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The puzzle of liquid water: a very complex fluid
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Abstract

Although H2O has been the topic of considerable research since the beginning of the century, its peculiar physical properties
are still not well understood. We discuss recent experiments and simulations relating to the hypothesis that, in addition to the
known critical point in water (below which two fluid phases — a lower-density gas and a higher-density liquid — coexist),
there exists a “second” critical point at low temperatures (below which two liquid phases — a higher-density liquid and a
lower-density liquid — can coexist). ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

First, let me thank the organizers for having invited me here to discuss recent hypotheses concerning a very
complex and highly unpredicatable system — liquid water. Liquid water is at first sight not a “complex fluid” and
hence would seem to have no place at this conference! However, understanding its higly anomalous equilibrium and
dynamical properties is generally connected to the view that water, even above its melting temperature, is a transient
gel with structural heterogeneities of very short length scales. Moreover, understanding the properties of water is
important for understanding phenomena in ‘aqueous solutions’, such as understanding the structure of micelles and
microemulsions. For these and other reasons, water is generally included under the rubric of complex fluids.

Although water has been the topic of considerable research since the beginning of the century, its peculiar
properties are still not completely understood [1–3]. Standard liquid theories fail to explain its dynamical and
thermodynamic properties, which differ from those of most other liquids [4–7]. Although the anomalous properties
of water are not understood, many workers believe that a central role is played by the possibility for the water
molecule to form hydrogen bonds and to create a tetrahedrally coordinated open network in both the solid and the
liquid phases [8–23].
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Fig. 1. A glass of iced water with a thermometer reading 4◦ C at the bottom of the glass. Also shown is the time dependence of the temperature as
the ice cubes begin to melt, showing that the temperature remains at 4◦ C until all the ice cubes are melted. Photograph courtesy of K. Mishima.

2. What is the puzzle of liquid water?

Take a typical solid, and measure its density as you heat it. When the solid melts at the melting temperature there
will be a drop in the density because the density is the first derivative of the Gibbs potential, and the melting is a
first-order phase transition. This, of course, does not happen if the substance is water. If we take an ordinary ice cube
and heat it to its melting temperature, its densityρ jumps up by about 8–9%, not down — and as we continue to heat
it, ρ continues to go up. It seems to contradict our fundamental intuitions concerning condensed matter physics. Of
courseρ does not go up for long. Above approximately 4◦ C, ρ starts to drop and water begins to behave more like
a “normal” fluid. A kitchen experiment (Fig. 1) demonstrates that the bottom layer of a glass of unstirred iced water
remains at 4◦ C while colder layers “float” on top.

We can study water both in itsstableregime above the melting temperature and in itsmetastableregime below the
melting temperature. If we go down into water’s metastable regime (down to perhaps−37 or− 38◦ C), We see that
the density curve continues smoothly down from the density maximum at 4◦ C. (Roughly speaking, the behavior of
ρ in the metastable region is just an extrapolation of polynomial fit to the stable region.) This is no small effect: in
the metastable regime the density drops to 97% of its maximum.

Another puzzling feature of liquid water has to do with its compressibility. Compressibility is a response function
— the response of the density to an infinitesimal change in pressure. In a typical liquid, as we lower the temperature
the compressibility decreases. If the liquid becomes solid, the compressibility is radically decreased. This does not
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happen in water. If you lower the temperature of water, the compressibility decreases — but only to 46◦ C. Below
the temperature the compressibility actually increases until it reaches the freezing point, when it drops.

Once again, the phenomena in the supercooled region are an extension of the phenomenon we know in the normal
region. On cooling below 46◦ C, the compressibility increases and, when it reaches the supercooled region, starts to
increase very rapidly until, at its lowest temperature, it is approximately double what it was at its 46◦ C minimum
— a 100% effect.

A even stronger effect is seen when we consider the relaxation time using a typical Arrhenius plot. We put the log
of the relaxation time on they-axis and the inverse of the temperature (in Kelvin) on thex-axis. At high temperatures,
water acts in a perfectly normal way — roughly a straight line. Below approximately body temperature there is an
upward curvature that becomes increasingly pronounced and, the lowest temperatures, the relaxation has increased
by approximately a factor of 10, or 1000%.

