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Suki, Béla, Adriano M. Alencar, Jo6zsef Tolnai, Tibor
Asztalos, Ferenc Petak, Mamatha K. Sujeer, Keena Pa-
tel, Jignish Patel, H. Eugene Stanley, and Zoltan Han-
tos. Size distribution of recruited alveolar volumes in airway
reopening. J Appl Physiol 89: 2030—-2040, 2000.—In 11 iso-
lated dog lung lobes, we studied the size distribution of
recruited alveolar volumes that become available for gas
exchange during inflation from the collapsed state. Three
catheters were wedged into 2-mm-diameter airways at total
lung capacity. Small-amplitude pseudorandom pressure os-
cillations between 1 and 47 Hz were led into the catheters,
and the input impedances of the regions subtended by the
catheters were continuously recorded using a wave tube
technique during inflation from —5 cmH,0 transpulmonary
pressure to total lung capacity. The impedance data were fit
with a model to obtain regional tissue elastance (Eti) as a
function of inflation. First, Eti was high and decreased in
discrete jumps as more groups of alveoli were recruited. By
assuming that the number of opened alveoli is inversely
proportional to Eti, we calculated from the jumps in Eti the
distribution of the discrete increments in the number of
opened alveoli. This distribution was in good agreement with
model simulations in which airways open in cascade or ava-
lanches. Implications for mechanical ventilation may be
found in these results.

atelectasis; lung elastance; avalanches; power law; percola-
tion; gas exchange

THE INSPIRED AIR AT LOW LUNG volumes is preferentially
distributed to the upper regions of the lung as a result
of the presence of airway closure (19). Airways start to
close off when lung volume is lowered below the closing
volume (CV) (16). In normal lungs, functional residual
capacity (FRC) represents a higher lung volume than
CV; hence, during normal breathing, end-expiratory
lung volume does not reach CV, and closure does not
take place. However, in the immature lung (33), with
advancing age (16), in obesity (11), in emphysema (10),
and possibly in other lung diseases such as asthma
(28), closure may occur during normal breathing at end
expiration. The transpulmonary pressure (Ptp, defined
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as airway pressure minus pleural pressure) at which
the closed airways reopen during inspiration is always
higher than the Ptp at which closure develops (22).
Thus closure can easily lead to an inhomogeneous
alveolar ventilation and, hence, an impaired gas ex-
change (4).

With regard to lung function in the presence of
airway closure, the most important quantity is the
amount of alveolar volume available for gas exchange.
This alveolar volume is decreased at end expiration
and is recruited during inspiration when airways re-
open. Whereas the physical factors determining the
actual process of closure and reopening in individual
airways have been studied in great detail (8, 13, 23,
24), very few studies have addressed how airways
reopen in situ (20, 22, 26, 34). The fact that airways
constitute a tree structure may lead to interactions
among reopening of airway segments that are other-
wise spatially well separated. It is not clear how such a
spatial interaction during the reopening process can
influence the distribution of recruited alveolar volumes
and, hence, gas exchange in the lung.

Recently, Petdk et al. (26) and Otis et al. (21, 22)
studied airway closure and opening by measuring the
terminal airway resistance (R,) during deflation and
inflation and found that, during inflation, R, decreased
in a series of discrete jumps. A statistical interpreta-
tion of this process was provided by Suki et al. (32).
According to this interpretation, airways open in cas-
cades or avalanches triggered by overcoming a hierar-
chy of critical opening threshold pressures along the
airway tree. More recently, Barabasi et al. (3) devel-
oped an analytic statistical mechanical model of the
first avalanches during an inflation by mapping the
inflation problem to a percolation problem in a tree
structure. This model has been further developed by
Sujeer et al. (30) to include all avalanches during an
inflation and to predict the distribution of the sizes of
alveolar volumes that open via avalanches. Their sim-
ulations predicted that this distribution is wide follow-
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ing a power law and is independent of airway wall and
alveolar tissue elasticity.

The purpose of this study is to experimentally test
these predictions by indirectly measuring the sizes of
terminal air spaces that open during inflation and by
comparing their distribution with that predicted by
previous model simulations (30). To achieve this goal,
we used a technique developed by Hantos et al. (9) that
is able to measure the input impedance of small sub-
trees of the tracheobronchial tree in isolated lungs. We
measured these impedances during inflation and then
fit the spectra with a model from which we can esti-
mate the regional tissue elastance (Eti) of the subtrees
as a function of inflation pressure. We found that,
during inflation, Eti decreases in many discrete steps
spanning a wide range of sizes. By assuming that Eti is
inversely related to the size of the alveolar space that
communicates with the trachea, we estimated the dis-
tribution of these steplike volume changes in terminal
air spaces due to airway opening.

METHODS

Preparation of lobes. We obtained 11 lung lobes from 8
mongrel dogs weighing 18—24 kg. The animals were anesthe-
tized with pentobarbital sodium (30 mg/kg), treated with
heparin (5,000 units), and exsanguinated via a femoral ar-
tery. The lungs were removed, and selected lobes were can-
nulated in the main bronchus with an 8- to 12-mm-ID metal
tube. First, the lobe was inflated to a positive airway pres-
sure of 30 cmH,0O and checked for leaks. The bronchial
cannula was attached to a short tube mounted in the lid of an
airtight glass box (15 liters). A schematic drawing of the
setup is shown in Fig. 1. The cannula was open to atmo-
sphere so that Ptp, measured in the box with respect to
atmosphere with a transducer (model MP-45, Validyne; 50
cmH,0), could be conveniently adjusted by pumping or suck-
ing air into or out of the box with the use of a dual-membrane
pump (model MP 03 Ez, Otto Huber). The lobe was sus-
pended in the closed box and reinflated to 30 cmH,O Ptp by
creating a —30-cmH,0 pressure in the box. A slightly curved
20- to 30-cm-long (L,) polyethylene catheter (1.53 mm ID, 2
mm OD) with a bell-shaped metal ending was led through the
lid into the main bronchus until it wedged in a peripheral
airway. After a deflation to 5 cmH,O Ptp, the catheter was
gently pulled back to ensure that the rim of the metal ending
was fixed in the bronchial wall. This procedure was repeated
with two more catheters that were guided to different periph-
eral regions. The bottom of the box was covered with wet
gauze to keep the lobe surface moist.

