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In recent years, a considerable number of physicists have started applying physics con-
cepts and methods to understand economic phenomena. The term “Econophysics” is
sometimes used to describe this work. Economic fluctuations can have many repercus-
sions, and understanding fluctuations is a topic that many physicists have contributed
to in recent years. Further, economic systems are examples of complex interacting sys-
tems for which a huge amount of data exist and it is possible that the experience
gained by physicists in studying fluctuations in physical systems might yield new re-
sults in economics. Much recent work in econophysics is focused on understanding
the peculiar statistical properties of price fluctuations in financial time series. In this
talk, we discuss three recent results. The first result concerns the probability distribu-
tion of stock price fluctuations. This distribution decreases with increasing fluctuations
with a power-law tail well outside the Lévy stable regime and describes fluctuations
that differ by as much as 8 orders of magnitude. Further, this nonstable distribution
preserves its functional form for fluctuations on time scales that differ by 3 orders
of magnitude, from 1 min up to approximately 10 days. The second result concerns
the accurate quantification of volatility correlations in financial time series. While
price fluctuations themselves have rapidly decaying correlations, the volatility esti-
mated by using either the absolute value or the square of the price fluctuations has
correlations that decay as a power-law and persist for several months. The third re-
sult bears on the application of random matrix theory to understand the correlations
among price fluctuations of any two different stocks. We compare the statistics of the
cross-correlation matrix constructed from price fluctuations of the leading 1000 stocks
and a matrix with independent random elements, i.e., a random matrix. Contrary to
first expectations, we find little or no deviation from the universal predictions of ran-
dom matrix theory for all but a few of the largest eigenvalues of the cross-correlation
matrix.
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1. Introduction

The analysis of financial data using concepts and methods developed for physi-

cal systems has a long tradition [1–4] and has recently attracted the interest of

physicists [5–9]. Possible reasons for this interest include the scientific challenge of

understanding the dynamics of a strongly fluctuating complex system with a large

number of interacting elements.

One can ask how physicists can contribute to the search for solutions to the puz-

zles posed by modern economics that economists themselves have not yet solved?

One approach — in the spirit of experimental physics — is to begin with the empiri-

cal data that one can analyze in some detail, but without prior models. In economic

systems such as financial markets, one has available a great deal of data. Moreover,

if one has at one’s disposal the tools of statistical physics and the computing power

to carry out any number of approaches, this abundance of data is to great advan-

tage. Thus, for many physicists, studying the economy means studying a wealth

of data on a strongly fluctuating complex system. Indeed, physicists in increasing

numbers are finding problems posed by economics sufficiently challenging to engage

their attention [10–26].

Recent studies attempt to uncover and explain the peculiar statistical proper-

ties of financial time series such as stock prices, stock market indices or currency

exchange rates. The dynamics of financial markets is difficult to understand not

only because of the complexity of its internal elements but also due to the many

intractable external factors acting on it, which may differ from market to market.

Remarkably, the statistical properties of certain observables appear to be similar

for quite different markets [27], consistent with the possibility that there may exist

“universal” mechanisms.

The most challenging difficulty in the study of financial markets is that the

nature of the interactions between the different elements comprising the system is

unknown, as is the way in which external factors affect it. Therefore, as a start-

ing point, one may resort to empirical studies to help uncover the regularities or

“empirical laws” that may govern financial markets [28]. The interactions between

the different elements comprising financial markets generate many observables such

as the transaction price, the share volume traded, the trading frequency, and the

values of market indices. Recent empirical studies are based on the analysis of price

fluctuations. This talk reviews recent results on (a) the distribution of stock price

fluctuations and its scaling properties, (b) time-correlations in financial time series,

and (c) correlations among the price fluctuations of different stocks. Space limita-

tions restrict us to focusing mainly on our group’s work; a more balanced account

can be found in two recent books [5, 6], other articles in these proceedings, and two

other recent international conferences [7, 9]. Recent work in this field also focuses

on applications such as risk control, derivative pricing, and portfolio selection [29],

which shall not be discussed in this talk. The interested reader should consult, for

example, Refs. [5, 6] and [30].
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2. What is the Question?

The key question for physicists entering this field — or virtually any other field

physicists might enter — is “how do I quantify things?” There are many things to

quantify in economics.