3. The puzzle of liquid water: clues

There are clues available to us in addressing the puzzle of liquid water. The first was emphasized by Linus Pauling
in his book, i.e., “Water is a strongly hydrogen-bonded network”. Suppose we could submerge ourselves in water
in a submarine even more remarkable than the Alvin, one that would allow us to observe the water with Angstrom
vision and with time slowed so that we could observe the water structure not with the “30 frames per second”
capability of the normal eye, but with a time-resolution of 1012 frames per second. What would we see? We would
see regions of the water in which there are bonds and regions in which there are no bonds, and these would change
identification from one frame to the next. We would see that many of the molecules are characterized by having
four intact hydrogen bonds, others by having three, others by having two, and perhaps even some that have only
one or zero.

If we could add to our Angstrom vision and picosecond time resolution the ability to measure the exact position
of these molecules, we would be able to calculated the local specific volume in the regions where we find these
bonded “patches”. If we calculate the local specific volume using a computer model of water, we find the local
specific volume in these well-bonded regions to be larger than the global specific volume. This is not surprising
because we know that in ice the local volume is 10% larger than in liquid water, and if we do not break local bonds
in our coumputer model of water there is no reason to believe the local specific volume in these unbroken regions
will be any less than that in ice.

We can also ask about the entropy in these local unbroken regions, and we assume that since they are still structured
they will have a lower entropy. Thus these local patches have a specific volume that is larger than the global specific
volume and a local entropy that is lower than the global entropy. That means that the fluctuations that occur in every
liquid that we see from our remarkable version of submarine Alvin areanticorrelated: regions that we encounter
that have a larger specific volume than the global will also have an entropy that is smaller than the global.

For someone who works in statistical mechanics, this anticorrelation is extremely nonintuitive. In elementary
statistical mechanics of gases, an increase in volume means an increase in entropy. In my personal experience, a
larger office invariably means a great increase in entropy. Why does this experience not seem to apply to liquid
water in this temperature range? Why does the entropy decrease? Why is the decrease important?

Qualitatively, this picture helps explain the puzzles we mentioned. For example, the compressibility is proportional
to a statistical mechanical quantity, the fluctuations in specific volume,(1V )2. If the fluctuations in specific volume
of a typical liquid decrease as it is cooled, the compressibility should also decrease. But if we superpose these
connected patches on the properties of a normal liquid and increase their number as the liquid is cooled, they give
rise to a positive contribution to the density fluctuations. If we lower the temperature further, we increase further
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the number of patches. This happens because for each 1% increase in fraction of intact bonds there will be a 4%
increase in the number of water molecules that have four intact bonds — contributing significantly to the density
fluctuations.

Then there is the part of puzzle associated with the specific heat of constant pressure,cP , which is important for
many reasons — including the utility of water as a coolant. In a normal liquid the value decreases with temperature.
In water it is typically double that of a normal liquid (making water useful in engineering), and below 35◦ C, cP

actually starts to increase — roughly by a factor of two at the lowest temperature range. This is understandable
because the specific heat, in addition to being a response function, is also propertional to a statistical mechanical
property: the fluctuations in specific entropy. Just the fluctuations in specific volume increase as we lower the
temperature, so also the fluctuations in specific entropy increase.

But the most dramatic of properties is the coefficient of thermal expansion,αP , which is the response of the
volume to the temperature. For a typical liquid,αP is always positive and fairly large, which we can understand
becauseαP is proportional to the average of the fluctuations1V 1S and a larger office has more arrangements so
the fluctuations are positively correlated. For water,αP is smaller than expected for all temperature and decreases as
one lowers the temperature, passing below zero at 4◦ C and below that temperature decreasing very strongly. Inside
the patches, the fluctuations in specific volume and specific entropy are anticorrelated and therefore1V 1S must
always be negative. So we are adding a negative quantity, due to the patches, to an otherwise positive quantity. At
low enough temperature, the patches win out andαP < 0.