Impedance measurements and signal processing. The three
wedged catheters were connected to a loudspeaker-in-box
system through identical tubes of the same polyethylene
material (42 cm long, L;; Fig. 1). These sections served as
wave guides and were equipped with side taps and miniature
transducers (model 33NA002D, ICS) to measure the lateral
pressures at their distal ends (P,) and the common entrance
pressure in the loudspeaker chamber (P;). The loudspeaker
was driven by a computer-generated pseudorandom signal
having a period of 1 s and containing 17 discrete frequency
components between 1 and 47 Hz. The spectrum of the signal
was flat, and the phase angles were chosen to minimize the
peak-to-peak value of the signal. The power amplifier of the
loudspeaker was adjusted so that the peak-to-peak value of
P, was <1 emH,O. Forced oscillations were continuously
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Fig. 1. Schematic of the experimental setup. The lung is inflated in
the box by means of a vacuum pump. Polyethylene catheters 1 and 2
are wedged in peripheral airways. Pressure oscillations are gener-
ated by a loudspeaker-in-chamber and led into the periphery of the
lung via the catheters. Common pressure (P,) is measured in the
loudspeaker box; pressures P, ; and P, , are measured at the distal
ends of the wave guides connecting the catheters and the loud-
speaker chamber. Ptp, transpulmonary pressure.

delivered, and P; and P, were measured while the lobe was
slowly inflated from —5 to 30 cmH,O Ptp in ~160 s. The
signals P; and P, were low-pass filtered (5th-order Butter-
worth, 50-Hz corner frequency) and digitized at a sampling
rate of 256 Hz. The inflation recordings were split into 160
short recordings, each containing 256 time points. The pres-
sure transfer functions P,/P, were computed using fast Fou-
rier transformation for each recording of 256 points, provid-
ing a 1-Hz frequency resolution. From the P,/P, spectra, the
input impedance of the subtrees (Z,) subtended by the cath-
eters was derived as the load impedance seen at the distal
end of the wedged catheter, as described in detail previously
(9)
_y tanh(Lyl) — ZZ,
Zy =%, tanh(L,) — Z, @

where Z is defined as (6, 7)
7 - Zosinh(L,I")
~ P,/P, — cosh(L,I)

@

In Egs. I and 2, Z, and I" are the characteristic impedance
and the complex propagation wave number, respectively, of
the wave guide. Z, and I" are determined by the tube geom-
etry and the physical properties of the resident gas and the
tube wall. This process was carried out on all recordings,
which resulted in 160 complex impedance spectra per cath-
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eter and lobe between 1 and 47 Hz as a function of inflation
with a time resolution of 1 s.

The ability of the entire system to determine impedance
over a wide range of magnitudes was tested in two different
ways. First, small glass bottles of different sizes were mea-
sured with elastance values similar to those of the airway
subtrees. The length of the catheters and the input ampli-
tude were varied to find their optimal values. Second, the
catheter end where P; is measured was blocked, and the
pressure-to-pressure ratio (P,/P,) in the closed tube was
determined over the 1- to 47-Hz frequency range. P,/P, can
then be predicted using wave propagation theory in rigid
tubes, which provides a validation of the technique as de-
scribed previously (15). Both tests were satisfactory, provid-
ing evidence that the resolution (ratio of the smallest to the
largest elastance) of the wave tube technique was =0.001.

Parameter estimation and statistical analysis. The Z, spec-
tra were evaluated on the basis of several simple models of
the airway tree and the alveoli. A simplistic view of two
neighboring subtrees in the lung and two collateral airways
connecting them is shown in Fig. 2A. An equivalent electrical
model of this structure is shown in Fig. 2B. R, ; and R, , are
the resistances of the collateral airways. The electrical model
is a simplified version of the model introduced recently by
Hantos et al. (9). The model includes two airway resistances
(R, and R,) in series, representing the regular airways be-
tween the catheter end and the alveoli. Another resistance
(R.) is placed as a shunt pathway between R; and R, to
account for the resistance of the collateral airways connect-
ing the two subtrees (Fig. 24). Thus R, can be interpreted as
an equivalent resistance of all the airways between the end of
the catheter and the collateral airway, and R, models all the
airways that are peripheral to the collateral airway. The
parenchymal tissues are modeled by an ideal elastic compo-
nent, Eti, connected in series with R,. Thus R, is in parallel
with R, and Eti, which means that it is connected to ground
in the electrical model in Fig. 2B, since the collateral airway
will shunt part of the input flow to the atmosphere through
the neighboring subtree shown in Fig. 2A.