An appropriate place to begin is with simple fluctuations. Consider a prototype

fluctuating quantity: stock market indices. If we make a graph on log-linear paper of

the value of the stock index as a function of time, we see fluctuations — sometimes

even dramatic fluctuations such as the negative 25 percent fluctuation on Black

Monday in 1987. When we first examine these fluctuations, those of us who have

worked in statistical mechanics naturally think of a simple one-dimensional random

walk — with the displacement of the random walk on the y-axis and the time on

the x-axis. When we do such a plot on a graph, we immediately see that the curve

produced does not agree with the empirical data for stock-price fluctuations.

If this approach is unhelpful, what do we do next? How are we to understand

these fluctuations? For that matter, why would we want to?

3. Why Do We Care?

There are many practical reasons for wanting to understand stock-price fluctuations.

The first reason is painfully obvious: although not everyone owns stocks, everyone

is powerfully affected by stock markets and financial systems. If a country goes

bankrupt and the food supply fails, the poorest citizens — who probably are not

stockholders — still suffer. Beginning to understand financial fluctuations means

beginning to understand risk, and if we can begin to quantify risk, then perhaps

we can develop ways to manage risk.

The second reason for wanting to understand stock-price fluctuations is simply

that people are interested in the topic. Within the physics community, econophysics

is a fast-growing subfield. The business community has become interested, and

recently there was an article on econophysics in the Wall Street Journal.

The third reason for wanting to understand stock-price fluctuations is intellec-

tual. The economy is a complex system, but is unlike other complex systems we

study, and offers unique intellectual opportunities. In most research on complex sys-

tems, we start with a general statement, invent some sort of theoretical model to

test the general statement, compare the data produced by the model with the gen-

eral statement, and only then, perhaps, compare the theoretical data with whatever

real-world data might be available. When the subject of research is the economy,

however, the situation is totally different. The economy is data-dominated. There

are huge quantities of data on the economy. Virtually every economic transaction

today is recorded. Many of these data are available on the internet. This “complex

system” has already been extensively analyzed, of course, and most of this analysis

has been done by economists. What can we physicists add to what has already been

done? How might our approach differ from that of economists?
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4. What Do We Do?

We start with the initial set of data: a simple time series giving the value of some

stock average as a function of time. How can we improve on the biased random

walk model to describe this set of data? We analyze a fundamental variable: the

change (g) in the value of this index over some time window (∆t). Obviously the

value of g depends on the size of ∆t, and on where in time we look at g. If what

we see in this initial data set does not conform to the behavior of a simple random

walk, perhaps we can find some correlations.

Our results show that when we examine the correlations in the price changes

themselves, g, using a log-linear scale (with the logarithmic y-axis showing the

price changes and the linear x-axis showing the time), an approximate straight line

is produced (see Ref. [31] and citations therein). This line extends out to about 20

minutes on the linear time scale, at which point it hits the noise level. A straight

line on log-linear paper indicates an exponential decrease, which is consistent with

these data in this autocorrelation function — with a time constant of about four

minutes. In order to make any money with this observed correlation, one would

have to react on a time scale significantly shorter than four minutes.

When we examine the correlations in the absolute value of g, we discover not

exponential behavior but power-law behavior. On the logarithmic y-axis we now

have the autocorrelation function of the absolute values of g. This time the data

are only approximately straight over a little more than one decade. Although they

are quite noisy, they still approximate a power-law slope of 0.3.

To study this in more detail, we can analyze the power spectrum of the corre-

lation function. The slope of the power-law changes at approximately one day —

one slope with a value of 0.3 for time scales shorter than approximately one day

and another slope with a value of 0.9 for time scales longer than approximately one

day. The crossover at approximately one day is a genuine property of the data. If

we shuffle the data before we do the analysis, we end up with white noise.

To summarize thus far: because the experimental data display correlations with

a very short range (≈ 4 minutes), we cannot understand the time-series and the

fluctuations — and we cannot quantify them — simply by using second-order cor-

relation functions to explain the data.

What has been done traditionally in this field? In 1963, Benoit Mandelbrot

published a paper in which he analyzed the fluctuations in the market price of

cotton [4]. Available to him were 1000 data points in three different data sets, which

he used to analyze the histogram of the price changes of this single commodity. He

plotted the cumulative distribution function and then turned his attention to the

behavior of the tails of the distribution. He was familiar with Pareto’s work on

power-law tails, so he decided to use log-log plots of his data sets. For the three

data sets, he ended up with six curves — three for the positive tails and three

for the negative. Since the six all approximate a straight line, we know the tails

display a power-law behavior. Mandelbrot described the tails using an exponent, α,
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of approximately 1.7. This exponent falls within the range of that predicted by a

Lévy distribution, so Mandelbrot concluded that fluctuations in the price of cotton

could be described by a Lévy distribution. He also concluded that the exponent

was the same for time windows ranging from one day to one month.

