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Abstract – We introduce the concept of the boundary of a complex network as the set of
nodes at distance larger than the mean distance from a given node in the network. We study
the statistical properties of the boundary nodes seen from a given node of complex networks. We
find that for both Erdős-Rényi and scale-free model networks, as well as for several real networks,
the boundaries have fractal properties. In particular, the number of boundaries nodes B follows a
power law probability density function which scales as B−2. The clusters formed by the boundary
nodes seen from a given node are fractals with a fractal dimension df ≈ 2. We present analytical
and numerical evidences supporting these results for a broad class of networks.

Copyright c© EPLA, 2008

Many complex networks are “small world” due to the
very small average distance d between two randomly
chosen nodes. Often d∼ lnN , where N is the number of
nodes [1–6]. Thus, starting from a randomly chosen node
following the shortest path, one can reach any other node
in a very small number of steps. This phenomenon is called
“six degrees of separation” in social networks [4]. That is,
for most pairs of randomly chosen people, the shortest
“distance” between them is not more than six. Many
random network models, such as Erdős-Rényi network
(ER) [1], Watts-Strogatz network (WS) [5] and scale-free
network (SF) [3,6–8], as well as many real networks, have
been shown to possess this small-world property.
Much attention has been devoted to the structural

properties of networks within the average distance d from a
given node. However, almost no attention has been given
to nodes which are at distances greater than d from a
given node. We define these nodes as the boundaries of
the network and study the ensemble of boundaries formed
by all possible starting nodes. An interesting question is:
how many “friends of friends of friends etc. . . . ” has one at
a distance greater than the average distance d? What is
their probability distribution and what is the structure
of the boundaries? The boundaries have an important

(a)E-mail: jiashao@buphy.bu.edu

role in several scenarios, such as in the spread of viruses
or information in a human social network. If the virus
(information) spreads from one node to all its nearest
neighbors, and from them to all next nearest neighbors
and further on until d, how many nodes do not get the
virus (information), and what is their distribution with
respect to the origin of the infection?
In this letter, we find theoretically and numerically

that the nodes at the boundaries, which are of order
N , exhibit similar fractal features for many types of
networks, including ER and SF models as well as several
real networks. Song et al. [9] found that some networks
have fractal properties while others do not. Properties
of fractal networks were also studied [10,11]. Here we
show that almost all model and real networks includ-
ing non-fractal networks have fractal features at their
boundaries.
Figure 1 demonstrates our approach and analysis. For

each “root” node, we call the nodes at distance ℓ from it
“nodes in shell ℓ”. We choose a random root node and
count the number of nodes Bℓ at shell ℓ. We see that
B1 = 10, B2 = 11, B3 = 13, etc. . . . We estimate the aver-
age distance (diameter) d≈ 2.9 by averaging the distances
between all pairs of nodes. After removing nodes with
ℓ < d≈ 2.9, the network is fragmented into 12 clusters,
with sizes s3={1, 1, 2, 5, 1, 3, 1, 1, 8, 1, 2, 3}. Note that the
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cluster of 8 nodes

shell 2

shell 1

Fig. 1: (Color online) Illustration of shells and clusters origi-
nating from a randomly chosen root node, which is shown in
the center (red). Its neighboring nodes are defined as shell 1
(green), the nodes at distance ℓ are defined as shell ℓ. When
removing all nodes with ℓ < 3, the remaining network (purple)
becomes fragmented into 12 clusters.

boundary of the network is always seen from a given node,
thus not a unique set of nodes in the network.
We begin by simulating ER and SF networks, and

then we present analytical proofs. Figure 2a shows
simulation results for the number of nodes Bℓ reached
from a randomly chosen origin node for an ER network.
The results shown are for a single network realization
of size N = 106, with average degree 〈k〉= 6 and d≈ 7.9
(see footnote 1). For ℓ < d, the cumulative distribution
function, P (Bl), which is the probability that shell
ℓ has more than Bℓ nodes, decays exponentially for
Bℓ >B

∗
ℓ , where B

∗
ℓ is the maximum typical size of shell ℓ

(see footnote 2). However, for ℓ > d, we observe a clear
transition to a power law decay behavior, where
P (Bℓ)∼B

