cross-correlation matrix constructed from price "uctuations of the leading 1000 stocks,

we 2nd that the largest ≈ 5% of the eigenvalues and the corresponding eigenvectors

show systematic deviations from the predictions for a random matrix, whereas the rest

of the eigenvalues conform to random matrix behavior—suggesting that these 5% of

the eigenvalues contain system-speci2c information about correlated time evolution of

diOerent companies.

(iv) Similarities with critical point phenomena. We also discuss results that are

reminiscent of phase transitions in spin systems, where the divergent behavior of the

response function at the critical point (zero magnetic 2eld) leads to large "uctuations.

In particular, we discuss a curious “symmetry breaking” for values of � above a certain

threshold value �c; here � is de2ned to be the local 2rst moment of the probability

distribution of demand �—the diOerence between the number of shares traded in

buyer-initiated and seller-initiated trades. This feature is qualitatively identical to the
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behavior of the probability density of the magnetization for 2xed values of the inverse

temperature.

2. Price �uctuations and market activity

Empirical evidence has been mounting to support the intriguing possibility that a

number of systems arising in disciplines as diverse as physics, biology, ecology, and

economics may have certain quantitative features that are intriguingly similar. These

properties can be conveniently grouped under the headings of scale invariance and

universality [1]. Scale invariance refers to a hierarchical organization that results in

power-law behavior over a wide range of values of some control parameter—such as

species size, heartbeat interval, or 2rm size—and the exponent of this power-law is

a number characterizing the system. By universality, we mean a tendency for the set

of exponents found for diverse systems to partition themselves into distinct “univer-

sality classes”, with the property that all systems falling into the same universality

class have the same exponent—suggesting that there are features in common among

the underlying microscopic mechanisms responsible for the observed scale invariant

behavior.

Researchers have found new and surprising results by applying concepts and methods

of scale invariance and universality to the economy. The economy is perhaps the most

complex of all complex systems [2–8]. A very small piece of “bad news” in a remote

market may trigger a very large response in 2nancial indices all over the globe. The

societal impact of such economic "uctuations can be devastating. Privately, economists

will con2rm that the probability of such an “economic earthquake”—a sudden and

disastrous “phase transition” from the present healthy state of our economy to a new

state of a completely devastated economy—is not entirely negligible. A celebrated

example of the societal devastation caused by economic earthquakes is the collapse of

the German economy following World War I, which directly contributed to the rise of

Hitler. Another example is the recent “devaluation” in Indonesia that has contributed

to the starvation of Indonesia’s poor.

In the case of economics, virtually every economic transaction has been recorded—

somewhere. The challenge is to obtain the needed data and to analyze them in such

a way as to reveal the underlying principles. Remarkably, one 2nds that if one makes

a histogram of price changes for any stock (the analog of the Gutenberg–Richter his-

togram of earthquake magnitude [9,10]) this histogram is very close to a power-law

[11,12]. This discovery suggests that large shocks are related in a scale invariant fash-

ion to smaller, commonplace, economic "uctuations—i.e., large shocks and everyday

economic "uctuations are basically diOerent manifestations of the same phenomenon.

The greatest societal impact occurs when “the big one” occurs, whether it be a geophys-

ical earthquake or an economic earthquake. Hence scaling concepts make it possible

for scientists to understand these rare but catastrophic events through appropriately

designed research focused on everyday phenomena.
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Stock price "uctuations display distinctive statistical features that are in stark contrast

to those of a simple random walk (“diOusion”) model. Consider price change

G(t) ≡ ln S(t + 7t) − ln S(t) ; (1)

de2ned as the change in the logarithm of price S(t) over an interval 7t. Empirical work

shows that the distribution function PG{G¿x} has tails that decay as a power-law

PG{G¿x} ∼ x−� ; (2)

with � larger than the upper bound (�= 2) for LLevy stable distributions [11–13]. In

particular, studies on the largest 1000 US-stocks [12] and 30 German stocks [11] show

mean values of � ≈ 3 on time scales 7t6 1 day. Secondly, it is found that although

the process G(t) has a rapidly decaying autocorrelation function 〈G(t)G(t+ �)〉, which

at time scales �¡ 30 min, shows signi2cant anti-correlations (bid–ask bounce) for indi-

vidual stocks, but cease to be statistically signi2cant for larger time scales. Higher-order

two-point correlation functions show quite a diOerent behavior. For example, the auto-

correlation function of the absolute value of price changes show long-range persistence

〈|G(t)| |G(t + �)|〉 ∼ �−� ; (3)

with � ≈ 0:3 [14–16].

