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Using event-driven molecular dynamics simulations, we study a three-dimensional one-component system
of spherical particles interacting via a discontinuous potential combining a repulsive square soft core and an
attractive square well. In the case of a narrow attractive well, it has been shown that this potential has two
metastable gas-liquid critical points. Here we systematically investigate how the changes of the parameters of
this potential affect the phase diagram of the system. We find a broad range of potential parameters for which
the system has both a gas-liquid critical point C1 and a liquid-liquid critical point C2. For the liquid-gas critical
point we find that the derivatives of the critical temperature and pressure, with respect to the parameters of the
potential, have the same signs: they are positive for increasing width of the attractive well and negative for
increasing width and repulsive energy of the soft core. This result resembles the behavior of the liquid-gas
critical point for standard liquids. In contrast, for the liquid-liquid critical point the critical pressure decreases
as the critical temperature increases. As a consequence, the liquid-liquid critical point exists at positive pres-
sures only in a finite range of parameters. We present a modified van der Waals equation which qualitatively
reproduces the behavior of both critical points within some range of parameters, and gives us insight on the
mechanisms ruling the dependence of the two critical points on the potential’s parameters. The soft-core
potential studied here resembles model potentials used for colloids, proteins, and potentials that have been
related to liquid metals, raising an interesting possibility that a liquid-liquid phase transition may be present in
some systems where it has not yet been observed.
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I. INTRODUCTION

The discovery and investigation of liquid-liquid phase
transitions in a one-component system is of current interest,
since recent experiments for phosphorus [1,2] show a first-
order phase transition between two stable liquids in the ex-
perimentally accessible region of the phase diagram. A
liquid-liquid phase transition, ending in a critical point, was
initially proposed to explain the anomalous behavior of
network-forming liquids such as H2O [3–18]. In particular,
the density anomaly, consisting in the expansion under iso-
baric cooling of these systems, has been related to the pos-
sible existence of a phase transition between low-density liq-
uid (LDL) and high-density liquid (HDL). Simulation results
and experimental studies of water predict a LDL-HDL phase
transition in an experimentally inaccessible region of the
phase diagram [9,12,15,19,20]. Computer simulations of re-
alistic models of carbon [21], phosphorus [22], SiO2 [23],
and Si [24,25] strongly suggest the existence of first-order
LDL-HDL phase transitions in these substances. Recently
the step changes of the viscosity of liquid metal, such as Co,
have been theoretically interpreted as evidence of liquid-
liquid phase transitions [26].

The presence of the first-order phase transitions in solids
and solid-solid critical points, determined experimentally
[27] and with simulations [28–31], have suggested the pos-
sibility of the existence of liquid-liquid critical points and
polymorphism in the amorphous state [32–34]. It has been
proposed that systems with solid polymorphism may exhibit
several liquid phases with local structures similar to the local
structures of various crystals. Experimental evidence of

sharp structural transitions between liquid polymorphs of Se,
S, Bi, P, I2, Sn, Sb, As2Se3, As2S3, and Mg3Bi2 are consistent
with phase diagrams with first-order liquid-liquid phase tran-
sitions [33,35], analogous to the liquid-liquid phase transi-
tion seen in rare earth aluminate liquids [36,37].

These results call for a general interpretation of the basic
mechanisms underlying the liquid-liquid phase transition.
Here we aim to delineate the conditions ruling the accessi-
bility of the two liquid phases. A first step in this direction
was taken in Refs. [38,39], where we have shown that a
specific isotropic soft-core attractive potential, for a one-
component system, has a phase diagram with LDL-HDL
phase transition, with two fluid-fluid critical points and with
no density anomaly.

Here we extend this analysis by varying the parameters of
this potential (Fig. 1). We find that, for a wide range of
parameters, this potential has a phase diagram with a liquid-
liquid critical point, and we show how the phase diagram
depends on the parameters. We develop a modified van der
Waals equation (MVDWE) able to describe the behavior of
the two critical points as a function of the potential param-
eters, elucidating a mechanism for the liquid-liquid phase
transition and the conditions under which the liquid-liquid
critical point occurs at positive pressure.

In Sec. II we introduce the isotropic sof-core potential; in
Sec. III we describe the two different molecular dynamics
(MD) techniques we use; in Sec. IV we present our results
for different combinations of parameters that give rise to a
liquid-liquid phase transition ending in a liquid-liquid critical
point; in Sec. V we construct a modified van der Waals equa-
tion which can qualitatively reproduce the behavior of the
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two critical points; in Sec. VI we discuss the role of potential
parameters in changing the position of the critical points; in
Sec. VII we summarize our results; in the Appendix we
present our simulation results for a simple square well po-
tential.

II. THE ISOTROPIC SOFT-CORE ATTRACTIVE
POTENTIAL

For attractive potentials with a sufficiently broad interac-
tion distance, the phase diagram has a first-order gas-liquid
transition ending in a gas-liquid critical point, and a first-
order liquid-solid phase transition [40]. When the attractive
range is small, the liquid phase and the gas-liquid critical
point are metastable with respect to the solid phase [41–45].

For a strictly repulsive soft-core potential, simulations
show a phase diagram with a first-order gas-solid phase tran-
sition and a first-order phase transition between two solids of
different densities, but with the same structural symmetry,
ending in a solid-solid critical point [28–31]. Recent theoret-
ical work has suggested that systems with a broad soft-core
potential have a fluid-fluid phase transition and liquid
anomalies [46], or give rise to stripe phases in two dimen-
sions [47].