The model parameters were estimated by means of a
global optimization procedure (5) minimizing the root-mean-
square error between measured and model impedances. R,
and R,, however, were not fit simultaneously, because the
features in the Z, spectra did not allow simultaneous and
unique estimation of R; and R,. For each data set corre-
sponding to a single inflation and a single catheter (160
impedance spectra), first R; was fixed to zero (model A in Fig.
2C) and the parameters including R, were determined. Next,
R, was fixed to zero (model B in Fig. 2D), and all parameters
including R, were determined for the same data set. These
two models differ in the way they represent the major loca-
tion of the collateral airway resistance. Model A incorporates
the notion that the collateral airway is closer to the end of the
catheter. Thus R, is large (or infinite) and negligible com-
pared with R_;; hence, R, is neglected. Model B places the
collateral airway closer to the alveoli. Thus R, , is large (or
infinite) and negligible compared with R_,; hence, R, is
neglected. For a given data set corresponding to a single
inflation, the final model parameters were selected on the
basis of which model produced smaller errors. However, for a
given data set corresponding to one inflation and one region,
only one of the models, model A or model B, was used for all
160 Z, spectra. The corresponding resistance from model A or
model B was simply denoted by R. Time series were then
formed from the model parameters as a function of inflation
time. The statistical properties of these time series were

AIR SPACE RECRUITMENT IN AIRWAY REOPENING

A Zo

Primary subtree seen by

the wave tube Adjacent subtree

connected by Rc1 and Rez2

B R4 R2

—A\W\ aVAVAY
.2

Eti T~

Eti 1~

Rc Eti T~

o—

Fig. 2. A: schematic representation of a peripheral airway subtree.
Z,, input impedance of the subtree measured by the catheter system
(see Fig. 1). An adjacent subtree is also shown connected to the
primary subtree via 2 collateral airways (R, ; and R. ). B: electrical
equivalent analog of the system in A. R; and R,, lumped airway
resistances of the primary subtree above R, ; and below R, ,, respec-
tively; Eti, elastance of the subtree shunted by the lumped collateral
airway resistance R., which includes R.; and R.,. C: a simplified
version of the model in B with the notion that the influence of R, , is
small compared with that of R_;; hence, R, is neglected. D: a
simplified version of the model in B with the notion that the influence
of R, ; is small compared with that of R, ; hence, R, is neglected.
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evaluated by calculating their probability density distribu-
tion function.

Simulation studies. We used the model developed by Su-
jeer et al. (30) to interpret our measured regional airway
resistance and Eti time series. Briefly, the periphery of the
airway tree was modeled as a symmetrical binary tree with
airway segments that can be closed or opened. At time 0, all
airways are assumed to be closed. Lung inflation is simulated
by applying an external pressure (Pg) at the top of the tree
and gradually increasing Py at a slow rate. Airways are
labeled (i,j) with a generation numberi (i =0, . .. ,M), where
M = 12 is the order of the tree (i = 0 denotes the root of the
tree), and a column number j (j =0,...,207 1., A critical
opening threshold pressure P, ; is a551gned to each alrway
(i,J), which pops open 1nstantaneously whenever P, ;
smaller than or equal to the pressure in its parent. All
pressures are normalized so that, during inflation, Py in-
creases from 0 to 1, which corresponds to Ptp decreasing from
0 to —30 cmH,0 at total lung capacity (TLC). The values of
P, ; were thus between 0 and 1 and were taken from a
uniform distribution (3, 30, 32). The alveoli are represented
by the last-generation segments in the model. Because of the
lack of data in the literature, we assume that these segments
behave the same way as the small airways; that is, they are
assigned a threshold pressure that is uniformly distributed
between 0 and 1.

The inflation process is simulated in the lung model by
increasing Pg in small increments. Py is initially assigned
the value P, ,, the critical opening threshold pressure of the
root or airway (0,0). Since an airway opens when the pressure
in its parent equals or exceeds its critical opening threshold
pressure, the airway (0,0) now opens, and its pressure is set
equal to Pg. Next, the two airways (1,0) and (1,1) are tested
to see if they can be opened by this value of Py (the present
pressure in their parent airway), that is, whether P > P, ,
and/or Py > P, ;. If one or both conditions are met, then the
airways (1,0) and/or (1,1) are also opened. This opening is
then continued sequentially down the tree until no airway is
found with its P, ; < Pg. Of particular interest is the fact that
a small increase in Py can lead to an “avalanche” in which
many airways open simultaneously (32). When the first av-
alanche stops, the critical opening threshold pressures of
those airways that are still closed but with parents that are
now open are examined. Py is then incremented to the
smallest of these threshold pressures, and the pressure in all
open airways is updated to this new value. This process is
iterated until all airways open. A sequence of avalanches
filling a small five-generation tree is demonstrated in Fig. 3.

Airway and alveolar wall tissue elasticity is introduced by
requiring that the diameters (and hence the volumes) of the
open airways and alveoli depend on Pg. The diameter values
are updated with each increase in Py according to the follow-
ing exponential pressure-volume relationship taken from the
literature (27)

v = v, + a(l — )