Although Mandelbrot’s paper was seminal in the field, because he had only daily

and monthly data — and not shorter time-windows of ∆t — the data fluctuations

span only two orders of magnitude. Since we now have much more data available

to us, how do we extend the work Mandelbrot started?

This has been done by Rosario Mantegna, who has followed the same prescrip-

tion as Mandelbrot and has analyzed not fluctuations in cotton prices, but fluctu-

ations in the S&P 500 stock index, the weighted average of the 500 largest firms

in the US. He studied them not in daily time intervals, but in one minute time

intervals (roughly 300 times smaller) [18]. His data span six years. Thus he was

dealing with not 1000 records, but on the order of magnitude of one million records

— three orders of magnitude more data.

He has found that, out to approximately 5 or 6 standard deviations, the S&P 500

data conform to Mandelbrot’s Lévy distribution (but with a parameter α ≈ 1.4

instead of α ≈ 1.7). Beyond approximately 5 or 6 standard deviations, the data

deviate below the prediction of the Lévy distribution. This is probably a good

thing; if the Lévy distribution held out to, say, 20 standard deviations, one would

have many more Black Mondays. The fact that the data are truncated is also good

for an intellectual reason: Lévy distributions have an infinite variance, and this

truncation restores the finite variance. So the data are consistent with a truncated

Lévy distribution (“flight”) [32].

How robust is this truncated Lévy flight behavior? Skeltorp used the same ap-

proach to study the behavior of the OVX index of the Norwegian stock market

with equivalent time-interval ranges. The results are the same — the same Lévy

distribution seems to hold for 4 to 5 standard deviations, and then the data begin

to fall below the Lévy distribution. So this behavior does indeed seem robust.

Mantegna’s work has been extended by Gopikrishnan, who, instead of work-

ing with stock averages, worked with individual stocks (see Ref. [33] and citations

therein). Instead of the ≈ 2000 data points of Mandelbrot, or the ≈ 1.5 million

data points, of Mantegna, Gopikrishnan used≈ 40 million data points. He took the

1000 largest stocks, which, if simply averaged, look benign — but individually they

exhibit much larger fluctuations. When working with individual stocks, Gopikrish-

nan found the most useful minimum time window to be five minutes. Because the

plots from these short time windows of individual stocks are extremely noisy, the

cumulative distribution function (the integral of the pdf) is used. If you plot the

cumulative distribution function on a sheet of log-log paper, you see an approximate

straight line with a slope of ≈ −3. The slope for each stock will be slightly different.

If we make a histogram of all of the slopes of the stocks, we get a bell-shaped curve

centered around the value of 3.
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This is interesting because, in the previous work by Mandelbrot in which he

describes cotton-price fluctuations as a Lévy distribution, the bell-shaped curve is

centered around some value between 0 and 2 — which is one of the characteristics

of a Lévy distribution. The fact that Gopikrishnan’s bell-shaped curve is centered

around 3 means that the data are not described by a Lévy distribution in the tails.

Thus this surprising discovery disagrees with the classic work of Mandelbrot.

To check this discovery, Gopikrishnan and his collaborators spent a year and

a half checking their work. They found that the cumulative distribution function

on log-log paper is a function of the scale of returns of 100 standard deviations

follows a power law, i.e., has a slope of ≈ −3, which — irrespective of error bars —

excludes the value 2. The data are described by this power law distribution out to

10−8.

One physical implication of this is that “shocks” in the economy are not isolated

points that have to be added to the data. They are actually part of the data set. If

we return to the stock average provided by the S&P 500, we see the same cumulative

distribution function with the Lévy distribution in the center and a crossover — not

to an exponentially truncated tail, but to a power-law truncated tail, with α ≈ 3.

In conclusion, we can say that the price fluctuations of individual stocks are

consistent with this relatively simple power-law distribution and are at odds with

Mandelbrot’s Lévy distribution. They are consistent with the power-law distribu-

tion over fully 100 standard deviations. This distribution preserves its functional

form in time windows ranging from one minute up to almost 4 orders of magni-

tude. We can also say that the amplitudes of price changes, i.e., the absolute values

of price changes, display long-range correlations — even when the price changes

themselves do not.