We have shown in Ref. [38] that the combination of a
repulsive soft core with an attractive well is sufficient to give
rise to a phase diagram with two liquid phases. This simple
isotropic model potential is similar to those used in the semi-
nal work of Stell and Hemmer [48], who studied a soft-core
potential in one dimension (1D). Similar potentials were
studied in 2D and 3D showing phase diagrams with a pos-
sible liquid-liquid critical point [49,50].

The 3D isotropic potential we consider (Fig. 1) has a hard
core (infinite repulsion) at distance a, a repulsive soft core of
width wR and energy UR.0, and an attractive square well of
width wA and energy −UA,0 [38,39]. The potential has

three parameters: wR /a, wA /a, and UR /UA, where a and UA
have been chosen as units of length and energy, respectively.
Though this potential is discontinuous, it is similar to model
potentials for complex fluids, such as colloids, protein solu-
tions, star polymers [44,51–56], and resembles pair poten-
tials proposed for water [52], or that have been related to
liquid metals under specific conditions [57–59].

This potential with parameters wR /a=1.0, wA /a=0.2, and
UR /UA=0.5 has a phase diagram with gas-LDL and gas-
HDL first-order phase transitions, each ending in a critical
point in the supercooled fluid region [38]. Both liquid phases
are metastable with respect to a single crystal phase and no
density anomaly is observed [39].

In this paper we present systematical MD studies of the
phase diagrams for this potential (Fig. 1). By varying the
parameters of the potential, wA /a, wR /a, and UR /UA, we
relate the attractive and repulsive components of the poten-
tial to the appearance and stability of the liquid-liquid phase
transition and critical points.

III. MOLECULAR DYNAMICS SIMULATIONS

We perform MD simulations of N=850 particles of unit
mass m at constant volume V and constant temperature T,
interacting via the potential described above (Fig. 1). The
details of the event-driven MD we use are presented in Refs.
[38,39]. We measure temperature in units of UA /kB, where kB
is Boltzmann constant. We measure time in units of

TABLE I. Sets of parameters for the generic soft-core potential
(Fig. 1) considered in this paper: wR /a and wA /a are the soft-core
width and the attractive width, respectively, both in units of the
hard-core distance, and UR /UA is the repulsive energy in units of
the attractive energy. Sets (i)–(vi) have same wA and UR; sets (ii),
(vii)–(xii) have same wR and UR; sets (xii)–(xvi) have same wR and
wA.

Seta wR /a wA /a UR /UA

(i) 0.4 0.7 2

siid* 0.5 0.7 2

siiid* 0.6 0.7 2

sivd* 0.7 0.7 2

(v) 0.8 0.7 2

(vi) 0.9 0.7 2

(vii) 0.5 0.3 2

(viii) 0.5 0.4 2

(ix) 0.5 0.5 2

(x) 0.5 0.6 2

sxid* 0.5 0.8 2

sxiid* 0.5 0.9 2

(xiii) 0.5 0.9 2.5

sxivd* 0.5 0.9 3

(xv) 0.5 0.9 3.5

(xvi) 0.5 0.9 4

aThe asterisk denotes sets for which critical points are calculated via
two methods (see Tables II and III).

FIG. 1. The generic soft-core potential with attractive well with
parameters wA /a, wR /a, and UR /UA. We use the parameters listed
in Table I.
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aUA
−1/2m1/2 and record potential energy and pressure every

Dt=100 time units. To understand the effect of each param-
eter on the phase diagram of our system, we simulate 16 sets
of potential parameters (Table I). After a preliminary screen-
ing, we choose to study the region of parameter space where
the low-density, gas-liquid critical point C1 always has a
critical temperature above that of the high-density critical
point C2. Therefore, while in Refs. [38,39] C2 is a gas-HDL
critical point, here C2 is a LDL-HDL critical point. As shown
in Refs. [38,39], C2 can lie in the supercooled metastable
phase, close to the line of homogeneous nucleation, as in
water or silica [14,19,25]. We make certain that all our cal-
culations are performed before the onset of crystallization, as
discussed in Ref. [39]. The description of the crystal phases
goes beyond the goal of this work. To optimize our analysis
we use two different MD methods.

A. Isothermic method

The first method is a straightforward calculation of the
phase diagram’s state points. For each state point with given
r=N /V and T, we perform typically ten independent simu-
lations of t<23103 time units. We estimate the error in
pressure measurements from the standard deviation of the
ten averaged values computed for each independent simula-
tion. The state points along the isotherms are approximated
by a two-variable polynomial Psr ,Td=oik aikriTk obtained
by the least squared fit of all the state points in the vicinity of
the critical point. This fitting implies mean field critical ex-
ponents [60] and may produce incorrect results in the close
vicinity of the critical point. However, this method helps us
fit the state points, known with statistical errors, by approxi-
mate polynomial isotherms and thus obtain the approximate
position of the critical point.