3

where v is lung volume and v, @, and b are parameters. Thus
a newly opened airway/alveolus will distend, because of the
elastic nature of its wall, to a volume that is a function of Py,
and so contribute to an avalanche with a volume greater than
that of a corresponding airway/alveolus from a rigid tree for
the same value of Py. Gas exchange in the model occurs only
in the “opened” alveoli that are in communication with the
trachea. Collateral channels were not included in these sim-
ulations for the following reason: although collateral chan-
nels have a substantial effect on the frequency dependence of
regional lung impedance, and hence their inclusion in the
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Fig. 3. Schematic representation of airway opening via avalanches
in a small 5-generation symmetrical tree. Initially, all airway seg-
ments are closed (thin lines) with their respective critical opening
threshold pressure. When the external inflation pressure (Pg)
reaches the opening threshold pressure of the root Py = p, (A4), 6
airway segments become open (thick lines). The last-generation
segments representing the alveoli remain closed. Since Eti is taken
proportional to the elastance of a single alveolus (EA) and is inversely
proportional to the number of open alveoli, Eti is infinite in the
model. When Py reaches p,, additional airways open, including N* =
2 terminal segments (B). Thus the corresponding Eti (Eti') will be
proportional to 1/N* = 1/2. Further increasing Py to p, opens addi-
tional airways (C), resulting in a drop in Eti to Eti? ~ 1/6 and finally
filling up the tree when Py = p; (D) with Eti® ~ 1/16.

model was indispensable, they do not appear to play an
important role in the distribution of recruited alveolar vol-
umes. Thus instantaneous lung volume (v) is taken to be
proportional to the number of last-generation segments that
are connected to the root of the model by the avalanches. Let
us denote the elastance of a single alveolus by EA. When two
elastic elements each having an elastic constant of EA are
arranged in parallel, the total elastance is Ea/2. Therefore,
since the terminal units are in parallel, Eti of the model is
taken to be inversely proportional to the number of open
terminal units (V) at a given Py, that is

Eti = EA/N (4)

As the avalanches continue to open the tree, Eti will decrease
in discrete steps, as demonstrated in Fig. 3. The jumps in Eti,
denoted by dE, can be simply related to the changes in the
number of open terminal units

EAa Ea

dE = Eti' — Eti® = N N? (5)
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where Eti' and Eti? are the Eti values and N* and N? are the
number of open terminal units before and immediately after
an avalanche, respectively. Equation 5 shows that since N* is
smaller than N2, dE is positive. We can use Eq. 5 to predict
the changes in Eti up to a proportionality factor, EA, and
compare it with experimental values of elastance jumps. The
proportionality factor EA is important, since it is the quantity
that reflects the fact that the alveoli are elastic: EA = EA(Py),
which is the derivative of the inverse of Eq. 3 with respect to
v. To avoid the problem that we do not know EA, we normal-
ize the experimental and the numerical jumps with their
respective maximum values. Since many jumps are expected
to occur with a wide range of dE values, we are interested in
the statistical features of the jump sizes. Since the model is
stochastic in nature, that is, threshold pressures are ran-
domly distributed over the airway segments, the properties
of the model are studied by calculating the probability den-
sity distributions of dE and v from 100,000 different realiza-
tions of P, . Additionally, we examined how the distribu-
tion function of dE depended on the size of the tree.

RESULTS

Two examples of the input impedance of a subtree
separated by 2 s during an inflation are shown in Fig.
4. The real parts are decreasing hyperbolically from a
large value of ~8,000 cmH,0-1 '-s at 1 Hz to a con-
stant of ~1,500 cmH,0-1 -5 at 40 Hz. The imaginary
parts are negative and first decrease, showing a local
minimum at ~6 Hz, then increase similarly to the
imaginary part of an ideal capacitor. During a slow
inflation, one would expect that the magnitude of re-
gional impedance increases with time, since with in-
creasing lung volume, the airways and alveoli become
stiffer as a result of stretching their walls. However,
our data show that the magnitude of the impedance
decreases with increasing time. This can only happen if
there was an abrupt opening between the two record-
ings whereby a larger alveolar region popped open,
which resulted in a decrease in impedance magnitude.
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= Al - Model fit
9\‘ 6000 & o Data at 48 sec.
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& 2000 :
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Fig. 4. Real (top) and imaginary (bottom) parts of regional lung
impedances recorded at 46 and 48 s after the start of inflation. The
magnitude of impedance decreases between the 2 measurements.
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Fig. 5. Eti (top), series airway resistance (middle), and collateral
resistance (bottom) as a function of inflation time obtained from
model fitting. Inset: zoom into the Eti time series.

Figure 4 also shows that the model fits the impedance
data reasonably well, although some systematic errors
can also be seen. The two Eti values obtained from the
fits are 1.3 X 10° and 1.1 X 10° cmH,0/1, corresponding
to the solid and dashed lines, respectively.

The model parameters Eti, R, and R, are shown as a
function of inflation in Fig. 5 for one of the regions. As
inflation progresses, all parameters decrease along hy-
perbolic-like curves. The maximum and minimum val-
ues of Eti are 781,200 and 43,980 cmH,0/1, covering a
range of 1.5 orders of magnitude. However, the contin-
uous decrease is interrupted by sudden changes or
jump downs. Smaller jumps can also be seen as mag-
nified in the inset for Eti. In the middle of inflation, Eti
sometimes shows small increases, and, toward the end
of inflation, Eti starts continuously increasing. This
phenomenon is due to stiffening of the parenchyma.
Interestingly, a large jump in R, occurs simultaneously
with Eti at ~45 s, which is not seen in the series
resistance R. These patterns changed from region to
region and varied between two consecutive inflations
even in the same region. Figure 6 demonstrates that
our numerical model simulation using a nine-genera-
tion tree provides an Eti graph as a function of inflation
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Fig. 6. Normalized Eti as a function of normalized inflation time
obtained from simulating airway reopening in a 9-generation sym-
metrical tree model. Inset: zoom into the time series similar to that
in Fig. 5, top.

time similar to that shown in Fig. 5. Because of the
elasticity of the alveolar wall tissue in the model (Eq.
3), the simulated Eti as a function of time can even
mimic the small increases that follow a jump as well as
the gradual increase toward the end of the inflation.
Additionally, Fig. 6, inset, shows the jumps on a much
smaller scale, similar to the experimental data in
Fig. 5.