5. Correlations among Different Units

Recently, the problem of understanding the correlations among the returns of dif-

ferent stocks has been addressed by applying methods of random matrix theory

to the cross-correlation matrix [34, 35]. Aside from scientific interest, the study of

correlations between the returns of different stocks is also of practical relevance in

quantifying the risk of a given portfolio [29]. Consider, for example, the equal-time

correlation of stock returns for a given pair of companies. Since the market condi-

tions may not be stationary, and the historical records are finite, it is not clear if

a measured correlation of returns of two stocks is just due to “noise” or genuinely

arises from the interactions among the two companies. Moreover, unlike most physi-

cal systems, there is no “algorithm” to calculate the “interaction strength” between

two companies (as there is for, say, two spins in a magnet). The problem is that

although every pair of companies should interact either directly or indirectly, the

precise nature of interaction is unknown.

In some ways, the problem of interpreting the correlations between individ-

ual stock-returns is reminiscent of the difficulties experienced by physicists in the
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fifties, in interpreting the spectra of complex nuclei. Large amounts of spectroscopic

data on the energy levels were becoming available but were too complex to be ex-

plained by model calculations because the exact nature of the interactions were

unknown. Random matrix theory (RMT) was developed in this context, to deal

with the statistics of energy levels of complex quantum systems [36–38]. With the

minimal assumption of a random Hamiltonian, given by a real symmetric matrix

with independent random elements, a series of remarkable predictions were made

and successfully tested on the spectra of complex nuclei [36]. RMT predictions rep-

resent an average over all possible interactions [37]. Deviations from the universal

predictions of RMT identify system-specific, non-random properties of the system

under consideration, providing clues about the underlying interactions [38].

Recently, Plerou and her collaborators analyzed the cross-correlation matrix

C ≡ Cij ≡ 〈GiGj〉 − 〈Gi〉〈Gj〉/σiσj of the returns at 30-minute intervals of the

largest 1000 US stocks for the two-year period 1994–1995. They analyze the sta-

tistical properties of C by applying techniques of random matrix theory (RMT)

[34, 35]. First, they test the eigenvalue statistics of the cross-correlation matrix for

universal properties of real symmetric random matrices such as the Wigner surmise

for the eigenvalue spacing distribution and eigenvalue correlations. Remarkably,

they find that eigenvalue statistics of the correlation matrix agree well with the

universal predictions of random matrix theory for real symmetric random matrices,

in contrast to our naive expectations for a strongly interacting system.

Deviations from RMT predictions represent genuine correlations. In order to

investigate deviations, we compute the distribution of the eigenvalues of the C and

compare with the prediction [34] for uncorrelated time series [39]. We find that the

statistics of all but a few of the largest eigenvalues in the spectrum of C agree with

the predictions of random matrix theory, but there are deviations for a few of the

largest eigenvalues [34, 35]. The deviations of the largest few eigenvalues from the

random matrix result are also found when one analyzes the distribution of eigen-

vector components. Specifically, the largest eigenvalue which deviates significantly

(25 times larger than random matrix bound) has almost all components partici-

pating equally and thus represents the correlations that pervade through the entire

market. This result is in agreement with the results of Laloux and collaborators

[34] for the eigenvalue distribution of C on a daily time scale.

6. How Economic Organizations Grow and Shrink

Most current research on the economy starts off by dividing the economy into sec-

tors: food, automotive, computer, entertainment, and so on. Then the interactions

between firms within a sector are analyzed, e.g., how does the behavior of General

Motors affect the behavior of Ford? The assumption is that firms that compete

directly affect each other’s behavior much more strongly than firms that do not.

Physicists look at this model and immediately see a similarity between it and

something we were playing with 30 years ago during the early days of critical
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phenomena research, when we divided a set of spins into cluster subsystems. We

treated exactly the interactions of a spin within the small cluster of spins surround-

ing it, and approximated the interactions between spins in that cluster and spins

in more distant clusters. We eventually abandoned these “effective field theories

of magnetism” because they failed to give information that was in accord with

accurate experiments.

What is the analogy with research on the economy? Direct interactions within

sectors (clusters) are obvious; if General Motors has quality-control problems, their

customers will start buying Fords. Indirect interactions between sectors (clusters)

may not be immediately obvious, but they are there; Ford has to hire more workers

to meet the rising demand for their cars and the McDonald’s outlet across the street

from the assembly plant has to expand to accommodate the much larger lunchtime

crowd.