−β
ℓ , with β ≈ 1 and the pdf of Bℓ is

P̃ (Bℓ)≡ dP (Bℓ)/dBℓ ∼B
−2
ℓ . For different networks, the

emergence of the power law can occur at shell ℓ= d+1 or
ℓ= d+2. Thus, our results suggest a broad “scale-free”
distribution for the number of nodes at distances larger
than d. This power law behavior demonstrates that there
is no characteristic size and a broad range of sizes can
appear in a shell at the boundaries.
In SF networks, the degrees of the nodes, k, follow

a power law distribution function q(k)∼ k−λ, where the
minimum degree of the network, kmin, is chosen to be 2.
Figure 2b shows, for SF networks with λ= 2.5, similar

power law results, P (Bℓ)∼B
−β
ℓ , with β ≈ 1 for ℓ > d

1Different realizations yield similar results. In one realization,
a certain fraction of nodes are randomly taken to be origin. The
histogram is obtained from Bℓ belonging to different origin nodes.
2The behavior of the pdf of Bℓ for ℓ < d will be discussed later

and is shown in fig. 3c.
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Fig. 2: (Color online) The cumulative distribution function,
P (Bℓ), for two random network models: (a) ER network
with N = 106 nodes and 〈k〉= 6, and (b) SF network with
N = 106 nodes and λ= 2.5, and two real networks: (c) the
High Energy Particle (HEP) physics citations network and
(d) the Autonomous System (AS) Internet network. The shells
with ℓ > d are marked with their shell number. The thin lines
from left to right represent shells ℓ= 1, 2, . . . , respectively,
with ℓ < d. For ℓ > d, P (Bℓ) follows a power law distribution
P (Bℓ)∼B

−β
ℓ , with β ≈ 1 (corresponding to P̃ (Bℓ)∼B

−2
ℓ for

the pdf). The appearance of a power law decay only happens
for ℓ larger than d≈ 7.9 for ER and d≈ 4.7 for the SF network.
The straight lines possess slopes of −1.
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Fig. 3: (Color online) (a) Normalized average number of nodes
at shell ℓ, 〈Bℓ〉/N , as a function of ℓ− lnN/ln 〈k〉 for ER
network with 〈k〉= 6. For different N , the curves collapse.
(b) k̃ℓ+1, which is 〈k

2
ℓ 〉/〈kℓ〉, as a function of ℓ shown for both

ER and SF networks with different N .

which is similar with ER. We find similar results also for
λ> 3 (not shown).
To test how general is our finding, we also study

several real networks (figs. 2c, d), including the High
Energy Particle (HEP) physics citations network [12] and
the Autonomous System (AS) Internet network [13,14].
For HEP network and AS network, d≈ 4.2 and 3.3,
respectively. The degree distribution of HEP network is
not a power law (see fig. 2c), while the AS network shows
a power law degree distribution with λ≈ 2.1 (see fig. 2d).
Our results suggest that the power law decay behavior
appears also in both networks, with similar values of β ≈ 1
for ℓ > d (see footnote 3).
Next we ask: how many nodes are on average at

the boundaries? Are they a nonzero fraction of N?
We calculate the mean number 〈Bℓ〉 in shell ℓ, and in
fig. 3a plot 〈Bℓ〉/N as a function of ℓ− lnN/ln 〈k〉 for
different values of N for ER network. The term lnN/ln 〈k〉
represents the diameter d of the network [2]. We find that,
for different values of N , the curves collapse, supporting
a relation independent of network size N . Since 〈Bℓ〉/N is
apparently constant and independent of N , it follows that
〈Bℓ〉 ∼N , i.e., a finite fraction of N nodes appears at each
shell including shells with ℓ > d. We find similar behavior
for SF network with λ= 3.5 (not shown).

3We also find similar results (not shown here) for other real
networks.

01
0

01
2

01
4

01
6

s

01
0

01
2

01
4

01
6

01
8

n
(s

 )

5=
6=
7=

FS)a(

0.3=θ

l

l
l

l

l

01
0

01
1

01
2

01
3

01
4

s

01
0

01
2

01
4

01
6

01
8

n
(s

 )

5=
7=
8=0.3=θ

PEH)b(

l
l
l

l

l
Fig. 4: (Color online) The number of clusters of sizes sℓ, n(sℓ),
as a function of sℓ after removing nodes within shell ℓ for:
(a) SF network with N = 106 and λ= 2.5, (b) HEP citations
network. The relation between n(sℓ) and sℓ is characterized
by a power law, n(sℓ)∼ s

−θ
ℓ , with θ≈ 3. In order to show all

curves clearly, vertical shifts are made. Note that the points
in the tail of the distributions represent the rare occurences of
large clusters which are formed by nodes outside shell ℓ− 1.