The problem of understanding the origin of these features is a challenging one

[17,18]. This paper reviews recent work which focuses on a much more modest goal of

trying to understand, starting from transactions, how these statistical features—fat-tailed

distributions and long-ranged volatility correlations—originate. We shall show that the

price changes, when conditioned on the volatility, have tails that are consistent with

those of a Gaussian. In addition, we shall show that the long-ranged correlations in

volatility arise from those of trading activity measured by the rate of occurrence of

trades N . However, the distribution characteristics of trading activity implies that the

fat tails of G cannot arise solely due to N . We relate the fat-tailed behavior of G to

those of “transaction-time” volatility W which, roughly speaking, measures the impact

of trades.

Let us start by examining the conventionally used “geometric”-variant of Bachelier’s

“classic diOusion” model. The rationale for this model arises from the central limit

theorem by considering the price changes G in a time interval 7t as being the sum

of several changes �pi, each due to the ith transaction in that interval,

G ≡
N
∑

i=1

�pi ; (4)

where N is the number of transactions (trades) in 7t. If N�1, and �pi have 2nite

(constant) variance W 2, then one can apply the central limit theorem, whereby one

would obtain the result that PG(G) is Gaussian with variance �2 =W 2N , and therefore

prices evolve with Gaussian increments. It is implicitly assumed in this description that

N is almost constant, or more precisely, N has only narrow (standard deviation much

smaller than the mean) Gaussian "uctuations around a mean value. Let us start by

asking to what extent this is true.
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Let us 2rst quantify the statistics of N . We 2rst analyze the distribution of N for

1000 stocks, and 2nd that P(N ) decays as a power-law,

PN{N ¿x} ∼ x−� ; (5)

with values of � around the average value �= 3:4 [19].

Since N behaves in a non-Gaussian manner, one can ask whether the exponent �

for the distribution of price changes PG{G¿x} ∼ x−� arises from the exponent � for

PN . To address this problem, we must 2rst quantify the relationship between G and

N . Consider the conditional distribution PG|N;W (G|N;W ) for given values of N and

W . If we assume that the changes �pi due to each transaction in 7t are i.i.d., then

the variance of G(t) in that time interval will be W 2N . Thus, the width of the condi-

tional distribution PG|N;W (G|N;W )—probability density of G for given values of N and

W—will be the standard deviation W
√
N , which measures the local volatility. If we

next hypothesize that the functional form of PG|N;W (G|N;W ) does not depend on the

values of W or N , then we can express

PG|N;W (G|N;W ) =
1

W
√
N
f

(

G

W
√
N

)

; (6)

where the function f has the same form for all values of W and N . 1 In other words,

during periods of large W
√
N , the conditional distribution PG|N;W (G|N;W ) will have

large width.

We seek to quantify the functional form of the conditional distribution PG|N;W . Under

our hypothesis, determining the conditional distribution is tantamount to determining

the functional form f, which is accomplished by considering a “scaled” variable

� ≡ G

W
√
N
; (7)

which is free of the eOects of "uctuating W
√
N . Our examination of the distribution

P�(�) shows that it is consistent with Gaussian behavior [19]. Thus, the conditional

distribution is consistent with the functional form 2

PG|N;W (G|N;W ) � 1√
2�W

√
N

exp

( −G2

2W 2N

)

: (8)

We are now in a position to relate the statistical properties of G and N . One can

express the distribution of price changes PG in terms of the conditional distribution

PG|N;W (G|N;W ) or, equivalently, in terms of f,

PG(G) =

∫

1

�
f

(

G

W
√
N = �

)

PW
√
N (�) d� ; (9)

1 The hypothesis that the conditional distribution has the same form for all W and N might strike the reader

as surprising since one expects the conditional distribution to be increasingly “closer” to a Gaussian for

increasing N . Strictly speaking, if W and N are independent, then the hypothesis would be exact only for

a stable distribution for �pi such as a Gaussian (consistent with our 2ndings later in the text).
2 The � sign is used because although the tails of the conditional distribution are consistent with Gaussian,

the central part is aOected by discreteness of price changes in units of 1=16 or 1=32 of a dollar.
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where PW
√
N denotes the probability density function of the variable W

√
N . Since f

is consistent with Gaussian, it is clear that the fat tails in G must arise due to the

mixing of the conditional distribution, averaged over all possible widths W
√
N .