It is a kind of spin-glass with both ferromagnetic and antiferromagnetic inter-

actions, both short-range and long-range. Unlike the spin-glass, however, we have

no a priori way to plausibly choose which interactions to study.

There are data available on the approximately 4000 publicly-traded firms listed

in the stock markets — by law they are required to make a great deal of information

public. One category of data that is often of interest is whether a firm is growing

or shrinking. The sales of a company this year divided by the sales last year is one

possible measure of the growth rate.

In making a histogram of growth rates, we could put all 4000 companies together

and make one single histogram. Instead, however, we divide the 4000 companies

into 20 “bins” according to each company’s size. When we do that, we get different

histograms for different sizes. Smaller companies can grow — or shrink — more

rapidly than larger companies. It is highly unlikely that Ford would grow or shrink

by a factor of 10 in a single year. On the other hand, a small company can — and

often will — grow or shrink by a factor of 10 in a single year. So each of the 10

histograms has a different characteristic standard deviation or “width.” The width

is found to be a decreasing function of the size of the firm — the larger the firm,

the smaller the width.

If we make a plot with the width on the y-axis and the firm size — measured in

amount of sales — on the x-axis, we find we have an approximate straight line over

eight or nine decades. If we make another plot, this time using number of employees

as the measure of firm size, we find we have another approximate straight line, this

time over roughly five decades. Remarkably, the slopes of these two straight lines

are identical. After checking this empirical law of economics by applying it to a

number of financial markets in countries other than those in the US, we find that

it is quite a robust law [40].

This law has also been applied to not just the financial status of firms and mar-

kets, but also to the overall economies of entire countries. Data obtained through

the Harvard Institute for International Development on the economies of 152 coun-

tries have been analyzed using the same procedures, and virtually the same results
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as those obtained for business firms were produced [41]. The law has also been

applied to data related to changes in the size of university research budgets [42], as

well as to data recording the changing populations of various species of birds [43],

and similar results were found in each case.

Buldyrev et al. models this firm structure as an approximate Cayley tree, in

which each subunit of a firm reacts to its directives from above with a certain

probability distribution [44, 45]. More recently, Amaral et al. [46] have proposed a

microscopic model that reproduces both the exponent and the distribution function.

Takayasu and Okuyama [40] extended the empirical results to a wide range of

countries.

7. Open Questions

Econophysics is a field wherein questions are as difficult to pose as to answer. The

empirical results shown above clearly beckon explanation. For example, in first

two sections, we have looked mainly at two empirical results: (i) the distribution of

fluctuations, which shows a power law behavior well outside the stable Lévy regime,

and yet preserves its shape — scales — for a range of time scales and (ii) the long

range correlations in the amplitude of price fluctuations. How are the two related?

Previous explanations of scaling relied on Lévy stable [4] and exponentially-

truncated Lévy processes [6, 18]. However, the empirical data that we analyze are

not consistent with either of these two processes. In order to confirm that the scal-

ing is not due to a stable distribution, one can randomize the time series of 1 min

returns, thereby creating a new time series which contains statistically-independent

returns. By adding up n consecutive returns of the shuffled series, one can construct

the nmin returns. Both the distribution and its moments show a rapid conver-

gence to Gaussian behavior with increasing n, showing that the time dependencies,

specifically volatility correlations are intimately connected to the observed scaling

behavior [33].

Using the statistical properties summarized above, can we attempt to deduce a

statistical description of the process which gives rise to this output? For example,

the standard ARCH model [28, 47] reproduces the power-law distribution of returns;

however it assumes finite memory on past events and hence is not consistent with

long-range correlations in volatility. On the other hand, the distribution of volatility

and that of returns which have similar asymptotic behavior, however support the

central ARCH hypothesis that g(t) = ε v(t), where ε is an i.i.d. Gaussian random

variable independent of the volatility v(t), and g(t) denotes the returns. A consistent

statistical description may involve extending the traditional ARCH model to include

long-range volatility correlations [48].

A more fundamental question would be to understand the above results starting

from a microscopic setting. Researchers have also studied microscopic models that

might give rise to the empirically observed statistical properties of returns [5, 10].

For example, Lux and Marchesi [10] recently simulated a microscopic model of
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financial markets with two types of traders, what they refer to as “fundamentalist”

and “noise” traders. Their results reproduce the power-law tail for the distribution

of returns and also the long range correlations in volatility.
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