This is qualitative picture that can be confirmed by simulations and also by small-angle X-ray scattering. But
the picture remains qualitative, and the simulations and the scattering experiments also do not tell us why at very
low temperatures many quantities, when plotted on they-axis of a log–log plot versus the log of the temperature
minus 228 K on thex-axis, over roughly a decade are very often straight lines, with roughly the same slope. It does
not seem to matter which quantity we study. This hints at some kind of critical behavior, with an amazing critical
temperature of approximately 228 K or≈ −45◦ C. This≈ −45◦ C is lower than the lowest temperature we have
been able to achieve in metastable water (about 235 K). This 7 K difference means that one is always 7 parts in 228
or 3% away from the apparent singularity — not impressive by critical phenomena standards, and so this linearity,
even though it has been known for some time [5], has been largely ignored by people in the critical phenomena field.

4. The puzzle of liquid water: one hypothesis

Since the time of Andrews in 1869 [24] we have known that a fluid above its critical point is one continuous
fluid. There is no difference between liquid and gas; the difference only appears below the critical point, as the
cooling fluid crosses the line of first-order transitions, which has a positive slope because the high-pressure phase
has a smaller volumeanda smaller entropy. Lately, there has been some interest in the hypothesis that in addition
to the critical pointC, there is a second critical pointC′ [25–32]. Above this hypotheizedsecondcritical pointC′,
there is one continuous phase. If we go belowC′, there are two distinct phase: (i) a higher-density phase and (ii) a
lower-density phase. The lower-density phase corresponds to the condensation of those well-defined little patches
or fluctuations, and we know that those fluctuations have a larger specific volume and a smaller specific entropy
than the avarage. If specific volume is positive and specific entropy is negative, then the slope of the first-order
transition line must be negative.

This is the picture we get from computer simulations. The problem is that the picture is from computer simulations.
It does not necessarily represent real water.

When we being to work experimentally, we discover a new barrier: the homogeneous nucleation temperatureTH.
As the name suggests, when we take a liquid to this line, it nucleates. There is no way to have the liquid cross that
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Fig. 2. HDA is readily made at pressures higher than about 200 MPa, and LDA at pressures lower than that amount. The pressure hysteresis
becomes larger at lower temperatures. In fact, when the pressure of HDA is decreased at 77 K, HDA does not transform to LDA and can exist
at 1 bar, but when subsequently heated to about 120 K at 1 bar, HDA tranforms abruptly to LDA. Shown is a photo of this “explosively-quick”
transition from HDA to LDA about 125 K during warming-up at 1 bar. Top: just before the HDA→LDA transiton. Bottom: just after the transition.

line smoothly. If the second critical point is on the other side of that barrier, why sould we care about it? If we cannot
have the liquid there, why care at all? The answer is that this second critical point is crucial in understanding the
anomalies of liquid water. If that second critical point is there, it influences the equation of state for a huge region
in its vicinity — just as the presence of Mount Everest influences the landscape for miles around.

There are four categories of experiment that may be relevant to the liquid–liquid phase transition hypothesis:
1. Mishima et al. [33–35] some years ago discovered that if you take ice cubes from the ice box and subject

them to a huge pressure(≈ 10 kbar) they do not simply turn into crushed ice crystals. Instead they form a
unique amorphous phase calledhigh-density amorphous ice. More recently, Mishima [36] has shown that when
the pressure is released and the temperature changed appropriately, high-density amorphous ice changes into
low-density amorphous ice, and that there is a line of first-order phase trasnsition separating these two forms
of ice (Fig. 2). If amorphous ice is simply “structurally-arrested” water then, corresponding to the amorphous
ice high-density and low-density phases, there could be on the liquid water free energy surface a high-density
and low-density liquid.

2. There are more precise experiments. If everything is on one smooth potential surface, it should be possi-
ble to analytically continue the measurements of high-density amorphous ice until they connect with mea-
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surements of the low-density amorphous ice, and recent unpublished data of Smith and Kay support the
possibility.

3. In another approach, neutrons are used to measure the structure of liquid water along horizontal paths, i.e.,
the pressure is fixed and the temperature decreased [37,38]. Well above the critical point, the structure should
approach that of high-density amorphorous ice. Well below the critical point, the structure should approach that
of low-density amorphous ice.