The branching factor [15] of the network is

k̃= 〈k2〉/〈k〉− 1,

where the averages are calculated for the entire network.
For ER network, k̃ can be proved to be equivalent to
〈k〉. Similarly, we define k̃ℓ ≡ 〈k

2
ℓ 〉/〈kℓ〉− 1, where the

averages are calculated only for nodes in shell ℓ. Above
the diameter, k̃ℓ+1 decreases with ℓ for both ER and
SF networks (fig. 3b). Thus, at the shells where power
law behavior of P (Bℓ) appears (fig. 2), the nodes have
much lower k̃ℓ+1 compared with the entire network.
The approaching of k̃ℓ+1 to 1 (ER network) and 2 (SF
network) is consistent with a critical behavior at the
boundaries of the network [15].
Next, we study the structural properties of the bound-

aries. Removing all nodes that are within a distance ℓ (not
including shell ℓ) for ℓ > d, the network will become frag-
mented into several clusters (see fig. 1). We denote the
size of those clusters as sℓ, the number of clusters of size
sℓ as n(sℓ), and the diameter of the cluster as dℓ. We find
n(s)∼ s−θ, with θ≈ 3.0 (figs. 4a and b). The points in
the tails of figs. 4a and b represent the rare appearances
of the large clusters. We find similar results for ER and
other real networks.
The relation between the sizes of the clusters sℓ and

their diameters dℓ is shown as scatter plots in figs. 5a
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Fig. 5: (Color online) The size of clusters, sℓ, shown as scatter
plots of the diameters dℓ of the clusters for (a) SF network
with N = 106 and λ= 2.5, (b) HEP citations network for nodes
outside shell ℓ− 1. Vertical shifts of the curves are made for
clarity. sℓ scales with dℓ as sℓ ∼ d

ϕ
ℓ , with ϕ≈ 2. (c) For ER

network with N = 105 and 〈k〉= 6, sℓ as a function of dℓ for
small degree (k < 4) and large degree (k > 9) nodes chosen as
roots. Here, sℓ as a function of dℓ is shown for ℓ= 8. The
diameter of the entire network is d≈ 6.6. Depending on the
degree of the root node, the average distance of all nodes from
the root may change. Large degree roots (k > 9) have small
average distances (≈ 6.3) while small degree roots (k < 4) have
large average distances (≈ 7.1). However, sℓ ∼ d

ϕ
ℓ , with ϕ≈ 2,

can be observed for both small and large degree roots. We
ignore the large clusters which appear in the flat regions of
fig. 4.

and b, for SF (λ= 2.5) and HEP citations networks,
respectively. In order to show all curves, vertical shifts are
made. Figures 5a and b show a power law relation, sℓ ∼ d

ϕ
ℓ ,

with ϕ≈ 2, suggesting that the clusters at the boundaries
are fractals with fractal dimension df = 2 like percolation
clusters at criticality [16,17]. Here, we ignore the non-
fractal large clusters which appear in the flat regions of
fig. 4. We find that the fractal dimension is df =ϕ≈ 2 also

for ER, SF with λ= 3.5 and several other real networks.
Root nodes with different degree yield different average
distances of the rest of the nodes from the root [18,19].
However, using our definition of boundaries the fractal
clusters can be observed for both large and small degree
roots (see fig. 5c).
Next we present analytical derivations supporting the

above numerical results. We denote the degree distribution
of a network as q(k). For infinitely large networks we can
neglect loops for ℓ < d and approximate the forming of a
network as a branching process [20–23]. The probability
of reaching a node with k outgoing links through a
randomly selected link is q̃(k) = (k+1)q(k+1)/〈k〉. We
define G0(x)≡

∑∞
k=0 q(k)x

k as the generating function of
q(k), G1(x) =

∑∞
k=0 q̃(k)x

k =G′0(x)/〈k〉 as the generating
function of q̃(k). For ER networks we have G0(x) =
G1(x) = e

〈k〉(x−1) and k̃= 〈k〉. The generating function for
the number of nodes, Bm, at the shell m is [23]

G̃m(x) =G0(G1(. . .(G1(x)))) =G0(G
m−1
1 (x)), (1)

where G1(G1(. . .))≡G
m−1
1 (x) is the result of applying

G1(x), m− 1 times. P̃ (Bm), which is the probability
distribution of Bm, is the coefficient of x