Next, we examine how the statistics of W and N relate to the statistics of G. First,

we examine the equal-time dependence of W and N and 2nd that the equal-time

correlation coe<cient is small, suggesting only weak interdependence [19]. Therefore,

the contribution of N to the distribution PW
√
N in Eq. (9) goes like the distribution

of
√
N . We have already seen that the distribution PN{N ¿x} ∼ x−� with � ≈ 3:4.

Hence

P√
N{y ≡

√
N ¿x} ∼ x−2� (10)

with 2� ≈ 6:8. Therefore, N alone cannot explain the value � ≈ 3. Instead, � ≈ 3

must arise from elsewhere. In fact, when we repeat the analysis through to W7t [19],

we 2nd that the distribution

PW{W7t¿x} ∼ x−� (11)

decays with an exponent � ≈ 3, which is also the contribution of W to the distribution

PW
√
N . Therefore, the averaging in Eq. (9) gives the asymptotic behavior of PG to be a

power-law with an exponent �. Indeed, our mean estimates of � and � are comparable

within error bounds [12,19]. Thus, the power-law tails of PG(G) appear to originate

from the power-law tail in PW (W ).

We also analyze correlations in N . Instead of analyzing the correlation function di-

rectly, we use the method of detrended "uctuation analysis [20]. We plot the detrended

"uctuation function F(�) as a function of the time scale �. Absence of long-range cor-

relations would imply F(�) ∼ �0:5, whereas

F(�) ∼ �! (12)

with 0:5¡!6 1; this implies a power-law decay of the correlation function,

〈[N (t)][N (t + �)]〉 ∼ �−!cf ; [!cf = 2 − 2!] : (13)

We obtain the value ! ≈ 0:85 for the same 2ve stocks as before. On extending this

analysis for a set of 1000 stocks, we 2nd the mean value !cf ≈ 0:3 [19]. It is possible

to relate this to the correlations in |G|, which is related to the variance V 2 of G.

From Eq. (4), we see that V 2
˙ N under the assumption that �pi are independent.

Therefore, the long-range correlations in N is one reason for the observed long-range

correlations in |G|. In other words, highly volatile periods in the market persist due to

the persistence of trading activity.

Naturally, the mechanisms that give rise to the observed long-range correlations in

N are of great interest. In Ref. [21], this problem is investigated using a continuous

time asynchronous model. Recently, it was argued that these correlations could arise

from the fact that agents in the market have the choice between active and inactive

strategies [22].

Finally, we discuss the role of the share volume traded to explain the statistical

properties of price "uctuations. Intuitively, one expects that the larger the trade size,
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the greater the price impact, and hence the larger the volatility. Therefore, one expects

the volatility to be related to the number of shares traded (share volume). Indeed, it

is a common Wall Street saying that “it takes volume to move stock prices”. We 2nd

[23] that the number of shares qi traded per trade has a power-law distribution with

tail-exponents $ which are in the LLevy stable domain. Therefore, one can express the

number of shares Q traded in 7t as

Q=

N
∑

i=1

qi : (14)

Due to the LLevy stable tails of the distribution of q, Q scales like

Q= �N + N 1=$� ; (15)

where � is a one-sided LLevy stable distributed variable with zero mean and tail exponent

$, and � ≡ 〈qi〉.
Analyzing equal-time correlations, we 2nd, surprisingly, that the correlation coe<-

cients 〈�N 〉, 〈�W 〉 are small (average values of the order of ≈ 0:1). This means that

even if the number of shares traded are large (large �), volatility

V =W
√
N (16)

need not be. Thus, the previously found [24–27] equal-time dependence of volatility

V =W
√
N and share volume arises largely because of N . This is quite surprising since

it means that the size of the trade, on average, does not seem to have a direct in"uence

in generating volatility [28].

3. Collective behavior of stock price movements

The problem of quantifying cross-correlations between the price movements of dif-

ferent stocks is important not only from the point of view of understanding collective

behavior between the constituents of a complex system, but also from the point of

view of estimating the risk of a investment portfolio. The usual way of quantifying

cross-correlations is either by estimating the relevant “factors” or by principal compo-

nent analysis [29]. Here, we review some results of a diOerent approach to this problem

by applying methods of random matrix theory [30–38].