4. Very recently, Mishima devised an experiment that is simple, elegant, and much less expensive than neutrons
[39–41]. A cannister is filled with a solid and a gradually increasing pressure is applied until the solid melts.
One measurement is taken: temperature as a function of pressure. When melting occurs, there is always a drop
in temperature, corresponding to the latent heat. A typical scan will drop and rise each time there is a phase
transition. If the melting line drops with pressure then compression-induced melting is taking place. If the
melting line rises with pressure then decompression-induced melting is taking place. The melting linesTM(P )

of the various high-pressure amporhous ices are thus mapped (Fig. 3). The goal is to measure these lines in the
no-man’s land below the homogeneous nucleation temperature. Mishima’s experiment does this for the first
time.

What is the outcome? The goal is to discover the equation of state, which is volume as a function of pressure,
and one gets volume by diferentiation if one knows the Gibbs potential as a function of temperature and pressure
(Fig. 3). The Gibbs potential of the liquid is not known below that homogeneous nucleation curve (the liquid
does not exist in that region). But using the device of melting — for a fraction of a second, using pressure — the
high-pressure amorphous ices and recording where that melting line is, we can map the “family” of melting lines
on the Gibbs potential of liquid surface, and from that family of melting lines we can obtain by differentiation
the equation of state.

5. Discussion

The most natural response to the concept of a second critical point in a liquid is bafflement that such a thing just
does not make sense. To make the concept more plausible, we offer the following remarks. Consider a typical member
of the class of intermolecular potentials that go by the name of core-softened potentials [42–45]. These are potentials
with two wells, an outer well that is deeper and an inner well that is more shallow. Recently Sadr-Lahijany and
collaborators [46] have re-visited such potentials with a view toward applications to water. These simple potentials
might capture the essential physics of water–water interactions because, in the case of water, a hydrogen-bonded
interaction leads to a larger intermolecular spacing (say 2.8 Å) compared to a “nonhydrogen-bonding” interaction.
Since at low temperatures, hydrogen bonds predominate — increasing the volume — it follows that the outer well of
a core-softened potential must be deeper. Then as temperature is lowered, the systems finds itself more likely in the
outer “deep” well than in the inner “shallow” well. Further, pressure has the same effect as raising the temperature,
since for a fixed temperature, applying pressure favors the inner shallow well.

An advantage of such double-well potentials is that they can be solved analytically in one-dimension [47,48] and
are tractable to study using approximation procedures (and simulations) in higher dimensions [46].

To complete the intuitive picture, let us imagine two (or more) local structures, one favored at low pressure (the
outer deeper well) and the other favored at high pressure (the inner well). If a system is cooled at a fixed low value of
pressure, then the system will settle into a phase whose properties are related to the parameters of the outer well. If,
on the other hand, the system is cooled at a fixed high value of pressure, it will settle into a phase whose properties
are related to the parameters of the inner well. Thus it becomes plausible that depending on the pressure, the system
could approach different phases as the temperature is lowered.
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Fig. 3. Application of data obtained in Mishima’s experiment to reconstruct the Gibbs potential surface and the thermodynamics equation of
stateV = V (P, T ). (a) The1GL (P, T ) surface in the 80–270 K and 0–0.5 GPa region with constant-P and constant-T lines at 50 MPa and
10 K intervals, as evaluated from experimental data. (b) Plausible qualitative equation of stateV (P, T ) of liquid water. The specific volumes
of the amorphous phases are known for the region belowTX [6]. Solid lines are the specific volume along the melting lines of ice IV and XIV.
The high-temperature liquid appears to separate into two low-temperature liquid phases just below the critical point located at around 0.1 GPa
and 220 K; we emphasize that the data cannot locate the coordinates of the critical point with high accuracy due to the possibility that the phase
transition line might have a “hook” in it. These two liquid phases are continuous with the two amorphous phases that are known to exist below
about 150 K. Note that this phase transition surface differs from that of a typical liquid only in the presence of this critical point — which in turn
arises because below the line of density maxima the fluctuations in specific volume and in entorpy are anticorrelated by definition.