The coexistence curves are calculated using Maxwell’s
equal area construction and spinodal line is estimated by
locating the maxima and minima of the isotherms. After cal-
culating the state points, isotherms, coexistence curves, and
spinodal lines, we estimate the critical pressure, temperature,
and density for C1 and C2 (PC1

, TC1
, rC1

, PC2
, TC2

, and rC2
,

respectively) as the point where coexistence and spinodal
curves meet, coinciding at their maxima. We apply this
method to six sets of potential parameters [(ii), (iii), (iv),
(xi), (xii), and (xiv) in Table I]. The results are presented in
Figs. 2–7 in the pressure-density sP−rd phase diagrams. The
estimates of the critical points are presented in Table II.

B. Isochoric method

The isothermic method gives us fairly complete informa-
tion about the details of the phase diagrams, but requires
much computation to calculate enough state points for accu-
rate isotherms. Thus, in order to find the positions of critical
points for a wide range of potential parameters, we adopt a
faster but less accurate MD method. For sets of parameters
close to the sets of parameters studied with the isothermic
method, we estimate the location of the spinodal line by
evaluating the intersections of isochores in the P-T plane. We
first equilibrate several configurations at a high initial tem-

perature kBTI /UA=2.0 for several values of density above
and below the densities where we expect to find rC1

and rC2
.

At constant density, the system is slowly cooled down from
TI to a final temperature kBTF /UA=0.1 during a simulation
time of 104 time units [61].

The average values of T and P are recorded each 100 time
units, which is comparable to the equilibration time of the
system for kBT /UA.0.5. As the temperature decreases, the
equilibration time increases and the method becomes less
reliable. Thus, we use this method to estimate pressure and
potential energy for kBT /UA.0.5.

The error bars of each measurement are of the order of the
nonmonotonic jumps of the isochores (see Fig. 8, inset). The
intersection is determined by fitting isochores with smooth
polynomial fits. The best results can be achieved by qua-
dratic fits in the temperature range including the region of
possible isochore crossing extending from 0.9TC to 1.5TC, so
that the tentative critical temperature TC is inside this inter-
val.

Since at the spinodal line s]P /]rdT=0, two isochores with
two close values of density must intersect in the vicinity of
the spinodal line. By definition, the critical point corresponds
to the maximum temperature on the spinodal. Therefore, the

FIG. 2. The MD P-r phase diagram for the potential in the inset,
with the parameter set (ii) in Table I. The long-dashed lines are the
fits of the calculated state points (circles) at constant T. The iso-
therms (from top to bottom) are for kBT /UA=1.30, 1.29, 1.28, 1.27,
1.26, 1.25, and 1.24 at low r and kBT /UA=0.62, 0.60, 0.58, 0.57,
0.55, 0.53, and 0.50 at high r. The fits are calculated by considering
P a polynomial function of both T and r. The isotherms show two
regions with negative slope, i.e., mechanically unstable, delimited
by the spinodal lines (solid bold lines). Each spinodal line is asso-
ciated with a first-order phase transition. By using the Maxwell
construction, we estimate the coexisting regions associated to each
spinodal line, delimited by the phase transition line (bold dashed
line). The coexisting regions are clearly separated at the considered
temperatures. The phase transition line at low r is indistinguishable
from the spinodal line at this scale. The points where the coexisting
lines merge with the spinodal lines are, by definition, the critical
points C1 (at low r) and C2 (at high r). No spontaneous crystal
nucleation is observed in the explored region of the phase diagram.
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critical pressure and temperature can be evaluated by esti-
mating the pressure corresponding to the maximum tempera-
ture at which isochores intersect. The critical density can be
estimated as sr1+r2d /2, where r1 and r2 are the densities of
the two isochores intersecting at the highest temperature
(Fig. 8). The critical point values estimated with this method
are presented in Table III.

This approximate method is allowed as long as we use it
to estimate the critical points of potentials with sets of pa-
rameters close to those for which we have done a detailed

study using the isothermic method. We apply the isochoric
method to 16 sets of the potential parameters. The compari-
son of the two methods (Tables II and III) shows that the
resulting estimates of critical P, T, and r of C1 and C2 are
consistent.

IV. PHASE DIAGRAM RESULTS

Our results in Figs. 2–7 clearly show that the phase dia-
gram strongly depends on the potential parameters. For ex-
ample, phase diagrams in Figs. 2–4 have fluid phases (gas,

FIG. 3. As in Fig. 2, for parameter set (iii) in Table I. The
isotherms in the low-r region (from top to bottom) are for
kBT /UA=1.25, 1.24, 1.23, 1.22, 1.20, 1.18, 1.16, and in the high-r
region are for kBT /UA=0.72, 0.70, 0.68, 0.65, 0.62, 0.60. Sponta-
neous crystal nucleation is observed for T,TC2

and r.rC2
.

FIG. 4. As in Fig. 2, for parameter set (iv) in Table I. The
isotherms (from top to bottom) in the low-r region are for
kBT /UA=1.20, 1.15, 1.10, 1.05, 1.00, and in the high-r region are
for kBT /UA=0.77, 0.75, 0.73, 0.72, 0.70, 0.69. No spontaneous
crystal nucleation is observed in the explored region of the phase
diagram.

FIG. 5. As in Fig. 2, for parameter set (xi) in Table I. The
isotherms (from top to bottom) in the low-r region are for
kBT /UA=1.53, 1.52, 1.515, 1.51, 1.50, 1.48, 1.46, and in the high-r
region are for kBT /UA=0.70, 0.68, 0.66, 0.64, 0.63, 0.62, 0.61. C2

is at negative pressure.