Bm in the Taylor
expansion of G̃m(x).
For shells with large m which is still smaller than d,

it is expected [23] that the number of nodes will increase
by a factor of k̃. It is possible to show [21] that Gm−11 (x)
converges to a function of the form f((1−x)k̃m) for large
m (m≪ d), where f(x) satisfies the Poincaré functional
relation

G1(f(y)) = f(yk̃), (2)

where y= 1−x. The function form of f(y) can be uniquely
determined from eq. (2).
It is known [21] that f(x) has an asymptotic func-

tional form, f(y) = f∞+ ay
−δ +0(yδ), where f∞ satisfies

G1(f∞) = f∞. It can be shown [22] that f∞ also gives
the probability that a link is not connected to the giant
component of the network by one of its ends. Expanding
both sides of eq. (2), we obtain

G1(f∞)+G
′
1(f∞)ay

−δ = f∞+ ak̃
−δy−δ +0(yδ). (3)

Since G1(f∞) = f∞, we have δ=− lnG
′
1(f∞)/ ln k̃.

If q(1) = 0 and q(2) �= 0, from G1(f∞) = f∞, we have
f∞ = 0 and G

′
1(f∞) =G0

′′(0)/〈k〉= 2q(2)/〈k〉. If q(2) =
q(1) = 0 (Böttcher case [21]), then δ =∞, which indi-
cates that f(y) has an exponential singularity. Therefore,
networks with minimum degree kmin � 3 do not have the
power law distribution of Bℓ shown in fig. 2, and therefore
have no fractal boundaries.
Applying Tauberian-like theorems [21,24] to f(y), which

has a power law behavior for y→∞, Dubuc [25] concluded
that the Taylor expansion coefficient of G̃m(x), P̃ (Bm),
behaves as Bμm with an exponential cutoff at B

∗
m ∼ k̃

m,
where

μ=

{

δ− 1, q(1) �= 0 and q(2) �= 0;

2δ− 1, q(1) = 0 and q(2) �= 0.
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Fig. 6: (Color online) (a) For ER network, the probability
distribution function P̃ (Bℓ) of number of nodes Bℓ in shells
ℓ� d. For small values of Bℓ, P̃ (Bℓ)∼B

μ
ℓ , where μ depends on

the 〈k〉 of the network (eq. (4)). The slopes of the least-square
fit represented by the straight lines give μ= 1.4± 0.1, which is
in good agreement with the theoretically predicted value μ=
1.34. (b) The fraction of nodes outside shell ℓ+m− 1, rℓ+m, as
a function of rℓ for ER network, where rℓ = 1− (

∑ℓ−1
i=1 Bi)/N

is calculated for any possible ℓ. The (red) lines represent the
theoretical iteration function (eq. (6)).

Thus the probability distribution function of the number
of nodes in the shell m with m≪ d has a power law tail
for small values of Bm

P̃ (Bm)∼B
μ
m. (4)

For an ER network, eq. (4) is supported by simulations
for m� d in fig. 6a. Figure 6a shows for ER network
that P̃ (Bℓ) for ℓ < d and small values of Bℓ increase
as a power law, P̃ (Bℓ)∼B

μ
ℓ . For ER network, we have

k̃= 〈k〉, μ= δ− 1, and δ=− lnG′1(f∞)/ ln k̃. Thus μ=
−ln (〈k〉f∞)/ln 〈k〉− 1, where f∞ can be obtained numeri-
cally from f∞ = e

〈k〉(f∞−1). In the case of 〈k〉= 6, μ≈ 1.34,
which is close to the result shown in fig. 6a.
The above considerations are correct only for m<d,

for which the depletion of nodes with large degree in the
network is insignificant. In a large network, the shells with
m≫ 1 behave almost deterministically, and one can apply
the mean-field approximation for the number of nodes and
links in each shell. Writing down the master equation for
the degree distribution in the outer shells, one can obtain
a system of ordinary differential equations, which can
be solved analytically using the apparatus of generating
functions. Using this solution one can show that

rn =G0(G
n−m
1 (G−10 (rm))), (5)

where rn = 1− (
∑n−1
i=1 Bi)/N is the fraction of nodes

outside shell n− 1. Note that eq. (5) has almost the
same structure as eq. (1). It can also be shown that the
branching factor of nodes outside shell n− 1 is k̃(rn) =
uG′′0(u)/G

′
0(u), where u=G

−1
0 (rn).