A clear physical picture has by no means emerged. However, recent work of Canpolat and collaborators has asked
the question if we can characterize the local structural heterogeneities that appear in liquid water. Glaser and Clark
[49] have recently investigated a liquid under conditions not far from the freezing line. Using molecular dynamics
(MD) simulation of the WCA potential, they find local structural heterogeneities — with a typical diameter of a
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few atoms — in which thelocal order is not unlike the local order of the solid phase. This idea can be further tested
by considering water, which has more than one crystalline phase for which, by tuning a parameter (the pressure),
a liquid state point can move from near the freezing line of one phase (ice Ih) to near the freezing line of another
phase (ice VI). In such a case, the work of Glaser and Clark may lead one to hypothesize that the local structure of
the liquid changes drastically from resembling one phase to resembling an altogether different phase.

Specifically, Canpolat and collaborators [50,51] considered different state points of liquid water near its phase
boundaries with ice Ih and with ice VI (a high-pressure polymorph of solid H2O). To this end, in the spirit of the
Walrafen pentamer, they develop a model of interacting water pentamers, and find a local energy minimum which
we identify with a well-defined configuration of neighboring pentamers (the “Walrafen pentamer” is defined by four
water molecules located at the corners of the tetrahedron that are hydrogen-bonded to a ceneteral molecule — see,
e.g., [52–57]). The corner molecules are separated from the central molecule by 2.8 Å, corresponding to the first
peak in the oxygen–oxygen radial distribution function. They advance the hypothesis that this configuration may be
related to local “high-density” structural heterogeneities occurring in liquid water when subjected to high pressure.
Our results are consistent with recent experimental data on the effect of high pressure on the radial distribution
function, and are further tested by molecular dynamics simulations.

Although such a simplified picture may seem to be oversimplified, recent work of Bellissent-Funel [58] success-
fully fits detailed neutron structure data to just such a picture. The simulation results are in good accord with neutron
results (see, e.g., [59]), so we are optimistic that soon a unified coherent picture will emerge via careful combination
of reliable results.

6. Outlook

Many open questions remain, and many experimental results are of potential relevance to the task of answering
these questions. Among these are the tantalizing questions concerning the dynamics, where the functional form
of the various characteristic times is not clarified either experimentally or theoretically. It was proposed that the
apparent singlular temperature of liquid water might be identified with the MCT temperature of structural arrest
[60,61]. Recent results [60,62] support with this possibility, and complement the scenarios discussed above.

Before concluding, we ask “What is the requirement for a liquid to have such a second critical point?” In fact,
by the arguments above, some other liquids should display second critical points, namely systems which at low
temperature and low pressure have anticorelated entropy and specific volume fluctuations. Thus a natural extension
to our work is to consider other tetrahedrally-coordinated liquids. Examples of such systems are SiO2 and GeO2,
known for their geological and technological importance. Both of these systems display features in their equations
of state similar to those found in simulations of water and that can be traced to their tetrahedral configurations.
This tetrahedrality of local structure has the implication that locally-ordered regions of the liquid will have alarger
specific volume rather than asmallerspecific volume than the global specific volume (as in most liquids), for which
the local structure, also resembling the global structure of the solid, has a smaller specific volume than the global
specific volume. Whenever we are at a state point in theP–T phase diagram to the left of the locus of points
where the coefficient of thermal expansion is zero (the “TMD line”), then of necessity the volume fluctions are most
unusual in that they are anticorrelated with the entropy fluctuations. These unusual fluctuations grow as one moves
further into the “anomalous” region to the left of the TMD lines, and ultimately a new phase condenses out of the
fluid which has the property that although the entropy of the new phase is low, the specific volume is large — this
is what is called the “low-density liquid.” Since other tetrahedral liquids have similar features, we might anticipate
similar critical points occur on the liquid free energy surface of these liquids. Simulation evidence in favor of this
possibility has been reported recently for SiO2 [63] and a two-level model has been developed for amorphous GaSb
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[64]. Understanding one such material, water, may help in understanding others — whether they be other materials
with tetrahedral structures (and corresponding TMD lines) such as SiO2 or whether they be more complex structures
like amorphous GaSb which appears to display strikingly ordered local heterogeneities as it is heated toward its
crystallization temperature.