FIG. 6. As in Fig. 2, for parameter set (xii) in Table I. The
isotherms (from top to bottom) in the low-r region are for
kBT /UA=1.83, 1.82, 1.815, 1.81, 1.80, 1.79, 1.75, 1.70, and in the
high-r region are for kBT /UA=0.98, 0.96, 0.64, 0.92, 0.90. C2 is at
a negative pressure.
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LDL, and HDL) at positive pressures, while for the phase
diagrams in Figs. 5–7, the high-density critical point appears
at negative pressures, i.e., in the region of stretched fluid.

To investigate how the position of critical points depends
on the potential parameters, we vary one of the three param-
eters wA /a, wR /a, and UR /a at a time, keeping the other two
constant. The behavior of T, P, and r for C1 and C2 (Fig. 9
and Table IV) are presented in the following.

A. Effect of the square-well width wA

By keeping wR /a=0.5 and UR /UA=2.0 constant, we find
(Figs. 9(a)–9(c) and 10) that by increasing well width wA, rC1
is almost unaffected, while rC2

decreases, TC1
and TC2

in-
crease, PC1

increases, while PC2
decreases. For wA /a.0.7

the LDL-HDL critical point C2 occurs at negative pressures,
as in Fig. 5. Hence, C2 lies in the stretched fluid region and,
therefore, it is metastable. In order to have a stable LDL-
HDL critical point, the attractive distance wA /a must be suf-
ficiently narrow, so that C2 occurs at positive pressures. A too
narrow well, however, enhances crystallization [39,41–45]

so that the high-density critical point shifts below the line of

spontaneous crystallization, becoming difficult to observe.
Thus the liquid-liquid critical point is observable in our MD
simulations only for intermediate values of wA /a.

B. Effect of the shoulder width wR

Increasing the width of the repulsive interaction wR, while
keeping wA /a=0.7 and UR /UA=2.0 constant, we find (Figs.
9(d)–9(f) and 11, that both rC1

and rC2
decrease, TC1

de-
creases, while TC2

increases, and both PC1
and PC2

decrease.
For wR /a,0.4 the dynamics of the system in the vicinity of
the expected high-density critical temperature become too
slow and the equilibration time becomes too long, with re-
spect to our simulation time, to measure the equilibrium state

TABLE II. Temperatures TC1
and TC2

, pressures PC1
and PC2

, and densities rC1
and rC2

for the critical
points C1 and C2, respectively, computed by the isothermic method.

Set kBTC1
/UA a3PC1

/UA a3rC1
kBTC2

/UA a3PC2
/UA a3rC2

(ii) 1.30±0.01 0.04±0.01 0.11±0.02 0.58±0.02 0.15±0.02 0.33±0.02

(iii) 1.24±0.01 0.03±0.01 0.09±0.02 0.69±0.02 0.11±0.02 0.28±0.02

(iv) 1.18±0.03 0.025±0.003 0.08±0.02 0.75±0.01 0.07±0.01 0.24±0.02

(xi) 1.52±0.01 0.05±0.01 0.11±0.02 0.69±0.01 −0.11±0.01 0.33±0.02

(xii) 1.82±0.01 0.06±0.02 0.12±0.02 0.96±0.02 −0.21±0.02 0.32±0.03

(xiv) 1.59±0.01 0.043±0.004 0.10±0.02 0.58±0.01 −0.01±0.01 0.35±0.02

FIG. 7. As in Fig. 2, for parameter set (xiv) in Table I. The
isotherms (from top to bottom) in the low-r region are for
kBT /UA=1.65, 1.62, 1.60, 1.58, 1.55, 1.50, 1.45, and in the high-r
region are for kBT /UA=0.60, 0.59, 0.58, 0.57, 0.56, 0.54. C2 is at
negative pressures.

FIG. 8. Estimation of the critical point C2 by the isochoric
method for the set of potential parameters wA /a=0.5, wR /a=0.5,
UR /UA=2. Inset: P at constant a3r=0.492 for the MD calculation
during the slow cooling described in the text. For kBT /UA.0.5 the
errors on the estimate of the state points are of the order of the
nonmonotonic jumps. The interpolating line is a quadratic fit of the
calculated points, and gives an estimate of the isochore at a3r

=0.492 for kBT /UA.0.5. Main panel: quadratic fits of isochores for
a3r=0.492, 0.435, 0.405, 0.387, and 0.361 (from top to bottom).
The critical point C2 is located at the highest-T intersection of two
isochores (region inside the circle). The indeterminacy of this inter-
section gives an estimate of the error on the values TC2
=0.53±0.03, PC2

=1.05±0.03, and rC2
=0.39±0.05.
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points with sufficient accuracy. Furthermore, as expected for
decreasing wR, TC2

approaches T=0 [Fig. 9(e)], suggesting
that C2 disappears for wR /a=0. At wR /a.1.0 the system
spontaneously crystallizes at high density without showing a
second critical point C2. Hence, the width of the shoulder
wR /a must be of an intermediate value for C2 to be observed
above the lines of spontaneous crystallization and outside the
region of very slow dynamics, at least for our choice of wA
and UR.