Examining all experimentally obtained Eti graphs
(i.e., Eti in Fig. 5A), we were able to manually record
1,021 drops in Eti. From the jumps in Eti, dE (defined
as in Eq. 5), a time series was formed and normalized
with the maximum value of dE (Fig. 7A). For compar-

A 1o

0.8 -

dE

0.6 -

04 4

0.2

0.0 4

il L_UWLLLLL o L

0 200 400 600 800 1000

0.6

dE

04 1

0.2 4

0.0 4 AM&JWAJW&LML‘KJ JUAUIL,MA_I\L

0 200 400 600 800 1000
Number

Fig. 7. Time series of drops in Eti (dE) normalized with the maxi-
mum value of dE. A: dE obtained by manually detecting drops on the
Eti vs. time plots (e.g., Fig. 5, top). The number of dE values from
experiments including data from 11 lobes, 3 regions per lobe, and 2
inflations per lobe, is 1,021. B: simulated dE time series including
1,021 points.
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ison, a similar time series of dE containing 1,021 ele-
ments obtained from the inflation simulations (Fig. 6A)
is also shown in Fig. 7B. In the computer simulation,
the numbers of terminal segments before (N') and
after an avalanche (N?) were recorded, and the dE was
estimated according to Eq. 5 (where because of elastic
walls Ea depends on inflation pressure Pg) and normal-
ized with the largest dE value. Despite the fact that the
modeling does not involve any curve fitting or use of
measured model parameters, the simulated time series
of dE is qualitatively similar to the experimental data
both displaying many small jumps with intermittent
large jumps. A quantitative comparison can be ob-
tained by examining the statistical features such as the
probability density distribution of the time series. The
distributions of the experimentally obtained and the
simulated dE time series were calculated by binning
the dE values using equal size bins in the logarithmic
domain. This results in a smoother estimation of the
distribution especially for high values of dE, which do
not occur frequently. There is a good agreement be-
tween the experimental (Fig. 8A) and the numerical
(Fig. 8B) distributions of dE using a nine-generation
tree. Both distributions show a region of linear de-
crease on a log-log graph extending over about two
decades of dE values. We also show the distribution of
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Fig. 8. Log-log plots of the probability density distributions of the
relative elastance jumps, dE. A: distribution of the dE time series
obtained from experimental data in Fig. 7A. B: distributions of the
simulated data. e, Data in Fig. 7B, bottom, including the same
number of points (1,021) as the experimental data using a 9-gener-
ation tree; O, distribution of simulated data using 100,000 points and
a 12-generation tree; solid lines, regions of linear regressions.
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dE using a 12-generation tree that exhibits a linear
decrease of ~7 decades on the log-log graph. This
means that, over the region where the distributions
decrease linearly on the log-log graph, the distributions
must follow a power law: p(dE) ~ dE*. The negative
slope of the linear decrease is the exponent, %, in the
power law, which can be estimated by a straight-line fit
to the distribution data. The value of k£ was 1.71 for the
measured and 1.5 for the simulated distribution, inde-
pendently of the size of the tree.

DISCUSSION

The purpose of this work was to experimentally
determine the distribution of terminal air spaces that
become sequentially open during inflation from the
collapsed state of isolated dog lung lobes. For this
purpose, we used the technique of Hantos et al. (9) to
measure the input impedance of small subtrees of the
lobes using 2-mm-OD catheters wedged into the pe-
ripheral airways. This measurement system could de-
tect changes in the mechanical parameters of 12-20
generational subtrees according to the airway tree
model of Horsfield et al. (12). In particular, this tech-
nique allowed us to detect small changes in regional
Eti as a function of inflation pressure that could not be
detected from pressure-flow measurements at the tra-
chea or from measurement of Ptp.

The primary findings of this study are that airflow
resistance and Eti of the subtrees decrease in discrete
jumps as a result of discrete openings during inflation.
The magnitudes and patterns of these jumps are highly
variable, demonstrating that airway reopening ob-
served at the level of these subtrees is a stochastic
process reminiscent of the jumps observed in the ter-
minal airway resistances (21, 22, 26). Thus the present
data support the notion that airways open in cascades
or avalanches (32). Additionally, the distribution of the
jumps in Eti is in quantitative agreement with that
predicted by a computational model based on the as-
sumption that airways open in avalanches (30).

The most important limitation of the technique is
that, to identify Eti, frequencies as low as possible
must be included in the input signal. In the original
study that introduced this catheter impedance tech-
nique, Hantos et al. (9) applied a frequency range of
0.1-48 Hz. The corresponding time resolution was 10 s.
Such a poor time resolution would not have allowed us
to detect the jumps in Eti seen in Fig. 5. Most of these
jumps would have occurred within the time window of
the Fourier transform, deteriorating the quality of the
impedance spectrum and masking the discrete nature
of the openings.