For ER networks, eq. (5) yields

rℓ+1 = e
〈k〉(rℓ−1) =

∞
∑

ℓ=0

q(k)rkℓ , (6)

which is valid for all possible ℓ. We test it in fig. 6b for
ER network. The relation between rℓ+m and rℓ can be
obtained by applying eq. (6) m times on rℓ. In fig. 6b we
show the fraction of nodes outside shell ℓ+m− 1, rℓ+m,
as a function of rℓ for ER network. Different values of m
are tested in the plot.
When m≪ d and n≫ d, using the same considerations

as we used in eq. (1), one can show that

rn = [ak̃(1− rm)]
−μ−1+ r∞, (7)

where r∞ =G0(f∞) is the fraction of nodes not belonging
to the giant component of the network, a is a constant.
Based on eqs. (4) and (7), expressing rm and rn in

terms of Bm and Bn, we find that for m≪ d and n≫ d,
Bn ∼B

−μ−1
m . Using P̃ (Bn)dBn = P̃ (Bm)dBm, we obtain

P̃ (Bn)∼B
−1−μ/(μ+1)−1/(μ+1)
n =B−2n , (8)

supporting the numerical findings in fig. 2.
These results are rigorous when k̃ exists and when the

minimum degree kmin � 2. For SF networks with λ< 3, k̃
diverges for N →∞. But for finite N , k̃ still exists. Thus
the above results can also be applied to the case of λ< 3.
For both ER and SF networks with kmin � 3, the power
law of P̃ (Bn) with n≫ d cannot be observed, as we indeed
confirm by simulations.
Relating our problem to percolation theory, we can

explain the simulation results of the probability distri-
bution of cluster size sℓ. The cluster size distribution
in percolation at some concentration p close to pc is
determined by the formula [15]

Pp(s > S)∼ S
−τ+1 exp(−S|p− pc|

1/σ). (9)

In the case of random networks the percolation threshold
is given by pc = 1/k̃. In the exterior of the shell n− 1
(n≫ d), we can estimate |p− pc| ∼ (k̃(rn)− 1)/k̃, where
k̃(rn) decreases and reaches the critical percolation value
of 1. Near the percolation threshold the nodes outside
shell n− 1 are split into a number of finite clusters, and if
k̃ > 1 a giant component. These finite clusters have fractal
dimension df = 2 [16,17]. This theoretical prediction is
confirmed in fig. 5.
The cluster size distribution can be estimated by

introducing a sharp exponential cutoff at s= S∗n ∼

|k̃(rn)− 1|
− 1
σ , so that Pn(s > S)∼ S

−τ+1P (S∗n >S),
where P (S∗n >S) is the probability for a given shell to have

48004-p5
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S∗n >S. Since rn− r∞ has a smooth power law distribution
and k̃(r∞)< 1, the probability that |k̃(rn)− 1|<S

−σ = ε
is proportional to ε. Thus P (S∗n >S)∼ S

−σ and
Pn(s > S) = S

−τ+1−σ [26]. Therefore the cluster size
distribution follows n(s)∼ s−(τ+σ) = s−θ, thus θ= τ +σ.
For ER networks and SF networks with λ> 4, τ = 2.5

and σ= 0.5, the above derivations lead to n(s)∼ s−3.
For SF networks with 2<λ< 4, τ = (2λ− 3)/(λ− 2) and
σ= |λ− 3|/(λ− 2) [16]. Thus, for SF network with λ> 3,
there will be n(s)∼ s−3. We conjecture n(s)∼ s−3 even
for 2<λ< 3, although in this case k̃(rn) does not exist
and the above derivations are not valid. Our numerical
simulations support these results in fig. 4.
In summary, we find empirically and analytically that

the boundaries of a broad class of complex networks
including non-fractal networks [9] have fractal features.
The probability distribution function of the number of
nodes in these shells follows a power law, P̃ (Bℓ)∼B

−2
ℓ ,

and the number of clusters of size sℓ, n(sℓ), scales as
n(sℓ)∼ s

−3
ℓ . The clusters at the boundaries are fractals

with a fractal dimension df ≈ 2. Our findings can be
applied to the study of epidemics. They imply that a
strong decay of the epidemic will happen in the boundaries
of human network, due to the low degree of nodes.
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