C. Effect of the shoulder height UR

For wR /a=0.5 and wA /a=0.9, we increase the repulsive
energy UR and find [Figs. 9(g)–9(i) and 12] that for increas-
ing UR, rC1

decreases, while rC2
is almost unaffected, both

TC1
and TC2

decrease, PC1
decreases, while PC2

rapidly in-
creases. For UR /UA,2.0 the high-density phase transition
occurs at very low negative pressures and the fluid phases are
highly metastable. For UR /UA.4.0 the diffusion in the sys-
tem in the vicinity of the high-density critical point becomes
markedly slow, due to the soft core becoming less penetrable
and assuming the role of an effective hard core. Therefore,
an intermediate repulsive energy is needed to observe C2 in
our MD simulations.

V. MODIFIED VAN DER WAALS EQUATION

To rationalize the dependence of the temperature, pres-
sure, and density of the two critical points on the potential’s
parameters, we develop a simple mean field theory that gives
rise to a MVDWE,

P =
rkBT

1 − rBsr,Td
− Ar2, s1d

which has the same form of the standard van der Waals equa-
tion (see the Appendix), but with an excluded volume Bsr ,Td

depending on the density and temperature of the state point
and increasing with wR /a, and with a strength of attraction A
that increases with wA /a and decreases with UR /UA. It
should be pointed out that a different modification of the van
der Waals equation [62] also gives rise to the high-density
critical point. In contrast with our work, Ref. [62] is particu-
larly suitable for density dependent potentials since it as-
sumes a constant excluded volume B and a density depen-
dent attractive term Asrd.

For a system with a hard core and a soft core, one can
assume that the effective excluded volume Bsr ,Td changes
with temperature and density [63]. Indeed, at low densities
and low temperatures, particle cannot penetrate into the soft
core so Bsr ,Td<B2 where B2=2psa+wRd3 /3 is the ex-
cluded volume associated with the soft core. In contrast, for
high densities and high temperatures, particles easily pen-
etrate into the soft core and Bsr ,Td<B1, where B1

=2pa3 /3 is the excluded volume associated with the hard
core. More specifically, Bsr ,Td must be an analytical func-
tion of its parameters such that ]Bsr ,Td /]T,0,
]Bsr ,Td /]r,0,

lim
T→`

Bsr,Td = B1, s2d

and

lim
T→0

Bsr,Td = HB2, r ø 1/B2

1/r , 1/B1 . r . 1/B2,
s3d

from which it follows that Bsr ,Td,1/r for any r and T.0.
Since in any case van der Waals equation can give us only

qualitative agreement with reality, we can select any model
function Bsr ,Td which satisfies the above conditions. Never-
theless, it is desirable to select Bsr ,Td in such a way that it

TABLE III. Temperatures TC1
and TC2

, pressures PC1
and PC2

, and densities rC1
and rC2

for the critical
points C1 and C2, respectively, estimated by cooling the system at constant r (isochoric method) for the
potential with the set of parameters in Table I.

Set kBTC1
/UA a3PC1

/UA a3rC1
kBTC2

/UA a3PC2
/UA a3rC2

(i) 1.34±0.02 0.04±0.01 0.13±0.02 0.47±0.01 0.28±0.01 0.42±0.03

(ii) 1.32±0.01 0.04±0.02 0.11±0.02 0.62±0.02 0.19±0.02 0.33±0.02

(iii) 1.25±0.01 0.03±0.01 0.09±0.01 0.69±0.02 0.11±0.01 0.29±0.02

(iv) 1.19±0.01 0.03±0.01 0.08±0.01 0.74±0.01 0.07±0.01 0.26±0.02

(v) 1.15±0.02 0.02±0.02 0.07±0.01 0.75±0.01 0.04±0.01 0.22±0.02

(vi) 1.11±0.02 0.02±0.02 0.07±0.01 0.76±0.01 0.03±0.01 0.20±0.02

(vii) 0.68±0.01 0.02±0.01 0.12±0.01 0.48±0.03 2.22±0.02 0.46±0.06

(viii) 0.82±0.01 0.03±0.01 0.12±0.01 0.52±0.03 1.65±0.02 0.42±0.03

(ix) 0.96±0.01 0.03±0.02 0.11±0.01 0.53±0.03 1.05±0.03 0.39±0.05

(x) 1.12±0.01 0.04±0.01 0.10±0.01 0.57±0.01 0.58±0.01 0.35±0.02

(xi) 1.54±0.02 0.05±0.02 0.12±0.01 0.70±0.01 −0.09±0.01 0.33±0.03

(xii) 1.84±0.02 0.06±0.02 0.13±0.01 0.96±0.01 −0.22±0.01 0.31±0.03

(xiii) 1.67±0.01 0.05±0.01 0.11±0.01 0.72±0.01 −0.15±0.01 0.35±0.01

(xiv) 1.62±0.02 0.05±0.01 0.09±0.01 0.60±0.01 0.01±0.01 0.37±0.04

(xv) 1.57±0.01 0.04±0.01 0.09±0.01 0.55±0.01 0.28±0.01 0.35±0.02

(xvi) 1.54±0.01 0.04±0.01 0.09±0.01 0.53±0.02 0.60±0.02 0.35±0.02
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will describe the behavior of some physical system for which
the analytical solution can be found. One-dimensional sys-
tem of particles with a pair potential

Usrd = 5` , r , B1

UR, B1 ø r , B2

0, r ù B2

s4d

provides such a solution. Applying the Takahashi method
[50,64], we obtain the Gibbs potential

G = − kBTN1lnsCkBT/B1P1d , s5d

where N1 is the number of particles, T is temperature, P1 is
pressure of the one-dimensional system, and