We conclude with a final caveat, emphasized by Debenedetti in [65]. It is not possible to distinguish a sharp phase
transition between two well-defined phases (differing in density) from a smeared “apparent” phase transition. In
principle, there is no a priori way to distinguish a function with a sharp discontinuous “step” from a continuous
function with a sharp but still continuous behavior that looks like a step since there exist error bars on experimental
data, and since the number of data points is finite, not infinite. Example of such a function isy = tanh 100x which
appears to jump discontinuously from−1 for negativex to +1 for positivex, yet in fact is a continuous finction.
Hence we cannot rule out the scenario originally envisioned in the percolation model [8–10] that the system has no
genuine singularity at all. This “singlularity-free scenario” has been examined critically in recent work by Sastry
and collaborators [66,67]. Possibly studying the effect on water of salt dilution or confinement will help resolve
some of these issues [68,69].
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Poole, S. Sastry, F. Sciortino, Y. Suzuki, and J. Teixeira for helpful discussions. This work was supported by CREST
(Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation (JST), BP,
and National Science Foundation grant CH9728854.

References

[1] F. Franks (Ed.), Water: A Comprehensive Treatise, Vol. 1–7, Plenum Press, New York, 1972.
[2] F. Franks (Ed.), Water Science Reviews, Vol. 1–4, Cambridge University Press, Cambridge, 1985.
[3] P.G. Debenedetti, Metastable Liquids, Princeton University Press, Princeton, 1996.
[4] G.S. Kell, in: F. Franks (Ed.), Water: A Comprehensive Treatise, vol. 1, Plenum Press, New York, 1972, pp. 363–412.
[5] C.A. Angell, in: F. Franks (Ed.), Water: A Comprehensive Treatise, vol. 7, Plenum Press, New York, 1980, pp. 1–81.
[6] O. Mishima, H.E. Stanley, Nature 396 (1998) 329–335.
[7] C.A. Angell, Ann. Rev. Phys. Chem. 34 (1983) 593–630.
[8] H.E. Stanley, J. Phys. A 12 (1979) L329-L337.
[9] H.E. Stanley, J. Teixeira, J. Chem. Phys. 73 (1980) 3404–3422.

[10] H.E. Stanley, J. Teixeira, A. Geiger, R.L. Blumberg, Physica A 106 (1981) 260–277.
[11] A. Geiger, F.H. Stillinger, A. Rahman, J. Chem. Phys. 70 (1979) 4185–4193.
[12] F.H. Stillinger, Science 209 (1980) 451-457
[13] F.H. Stillinger, T.A. Weber, Phys. Rev A 25 (1982) 978–989.
[14] F.H. Stillinger, T.A. Weber, Phys. Rev. A 28 (1983) 2408–2416.
[15] F.H. Stillinger, T.A. Weber, J. Phys. Chem. 87 (1983) 2833–2840.
[16] F.H. Stillinger, T.A. Weber, J. Chem. Phys. 80 (1984) 4434–4437.
[17] A. Geiger, H.E. Stanley, Phys. Rev. Lett. 49 (1982) 1749–1752.
[18] H.E. Stanley, R.L. Blumber, A. Geiger, Phys. Rev. B 28 (1983) 1626–1629.
[19] H.E. Stanley, R.L. Blumber, A. Geiger, P. Mausbach, J. Teixeira, , J. de Physique 45 (1984) C7[3]-C7[12].
[20] A. Geiger, H.E. Stanley, Phys. Rev. Lett. 49 (1982) 1895–1989.
[21] R.L. Blumberg, H.E. stanley, A. Geiger, P. Mausbach, J. Chem. Phys. 80 (1984) 5230–5241.
[22] A. Geiger, P. Mausbach, J. Schnitker, R.L. Blumberg, H.E. Stanley, J. Physique 45 (1984) C7[13]–C7[30].
[23] C.A. Angell, V. Rodgers, J. Chem. Phys. 80 (1984) 6245.
[24] T. Andrews, Phil. Trans. 159 (1869) 575–591.
[25] P.H. Poole, F. Sciortino, U. Essmann, H.E. Stanley, Nature 360 (1992) 324.
[26] P.H. Poole, F. Sciortino, T. Grande, H.E. Stanley, C.A. Angell, Phys. Rev. Lett. 73 (1994) 1632.