In order to quantify correlations, we 2rst calculate the price change (“return”) of

stock i= 1; : : : ; N over a time scale 7t de2ned in Eq. (1). We analyze L= 6448 records

30-min price changes Gi(t) for N = 1000 stocks (largest by market capitalization on

1 January 1994) for the two-year period 1994–1995. Since diOerent stocks have varying

levels of volatility (standard deviation), we de2ne a normalized return

gi(t) ≡
Gi(t) − 〈Gi〉

�i
; (17)
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where �i ≡
√

〈G2
i 〉 − 〈Gi〉2 is the standard deviation of Gi, and 〈· · ·〉 denotes a time

average over the period studied. We then compute the equal-time cross-correlation

matrix C with elements

Cij ≡ 〈gi(t)gj(t)〉 : (18)

By construction, the elements Cij are restricted to the domain −16Cij6 1, where

Cij = 1 corresponds to perfect correlations, Cij = − 1 corresponds to perfect anti-

correlations, and Cij = 0 corresponds to uncorrelated pairs of stocks. In matrix notation,

the correlation matrix can be expressed as

C =
1

L
GG

T ; (19)

where G is an N × L matrix with elements {gim ≡ gi(m7t); i= 1; : : : ; N ; m= 0; : : : ;

L− 1}, and GT denotes the transpose of G.

We analyze the distribution P(Cij) of the elements {Cij; i �= j} of the cross-correlation

matrix C. We 2rst examine P(Cij) for 30-min returns from the TAQ database for the

2-yr periods 1994–1995 and 1996–1997. We 2nd, 2rstly, that P(Cij) is asymmetric

and centered around a positive mean value (〈Cij〉¿ 0), implying that positively corre-

lated behavior is more prevalent than negatively correlated (anti-correlated) behavior.

Secondly, we 2nd that 〈Cij〉 depends on time, e.g., the period 1996–1997 shows a

larger 〈Cij〉 than the period 1994–1995. We contrast P(Cij) with a control—a corre-

lation matrix R with elements Rij constructed from N = 1000 mutually uncorrelated

time series, each of length L= 6448, generated using the empirically found distribution

of stock returns [12,11]. We 2nd that P(Rij) is consistent with a Gaussian with zero

mean, in contrast to P(Cij). In addition, we see that the part of P(Cij) for Cij¡ 0

(which corresponds to anti-correlations) is within the Gaussian curve for the control,

suggesting the possibility that the observed negative cross-correlations in C may be an

eOect of randomness.

Although by construction the elements of C are supposed to express the pairwise

correlations that exist in the system, in practice, their meaning is not clear because

of the time average involved in their calculation. Time averaging over a 2nite time

series introduces measurement “noise” whereas the use of long time series amounts to

averaging over possibly changing correlations. This raises the following problem: how

can we extract from C, the cross-correlations that are signi2cant?

The approach followed here is to compare the empirical cross-correlation matrix

C against the “null hypothesis” of a random matrix of the same type (“symmetry”).

Therefore, we consider a random correlation matrix

R=
1

L
AA

T ; (20)

where A is an N × L matrix containing N time series of L random elements with zero

mean and unit variance, that are mutually uncorrelated. By construction, R belongs to

the type of matrices often referred to as Wishart matrices in multivariate statistics [39].

The comparison between C and R is performed in the diagonal basis. Thus, we 2rst

compute the eigenvalues *k and eigenvectors uk , where k = 1; : : : ; N is arranged in order
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of increasing eigenvalues. Statistical properties of the eigenvalues of random matrices

such as R are known [40–42] in the limit of very large dimensions. Particularly, in

the limit N → ∞; L → ∞, such that Q ≡ L=N is 2xed, it was shown analytically

[41] that the distribution Prm(*) of eigenvalues * of the random correlation matrix R

is given by

Prm(*) =
Q

2�

√

(*+ − *)(*− *−)

*
; (21)

for * within the bounds *−6 *i6 *+, where *− and *+ are the minimum and maxi-

mum eigenvalues of R respectively, given by

*± = 1 +
1

Q
± 2

√

1

Q
: (22)

We now compare the eigenvalue distribution of C and compare against Prm(*). First,

we observe that the “bulk” of the eigenvalues of C are consistent with Prm(*) [30,31].

This suggests the randomness of the bulk which can be tested more rigorously by com-

paring against universal features of eigenvalue correlations of real symmetric random

matrices. Speci2cally, our examination of the eigenvalue spacing distribution shows

good agreement with the results for real symmetric (GOE-type) random matrices.

Secondly, we 2nd deviations from RMT for the largest few eigenvalues [32,33].