CsT,P1d = se−P1B1/kBT − e−P1B2/kBTde−UR/kBT + e−P1B2/kBT.

s6d

Accordingly V1=]G /]P1 and S1=−]G /]T are the volume
and entropy of the one-dimensional system, and U1=G
− P1V1+TS1 is the potential energy for the one-dimensional
system. The fraction of the soft cores fsr ,Td penetrated by
the particles is fsr ,Td=U1sP1 ,Td / sN1URd where P1 must be
determined as a function of r from the equation
]G /]P1sP1 ,Td=V1;N1 /r. The value f`; fsr ,`d is the
fraction of the soft cores penetrated by the particles in the
high-temperature limit in which soft cores play no role. It
can be computed assuming a Poisson distribution of interpar-
ticle distances: f`=1−esB1−B2d/s1/r−B1d. The probability that
the soft core does not reflect the neighboring particle is equal

FIG. 9. The behavior of the density, temperature, and pressure of the low-density critical point C1 (open circles) and high-density critical
point C2 (filled squares) for variations of the potential parameters (a)–(c) wA, (d)–(f) wR, and (g)–(i) UR. The other two parameters are
constant: in (a)–(c) wR /a=0.5 and UR /UA=2, in (d)–(f) wA /a=0.7 and UR /UA=2, and in (g)–(i) wA /a=0.9 and wR /a=0.5. Where not
shown, errors are smaller than the symbol size. Lines are guides for the eye.
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to the fraction of these two quantities f / f`,1. In this case,
the excluded volume is equal to B1. In the opposite case with
probability 1− f / f`, the excluded volume is equal to B2.
Hence, the effective excluded volume

Bsr,Td = f/f`B1 + s1 − f/f`dB2, s7d

where

f

f`

=
se−P1B1/kBT − e−P1B2/kBTde−UR/kBT

CsP1,Tds1 − esB1−B2d/s1/r−B1dd
, s8d

and P1 must be found from the equation

1

r
=

kBT

P1

+
sB1e−P1B1/kBT − B2e−P1B2/kBTde−UR/kBT + B2e−P1B2/kBT

CsP1,Td
.

s9d

Figure 13(a) illustrates the behavior of Bsr ,Td for a par-
ticular set of parameters. It is clear that Bsr ,Td satisfies all
the physical conditions we impose on the effective excluded
volume. The modified van der Waals equation (1) has two
critical points: one for low density r!1/B2 and another for
high density r<1/B2, whose positions on the phase diagram

of the dimensionless variables T̃=kBT /UR, P̃=B1P /UR, and
r̃=B1r depend on the dimensionless parameters of the
MVDWE: B2 /B1 and A / sURB1d. Figure 13(b) shows a P-T
diagram with two critical points C1, C2, for a particular set of
parameters, for which the positions of the critical points are
similar to the positions found in our simulations, i.e.,
TC2

,TC1
.

Now we can relate the parameters of the Eq. (1) to the
potential parameters used in our simulations. The parameters
B1 and B2 are increasing functions of the hard-core diameter
a and the shoulder width wR, respectively. The parameter UR
has an identical meaning in MVDWE and in simulations.
The strength of attraction A is an increasing function of wA
and a decreasing function of UR. Indeed, according to the
formula of the second virial coefficient v2 for our potential,
we have [65]

v2 = B1 + s1 − e−UR/kBTdsB2 − B1d

+ s1 − eUA/kBTdF2p

3
sa + wR + wAd3 − B2G . s10d

For large T, it has the form v2=B−A /kBT+OsT−2d with A
=UAvA−URvR where vA and vR are positive quantities with
the dimension of a volume depending on a, wR, and wA, B
=limT→`v2, and A=limT→`TsB−v2d. Hence, in this limit, the
virial expansion P=kBTr+kBTv2r2+Osr3d=kBTrs1+Brd
−Ar2+Osr3d can be rewritten in the form of the van der

TABLE IV. Summary of the effects on rC1
, TC1

, PC1
, and rC2

,
TC2

, PC2
, from variation of parameters wA /a, wR /a, and UR, one at

the time. The symbols ↑, ↓, and < represent, respectively, an in-
crease, a decrease, and a small variation of a thermodynamic quan-
tity as a consequence of the increase of the potential parameter.

rC1
TC1

PC1
rC2

TC2
PC2

wA /a < ↑ ↑ ↓ ↑ ↓

wR /a ↓ ↓ ↓ ↓ ↑ ↓

UR /UA ↓ ↓ ↓ < ↓ ↑

FIG. 10. The gas-LDL critical point (C1) and LDL-HDL critical
point (C2) in the P−T plane for varying attractive width wA and
constant wR /a=0.5, UR /UA=2.0. Symbols denote wA /a=0.3
(circles), 0.4 (left triangles), 0.5 (diamonds), 0.6 (up triangles), 0.7
(right triangles), 0.8 (down triangles), and 0.9 (squares). Open sym-
bols are for C1 and filled symbols are for C2. The arrows denote the
direction of increasing wA.