The lowest frequency in our study was chosen to be 1
Hz, which resulted in a 1-s time resolution. The 1 Hz
lowest frequency still allowed us to fit a simplified
model to the impedance spectra. However, the general
quality of the fits did not reach that obtained by Hantos
et al. (9), where Z;, was ensemble averaged from several
long steady-state recordings including many time win-
dows. The reasons are most likely due to the facts that

AIR SPACE RECRUITMENT IN AIRWAY REOPENING

we had only a single time window for estimating the
spectra and we did not include frequencies <1 Hz. The
former can lead to less reliable impedance data,
whereas the latter can result in reduced reliability of
the parameter estimates. As a result, the fluctuations
in the parameters in Fig. 5 may, in fact, reflect the
presence of numerous discrete opening events occur-
ring within the time window of the Fourier transform
(i.e., 1 s). The primary assumption behind the Fourier
analysis is stationarity: when an opening occurs within
a time window, the corresponding impedance estimate
is deteriorated. Although the magnitudes of the series
resistance R and the collateral resistance R, were sim-
ilar to those found by Hantos et al. (9), the number of
jumps that could reliably be identified from the data
were not sufficient to carry out a reliable statistical
analysis. Additionally, these resistances do not have a
clear relationship to the recruited alveolar space, and,
hence, we only investigated Eti in this study. In gen-
eral, for comparable Ptp, the frequency spectra and the
values of Eti in this study were similar to those found
by Hantos et al. (9). Since during inflation the incre-
mental dynamic elastance of tissue units is expected to
rise, the discrete drops in Eti provide evidence that
airway opening occurs discontinuously, leading to
opening of terminal air spaces of highly varying sizes.

The minimum value of Eti in Fig. 5 is 43,980
c¢cmH,0/1. This value corresponds to an almost com-
pletely open alveolar region inflated to a lung volume
close to TLC. This minimum value is much larger than
the elastance of the lung; however, it is quite reason-
able when we compare it with the lung region supplied
by the catheters. The outer diameter of the catheter
was 2 mm, and it was fit into an airway at TLC. Thus
the airway diameter into which the catheter was fixed
must have been ~2 mm. This corresponds to a 17- to
19-generation tree in the airway model of Horsfield et
al. (12). The number of terminal segments (alveolar
ducts) supplied by such an airway is 331-574. The
total number of terminal segments in the airway model
of Horsfield et al. is ~150,000. Since we always used
the largest lobes from a lung, we estimate the total
number of terminal segments in a lobe to be 40,000. If
we assume that the catheter supplied 400 segments,
the volume of such a region would scale with the ratio
400:40,000 = 0.01. The volume of a dog lobe at TLC is
~300 ml; hence, the volume of the region is estimated
to be 300 ml * 0.01 = 3 ml. This is in excellent agree-
ment with the estimates of the supplied volumes we
obtained from casts of the peripheral airways as de-
scribed by Hantos et al. (9). These casts were created
by infusing the cast material through catheters similar
to those used in the present study. The measured
volumes of four casts were 2.8, 3.2, 3.3, and 4.7 ml.
Thus the catheter sees ~1% of the total volume of a
lobe. The incremental elastance of a dog lung is 10—20
cmH,0/1 at FRC (25), and it would be =80 cmH,0/1 at
TLC. Thus the lobe elastance close to TLC can be
estimated to be ~320 cmH,0/1 depending on the size of
the lobe. If the elastance is inversely proportional to
regional lung volume, then, on average, the elastance
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seen by the catheter would be 320 + 0.01 = 32,000
c¢cmH,0/1, which is in the range of the minimum Eti of
44,000 cmH,0/1 shown in Fig. 5.

The time series of Eti decreases via smaller and
intermittent larger jumps. However, Eti also shows
some smaller occasional increases and later a continu-
ous increase toward the end of inflation (Fig. 5). The
deterministic increase toward the end of inflation is
due to stiffening of the alveolar and airway walls with
increasing mean distension. Since in the numerical
simulation model we also included alveolar wall elas-
ticity, the Eti predicted by the model will also increase
with inflation (Fig. 6). However, we are interested in
the rate of decrease in Eti, which was qualitatively
similar in the simulations (Fig. 6) and in the measured
Eti (Fig. 5). Our simulations in Fig. 6 show that the
increases in Eti after a large drop can also be due to
stiffening of alveolar tissue. We cannot exclude the
possibility, however, that some of the small increases
in Eti are due to measurement noise or systematic
errors in the fitting of the impedance data. The electri-
cal models (Fig. 2, C and D) we fit to the impedance
data are gross simplifications of the airway structure.
During inflation, new collateral channels can open, and
the model chosen for that particular inflation may not
be the optimal representation of the structure. For
example, if first R, ;, was open, the tree could be mod-
eled as the network in Fig. 2D. However, when R, ; also
opens during the same inflation, the tree should be
modeled by one of the configurations shown in Fig. 2, C
and B. These model errors (systematic differences be-
tween model and data), may occasionally result in an
increase in Eti. Unfortunately, these errors are not
uniformly distributed. The reason is that the magni-
tude of impedance decreases more than an order of
magnitude from the beginning of inflation to the end,
and the absolute error in fitting is a function of the
magnitude of the impedance. To see the effects of these
fitting errors on our experimental distribution func-
tion, we estimated from Fig. 5A a maximum value of
0.2 X 10° emH,O/1 for this deterministic error caused
by the fitting procedure. This value corresponds to
0.0027 on the normalized elastance jump scale shown
in Fig. 7A. Rejecting all values of the normalized elas-
tance jumps <0.0027 from the calculation of the dis-
tribution in Fig. 8A results in omitting the first three
points from the distribution. These first three points,
however, were not used in fitting a straight line to the
tail of the distribution on the log-log graph. Thus we
conclude that possible systematic model errors have no
effect on the power law tail of the distribution and,
hence, the numerical value of its exponent.