462 H.E. Stanley et al. / Physica D 133 (1999) 453–462

[27] S.S. Borick, P.G. Debenedetti, S. Sastry, J. Phys. Chem. 99 (1995) 3781.
[28] H. Tanaka, Nature 380 (1996) 328.
[29] H. Tanaka, J. Chem. Phys. 105 (1996) 5099.
[30] C.J. Roberts, A.Z. Panagiotopoulos, P.G. Debenedetti, Phys. Rev. Lett. 77 (1996) 4386.
[31] S. Sastry, P.G. Debenedetti, F. Sciortino, H.E. Stanley, Phys. Rev. E. 53 (1996) 6144.
[32] E. Shiratani, M. Sasai, J. Chem. Phys. 108 (1998) 3264.
[33] O. Mishima, Nature 384 (1996) 546–549.
[34] O. Mishima, L.D. Calvert, E. Whalley, Nature 310 (1984) 393–395.
[35] O. Mishima, L.D. Calvert, E. Whalley, Nature 314 (1985) 76–78 .
[36] O. Mishima, J. Chem. Phys. 100 (1994) 5910.
[37] A.V. Okhulkov, Yu.N. Deminates, Yu.E. Gorbaty, J. Chem. Phys. 100 (1993) 1578.
[38] M.-C. Bellissent-Funel, L. Bosio, J. Chem. Phys. 102 (1995) 3727.
[39] O. Mishima, H.E. Stanley, Nature 392 (1998) 164.
[40] O. Mishima, H.E. Stanley, Rev. High Pressure Sci. Tech. 6 (1998) 1103–1106.
[41] O. Mishima, H.E. Stanley, High Pressure Mat. Res. 499 (1998) 443.
[42] P.C. Hemmer, G. Stell, Phys. Rev. Lett. 24 (1970) 1284.
[43] G. Stell, P.C. Hemmer, J. Chem. Phys. 56 (1972) 4274.
[44] J.S. Hoye, P.C. Hemmer, Physica Norvegica 7 (1973) 1.
[45] J.M. Kincaid, G. Stell, C.K. Hall, J. Chem. Phys. 65 (1976) 2161.
[46] M.R. Sadr-Lahijany, A. Scala, S.V. Buldyrev, H.E. Stanley, Phys. Rev. Lett. 81 (1998) 4895–4898.
[47] H. Takahashi, Proc. Phys. Math. Soc. Japan 24 (1942) 60.
[48] H. Takahashi, L. Van Hove, in: E.H. Lieb, D.C. Mattis (Eds.), Mathematical Phsics in One Dimension, Academic Press, New York, 1966.
[49] M.A. Glaser, N.A. Clark, Phys. Rev. A 41 (1990) 4585.
[50] M. Canpolat, F.W. Starr, M.R. Sadr-Lahijany, A. Scala, O. Mishima, S. Havlin, H.E. Stanley, Chem. Phys. Lett. 294 (1998) 9–12.
[51] M. Canpolat, F.W. Starr, M.R. Sadr-Lahijany, A. Scala, O. Mishima, S. Havlin, H.E. Stanley, Structural Heterogeneities and Density

Maximum and Liquid Water, Preprint.
[52] G.E. Walrafen, J. Chem. Phys. 40 (1964) 3249.
[53] G.E. Walrafen, J. Chem. Phys. 47 (1967) 114.
[54] W.B. Monosmith, G.E. Walrafen, J. Chem. Phys. 81 (1984) 669.
[55] G.E. Walrafen, M.S. Hokmabadi, W.-H. Yang, J. Chem. Phys. 85 (1986) 6964.
[56] G.E. Walrafen, M.R. Fisher, M.S. Hokmabadi, W.-H. Yang, J. Chem. Phys. 85 (1986) 6970.
[57] G.E. Walrafen, W.-H. Yang, Y.C. Chu, M.S. Hokmabadi, J. Phys. Chem. 100 (1996) 1381.
[58] M.-C. Bellissent-Funel, Europhys. Lett. 42 (1998) 161–166.
[59] F.W. Starr, M.-C. Bellissent-Funel, H.E. Stanley, Phys. Rev. E 60 (1999) 1084–1087.
[60] F. Sciortino, P. Gallo, P. Tartaglia, S.-H. Chen, Phys. Rev. E 54 (1996) 6331–6343.
[61] F.X. Prielmeier, E.W. Lang, R.J. Speedy, H.-D. Lüdemann, Phys. Rev. Lett. 59 (1987) 1128–1131.
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