FIG. 11. The gas-LDL critical point sC1d and LDL-HDL critical
point sC2d in the P-T plane, for varying shoulder width wR /a and
constant wA /a=0.7, UR /UA=2.0. Symbols denote wR /a=0.4
(circles), 0.5 (up triangles), 0.6 (diamonds), 0.7 (left triangles), 0.8
(down triangles), and 0.9 (squares). Open symbols are for C1 and
filled symbols are for C2. The arrows denote the direction of in-
creasing wR.
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Waals equation P=kBTr / s1−Brd−Ar2+Osr3d.
From the equations above we can derive the functional

relation for vA and vR in the limit T→`, which are vA
= s2p /3dsa+wR+wAd3−B2 and vR=B2−B1. By using these
relations it is possible to see that in general A is an increasing
function of wA and a decreasing function of UR. The deriva-
tive ]A /]wR may have a different sign depending on other
parameters. Although at finite T these relations could be
valid only to the leading order, it is reasonable to assume that
A increases with wA and decreases with UR at any T.

However, to simplify our qualitative study of the
MVDWE, we assume the parameters A, B2, and UR are in-
dependent. By varying these parameters one at a time and by
relating B2 to wR, and A only to wA, we found that the
MVDWE predicts that the derivatives of the low-density
critical point values TC1

, PC1
, and rC1

, with respect to each of
the parameters of MVDWE, have the same sign and this sign
is negative for B2swRd and UR, which increase repulsion, and
this sign is positive for AswAd, which increases attraction.
These results are consistent with the MD results for the low-
density critical point. For the high-density critical point val-
ues the MVDWE predicts for some parameters nonmono-
tonic behaviors and we find that there are regions of
parameters where the critical values as a function of A, B,
and UR have the same qualitative behaviors as those found in
the simulations as a function of wA, wR, and UR, respectively
(Fig. 14). Specifically, we observe monotonic behaviors of
rC2

sB2d, TC2
sAd, TC2

sB2d, and PC2
sURd which qualitatively

coincide with the corresponding behaviors in simulations
[Figs. 9, 14(d), 14(b), 14(e), and 14(i)]. We find non-
monotonic behaviors of rC2

sAd, rC2
sURd, TC2

sURd, PC2
sAd,

and PC2
sB2d, which qualitatively coincide with the corre-

sponding behaviors in simulations in certain range of param-
eters [Figs. 9, 14(a), 14(g), 14(h), 14(c), and 14(f)].

These observations indicate that the behavior of the criti-
cal points in simulations may also become nonmonotonic in
the range of parameters that we do not explore. For example,
TC2

sURd may start to increase for large UR /UA.4 and small
wR /a,0.5. Another interesting prediction of the MVDWE is
that for large B2 /B1.BTsA /B1URd, where BTsxd increases
from BTs0.7d=1 to BTs3.2d=1.7, the high-density critical
temperature becomes larger than the low-density critical
temperature as in simulations of Refs. [38,39], for which the
repulsive shoulder wR /a=1 was much wider than the attrac-
tive well wA /a=0.2. Also, MVDWE predicts the existence of
the third, very high-density critical point for large B2 /B1 and
large A /B1UR, which was recently observed in simulations
with a wide soft core [66].

VI. ROLE OF POTENTIAL PARAMETERS

In the following we will present the comparison between
the MD results and MVDWE predictions.

A. The low-density critical point

First we note that at low densities, corresponding to the
critical point C1, and at sufficiently low temperatures, par-
ticles do not penetrate into the repulsive region, r,a+wR.
Therefore, we can assume that, at low enough temperatures
and densities, the system is interacting via an effective po-
tential given by a simple square well with hard core a+wR,
an attractive well of relative width wA / sa+wRd and attractive
energy UA.

Indeed, for increasing width of the attractive well wA, rC1
is roughly constant [Fig. 9(a)] and TC1

and PC1
increase

[Figs. 9(b) and 9(c)]. This behavior is consistent with the
predictions of the standard van der Waals theory for the gas-
liquid critical point for a square-well potential (see the Ap-
pendix), that yields Eqs. (A7)–(A9). This result supports the
idea that the effect of the soft core is negligible at low den-
sities. The MVDWE also predicts strong increase of PC1

and
TC1

with the strength of attraction A, which increases with
wA. For rC1

, the MVDWE predicts a weak increase, which
can be observed in Fig. 9(a) for larger wA.

For increasing width of the repulsive shoulder wR, rC1
decreases and saturates [Fig. 9(d)] and TC1

and PC1
decrease

[Figs. 9(e) and 9(f)]. As a consequence of the above consid-
erations, the increase of wR corresponds to a decrease of the
effective attractive parameter. Accordingly, TC1

and PC1
dis-

play the behavior predicted for the decrease of the attractive
width in van der Waals theory for the square-well potential
[Eqs. (A8) and (A9)]. Moreover, the behavior of rC1

is con-
sistent with Eq. (A7), which predicts rC1

,1/a3. Indeed, in
our case, the hard core is replaced by the effective hard core,
hence a3rC1

,a3 / sa+wRd3, which is a decreasing function of
wR. The calculations using MVDWE completely confirms
these predictions by showing that TC1

, PC1
, and rC1

decrease
with increasing wR [or B2=2psa+wRd3 /3 as in Sec. V.]