The time series of dE shows many small jumps as
well as large jumps (Fig. 7A). The simulation results
(Fig. 7B) are similar to the experimentally derived time
series. The probability density distributions of dE es-
timated from the experimental and simulated data are
also similar, showing a linear decrease on the log-log
graph over two decades of dE values (Fig. 8). In the
numerical simulations, every jump can be detected,
including the opening of a single terminal unit. Thus,
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with the use of the 12-generation tree, the correspond-
ing distribution is much wider, following a power law
for very small dE values. The fact that the distribu-
tions become flat for small dE (dE < 107 for a 12-
generation tree and dE < 102 for a 9-generation tree)
indicates a finite size effect: the smallest jumps are
those that correspond to the opening of a single alveo-
lus. Since the walls of the alveoli are nonlinearly elas-
tic, there is a range of dE values (approximately be-
tween 5 X 1078 and 10~ 7 for the 12-generation tree)
corresponding to the opening of a single alveolus where
the distribution is more similar to a Gaussian distri-
bution. In contrast, the small jumps are not easily
identified from the experimental time series. Toward
the end of inflation, adding a small volume (due to
opening) to a large volume (already open) will cause Eti
to decrease by such a small amount that it can be easily
within the experimental noise level. Also, our tech-
nique, unfortunately, cannot differentiate among open-
ings occurring independently at different locations but
at the same inflation pressure. For example, if two
separate openings were triggered within 1 s and in the
same time window, we would detect it as a single event
with a larger change in Eti. The result is that, instead
of two small jumps, we would detect one larger jump.
All these effects will reduce the number of small dE
values and can lead to a saturation of the dE distribu-
tion at much larger values of dE (~10"2) than in the
computer simulations (<10~ 7).

The experimentally determined exponent is ~13%
larger than the numerical one (1.7 vs. 1.5). Several
factors could contribute to this discrepancy. First, the
tail of the power law distribution is determined by the
large values of dE. We point out that one needs many
large values of dE to reliably estimate the tail. The
number of experimental dE values was only 1,021;
hence, the number of large dE values was much less
than in the simulations. Second, after insertion of the
catheters, the lobes could not be completely degassed.
Thus a certain amount of trapped air must have re-
mained in the region supplied by the catheters. To
study the effect of trapped air on the distributions of
the elastance jumps and the recruited volumes, we
repeated some of the simulations using a tree model in
which we allowed for trapped air. This was achieved by
setting the threshold pressure of a given percentage of
the alveoli (or end tips of the tree) to zero and connect-
ing them to the root of the tree. We then inflated the
model 10,000 times (see METHODS) and calculated the
dE and the recruited volume distribution as a function
of the percentage of trapped air. The nature of the
distributions was invariant; that is, the elastance
jumps and the volume increments followed a power law
distribution. However, the exponent % of the elastance
distribution was sensitive to the amount of trapped air,
increasing from 1.5 with no trapped air to 2 with ~20%
trapped air (Fig. 9). The experimental value of £ = 1.71
corresponds to 1-3% trapped air in the region sub-
tended by the catheter. Because of this dependence of &
on trapped air, one should not use Eq. 5 to transform
the experimental dE distribution to estimate the dis-
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Fig. 9. Exponent of the power law distribution of elastance jumps as

a function of trapped air from 10,000 inflations of the 9-generation
tree model. Error bars, estimated SD.

tribution of the volume increments. Instead, we can
use the full statistics of the simulation (including
100,000 jumps) to estimate the distribution of alveolar
volumes that become open during inflation. This dis-
tribution is a power law (Fig. 10) with an exponent of 2,
in agreement with the predictions of Sujeer et al. (30).
Additionally, this distribution was completely indepen-
dent of the amount of trapped air in the model.

The significance of a power law distribution is that
the tail of the distribution is very long compared with,
for example, a normal distribution. The tail of a distri-
bution is representative of the relative frequency of
occurrence of rare events. Since the tail of a power law
can be orders of magnitude larger than the tail of a
Gaussian model, the probability of a rare event is also
orders of magnitude higher in the power law than in
the Gaussian model. Therefore, the process or phenom-
enon described by a power law distribution does not
have a characteristic scale or size that would be largely
preferred over other sizes; hence, the power law distri-
bution is said to be “scale free” (29). In our case, a rare
event represents a large alveolar region suddenly pop-
ping open. If, for example, the alveoli would tend to
open in groups of 10—15, then the likelihood of finding
a rare event (e.g., a large atelectatic region simulta-
neously opening) would be small, and the recruited
volumes would follow a normal distribution with a
mean corresponding to the air volume of ~13 alveoli.
The fact, however, that the volume distribution is a
power law implies that the probability of having a large
alveolar region opening simultaneously is quite high
and can be orders of magnitude higher than that for a
normal distribution. As a consequence, the measured
volumes do not represent the average size of any
known physiological unit or structure (e.g., the acinus).
Instead, the volume distribution represents a process
that can generate a scale-free power law distribution.
We argue that the only process that can lead to a power
law-recruited volume distribution is airway opening
via avalanches. The model developed by Sujeer et al.
(30) also predicts that the volume distribution is a
power law. The power law volume distribution in that
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model was obtained by assuming that there is an
interaction between reopening of airways and the num-
ber of alveoli, because the critical opening pressures
are distributed over a tree structure. In particular,
airways open in cascades or avalanches, which results
in a widely varying number of terminal airways (Fig. 3)
and, hence, of recruited alveoli during inflation, the
distribution of which follows a power law functional
form.