These deviations are also evident when one examines the distribution of eigenvector

components [30,31]. We 2nd that -(u) for a typical uk from the bulk shows good

agreement with the RMT result -rm(u). Similar analysis on the other eigenvectors

belonging to eigenvalues within the bulk yields consistent results, in agreement with

the results of the previous sections that the bulk agrees with random matrix predic-

tions. Consider next the “deviating” eigenvalues *i, larger than the RMT upper bound,

*i¿*+. For deviating eigenvalues, the distribution of eigenvector components -(u)

deviates systematically from the RMT result -rm(u).

Finally, we examine the distribution -(u1000) of the components of the eigenvector

u1000 corresponding to the largest eigenvalue *1000. We 2nd that -(u1000) deviates

signi2cantly from a Gaussian. Speci2cally, we observe from -(u1000) that all stocks

contribute almost equally, and the distribution is rather narrow, suggesting that this

eigenvector represents a collective mode in which all stocks participate. This notion can

be quanti2ed by comparing the price "uctuations of the portfolio de2ned by the u1000

against a standard measure of the "uctuations of the entire market—the "uctuations of

the S&P 500 index. This comparison results in an equal-time correlation coe<cient of

0:85 showing good agreement [38]. Thus, the eigenvector corresponding to the largest

eigenvalue represents a collective mode in which all companies participate.

The magnitude of the largest eigenvalue itself seems to re"ect the degree of collective

behavior, as can be seen by examining the time evolution of the largest eigenvalue. We

consider daily price "uctuations of 422 stocks for the years 1962–1996, and examine

the time evolution of the largest eigenvalue *422 compared against the time evolution

of the S&P 500 index and the S&P 500 volatility. The large downward movement of
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the index in 1987 corresponds to the 1987 crash, when all stocks in the market almost

simultaneously lost value; i.e., all stocks were moving more synchronously than usual.

We can also examine the remainder of the eigenvalues. Our analysis [40] shows that

the eigenvectors corresponding to these eigenvalues have signi2cant participants that

corresponds to major industry groups. Thus, remaining deviating eigenvectors quantify

collective behavior of stocks belonging to the same or related industries. We also

2nd that one of the deviating eigenvectors contains mainly stocks of 2rms having

business in Latin America. It is possible that this collective behavior is related to the

large currency-devaluation in Mexico during the end of 1994 [38]. Similar results were

obtained by using ultra-metric concepts by Refs. [43,44].

These deviating eigenvectors also have interesting dynamical features. For example,

we 2nd that the price "uctuations corresponding to the portfolios de2ned by the devi-

ating eigenvectors are characterized by time correlations that decay signi2cantly slower

than that for a random eigenvector or for an individual stock [38]. This is reminiscent

of the phenomenon of critical slowing down where collective modes of the system

display very large relaxation times in the vicinity of a critical point [45,46].

4. Some similarities with critical point phenomena

Just above, we mentioned one analogy between stock price "uctuations and dynamic

critical phenomena. Recent work suggests there may be additional analogies. For ex-

ample, it appears stock prices respond to "uctuations in demand, in a fashion that is

remarkably parallel to the way the magnetization of an interacting spin system responds

to "uctuations in the magnetic 2eld. Periods with large number of market participants

buying the stock imply mainly positive changes in price, analogous to a magnetic 2eld

causing spins in a magnet to align. Recently, Plerou et al. [47] addressed the question

of how stock prices respond to changes in demand. They quanti2ed the relations be-

tween price change G over a time interval 7t and two diOerent measures of demand

"uctuations: (a) /, de2ned as the diOerence between the number of buyer-initiated and

seller-initiated trades, and (b) �, de2ned as the diOerence in number of shares traded in

buyer and seller initiated trades. They 2nd that the conditional expectations 〈G〉/ and

〈G〉� of price change for a given / or � are both concave. They 2nd that large price

"uctuations occur when demand is very small—a fact which is reminiscent of large

"uctuations that occur at critical points in spin systems, where the divergent nature of

the response function leads to large "uctuations. Their 2ndings are reminiscent of phase

transitions in spin systems, where the divergent behavior of the response function at

the critical point (zero magnetic 2eld) leads to large "uctuations [48,1]. Further, Plerou

et al. [49] 2nd a curious “symmetry breaking” for values of � above a certain threshold

value �c; here � is de2ned to be the local 2rst moment of the probability distribution

of demand �, the diOerence between the number of shares traded in buyer-initiated

and seller-initiated trades. This feature is qualitatively identical to the behavior of the

probability density of the magnetization for 2xed values of the inverse temperature.
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