The exponent of a power law distribution fully char-
acterizes the distribution, because the knowledge of
the exponent allows us to predict the likelihood of one
event compared with another event. The actual numer-
ical value of the exponent has the following signifi-
cance. First, the smaller the exponent, the slower is the
decrease of the tail of the distribution and, hence, the
higher the probability of finding rare events. Second, if
the process or phenomenon can be mapped onto an
existing class of models, a theoretical value for the
exponent may be possible. For example, if we associate
the normalized reopening pressures with probabilities
of airways becoming open, we can map the airway
reopening problem onto a sequence of randomly occu-
pying segments in an abstract tree with a given prob-
ability p (3), a process called percolation (29). Then
increasing the inflation pressure Py in the lung corre-
sponds to increasing p in percolation. As Py increases,
more and more airways become open, which then cor-
responds to more clusters of connected segments be-
coming occupied in the equivalent percolation process.
A key quantity in percolation is the distribution of
cluster sizes, which is known to follow a power law for
certain critical values of p (at the percolation threshold
when a large cluster spanning the entire system ap-
pears). However, the cluster size distribution is similar
to the distribution of recruited volumes. Thus one
might expect that known concepts and exponents from
percolation theory (29) may be applied to airway re-
opening. Indeed, the exponent 2 for the volume distri-
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Fig. 10. Log-log plot of the probability density distribution of the
terminal air space sizes that become connected to the root of the tree
via avalanches. Volume (v) is measured as the number of alveoli
opened in an avalanche.
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bution can be predicted from percolation (30). Another
attractive feature of this mapping is that, for example,
in percolation, the cluster size distribution is indepen-
dent of the details of the system (29). In the model of
Sujeer et al. (30), the volume distribution is only mar-
ginally affected by airway wall and alveolar wall elas-
ticity or asymmetry in the airway tree: the power law is
maintained with the same exponent, but the region
over which the power law holds is slightly extended by
elasticity and reduced by asymmetry. The primary
reason for this robust behavior of the volume distribu-
tion is that it has a strong relationship to percolation.
Since percolation is a purely geometrical problem, the
distribution of recruited volumes is also a geometrical
problem and should indeed be invariant of other details
of the system. Indeed, power law distributions in the
intensity of crackle sound detected during lung infla-
tion similarly arise from the geometric tree structure of
the lung (2). In contrast, the distribution of the elas-
tance jumps is not a purely geometrical problem. The
reason is that adding a §iven volume to the open region
(adding a constant to N* and N? in Eq. 5) is a nontrivial
transformation of the random variable dE in Eq. 5,
which alters the exponent % of the distribution. Thus
we conclude that the power law volume distribution
arises from avalanches of airway reopenings triggered
by overcoming a hierarchy of critical opening threshold
pressures that are distributed widely and relatively
independently of generation within the last 10-14 gen-
erations of the airway tree in the collapsed lung (32).
Our experimental and simulation data in Figs. 5-9
support this interpretation.

Other factors that may influence airway reopening
include the nature of the distribution of threshold
pressures (30). If, for example, the distribution of
threshold pressures is very narrow with a strong gen-
eration dependence, such that the threshold pressures
do not overlap in consecutive generations, airways do
not open in cascade and the size distribution of alveolar
volumes is not a power law (30). Additional important
factors include the physical properties of the surface
film (8, 23) and parenchymal tethering (24, 34). The
surface tension, the viscosity, and the non-Newtonian
viscoelastic properties (13) of the airway lining fluid
certainly have an effect on the dynamics of the local
process of opening an airway segment. Parenchymal
tethering may also introduce spatial correlations
among the reopening of airway segments. However, as
long as the distribution of airway opening threshold
pressures remains relatively wide and independent of
generation, the volume distribution and, hence, the
global effect of airway closure on gas exchange are not
likely to be influenced much by these factors (30). On
the other hand, the opening threshold pressures may
change as a result of increased surface tension in
certain diseases such as respiratory distress syndrome
(1). The effects on reopening of increased film surface
tension as in respiratory distress syndrome, increased
film viscosity as in cystic fibrosis, or reduced parenchy-
mal tethering as in emphysema were investigated by
Perun and Gaver (23, 24). They showed that these
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factors can prolong the reopening time or increase the
critical opening threshold pressures affecting pulmo-
nary function. Sufficiently long reopening times may
result in a slow opening process that occurs sequen-
tially, rather than in avalanches. Additionally, if alter-
ations in these physical factors lead to a significant
change in the distribution of threshold pressures, the
alveolar volume distribution will change, which in turn
will also result in significant changes in the pressure-
volume curve of the lung, further hindering gas ex-
change (30).

The implications of knowing the volume distribution
are that after a long-term mechanical ventilation “the
magnitude and timing of pressure excursions applied
at the airway entrance during artificial ventilation
may be critical in triggering the avalanche process of
alveolar recruitment” (32) and, hence, can have a sig-
nificant influence on the average number of open air-
ways in a breathing cycle. Indeed, recently, Lefevre et
al. (17) found that, in a porcine model of lung injury,
introducing “biological variability” in mechanical ven-
tilation by choosing the frequency and tidal volume of
ventilation from a normal distribution significantly
increases lung compliance and improves gas exchange
in the lung. Since airway reopening is a stochastic
process (32), variability in tidal volume of mechanical
ventilation may help opening of closed airways along
the highly nonlinear pressure-volume curve of the at-
electatic regions compared with fixed-frequency and
-volume ventilation (31). Thus our data support the
findings of Lefevre et al. and the predictions of Suki et
al. (31), which may therefore have applications in the
optimization of ventilation strategies for individuals
suffering from lung diseases with significant airway
closure and alveolar collapse.
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