For increasing repulsive energy UR, the behaviors of rC1
,

TC1
, and PC1

are the same as those observed for increasing
wR [Figs. 9(g)–9(i)]. This can be understood by considering

FIG. 12. The gas-LDL critical point sC1d and LDL-HDL critical
point sC2d in the P-T plane for varying repulsive energy UR /UA and
constant wA /a=0.9, wR /a=0.5. Symbols denote UR /UA=2.0
(circles), 2.5 (up triangles), 3.0 (diamonds), 3.5 (down triangles),
and 4.0 (squares). Open symbols are for C1 and filled symbols are
for C2. The arrows denote the direction of increasing UR.
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that the increase of UR effectively decreases the penetrability
of interparticle distances r,a+wR. The soft core becomes
an effective hard core as described above. In particular, the
saturation of rC1

, already observed in Fig. 9(d), is now more
evident and an analogous behavior is now also seen for TC1
and PC1

. This result shows that for a high-enough repulsive
energy UR and low-enough T, the soft-core potential is
equivalent to a hard-core potential, for which there is no
dependence of the critical point on UR. Again, the MVDWE
agrees with these predictions by showing that TC1

, PC1
, and

rC1
decrease with increasing UR.

B. The high-density critical point

For increasing wA, the critical point density rC2
decreases,

the temperature TC2
increases, and the pressure PC2

decreases
[Figs. 9(a)–9(c)]. This finding is in agreement with MVDWE
predictions for a wide range of parameters. [Figs.
14(a)–14(c)]. The behavior of TC2

is consistent with the idea
that the increase of the attractive distance increases the over-
all attractive strength of the potential, allowing more par-
ticles to fit within the attractive interaction range. As a con-
sequence, the system enters the low-energy and high-density
fluid phase at a higher temperature, i.e., TC2

increases.
Hence, the increase of wA increases the average kinetic en-
ergy of particles at C2, favoring the overcoming of the soft-
core shoulder at low pressures, and we can expect that PC2
decreases. Moreover, the increase of wA decreases the num-
ber of elastic interparticle collisions at the soft-core distance,
and hence decreases their contribution to the virial expres-
sion for the pressure [67] (see Eq. (11) in Ref. [39]), decreas-
ing the critical pressure PC2

. Note that the behavior of PC2
in

this case is the opposite of the behavior for PC1
[Fig. 9(c)].

With the decrease of pressure, the density must also de-
crease, so we can conclude that rC2

must decrease with in-
creasing wA, in agreement with our simulation results.

For increasing wR, TC2
increases and saturates, and both

PC2
and rC2

decrease with a tendency toward saturation
[Figs. 9(d) and 9(f)], in agreement with predictions of
MVDWE for a wide range of parameters [Figs. 14(d) and
14(f)]. This happens because the transition from the LDL to
the HDL is characterized by the penetration of particles into
the repulsive soft cores of their neighbors. Therefore the re-
pulsive soft-core distance a+wR characterizes the typical dis-
tance between the particles at C2. Hence the increase of wR
reduces the critical density rC2

. The behavior of pressure
follows the behavior of density, as in the case of wA, while
the derivatives of pressure and temperature must have oppo-
site signs due to the same arguments as above.

For increasing UR, PC2
increases, rC2

slowly increases,
and TC2

decreases [Figs. 9(g)–9(i)]. The predictions of
MVDWE coincide with the behavior of PC2

and rC2
in a

wide range of parameters [Figs. 14(g) and 14(i)]. However,
the theory apparently predicts an increasing TC2

with UR,
except for very small URB1 /A,0.4 and large B2 /B1.1.5
[Fig. 14(h)]. This discrepancy arises from the fact that, al-
though it is physically clear that the attractive strength A is a
decreasing function of UR, we find the explicit dependence
of A on UR only in the limiting case T→`, while for finite T
we assume them to be independent. Hence, we ignore that an
increase of UR decreases A which induces, as shown in Sec.
V, a decrease in TC2

.
The behavior of PC2

is easier to understand. Indeed, the
pressure at which the repulsive shoulder can be overcome
increases with UR, which is consistent with the increase of
PC2

with UR. This effect is expected to be more evident at

FIG. 13. (a) The behavior of the effective excluded volume Bsr ,Td for a one-dimensional system with B2 /B1=2 for densities B1r

=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 from top to bottom. The thick curve indicates the behavior for B1r=0.5=B1 /B2. (b) The isochores of
MVDWE for B2 /B1=1.4, A / sB1URd=2.2 on the P-T plane. An open circle indicates the low-density critical point. A filled circle indicates
the high-density critical point. A dashed line indicates the low-density critical isochore B1rC1

<0.25. A dot-dashed line indicates the
high-density critical isochore B1rC2

<0.70. The thick line indicates B1r<0.71=B1 /B2. Note that isochores start to develop density anomaly
below the high-density critical point.
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high UR and to saturate for decreasing UR, which is consis-
tent with our results. The critical density rC2

increases with
UR, for small values of UR /UA, as a consequence of the
increase of PC2

, and is practically independent of UR when
the soft core plays the role of an effective hard core, i.e., for
large enough UR /UA. The decrease of TC2

with the increase
of UR is more difficult to explain. Nevertheless, the same
argument as in the case of wA and wR which predicts that the
derivatives TC2

and PC2
must have the opposite signs may

apply in this case as well. Finally, we note that increasing
with UR and decreasing with wR, the behavior of PC2

in three
dimensions is consistent with its behavior in the one-
dimensional case, for which PC2

/UA= sUR /UA+1d /wR [68].

VII. DISCUSSION AND CONCLUSIONS

We have studied an isotropic attractive soft-core square
potential in three dimensions that has a phase diagram with a

gas-liquid critical point C1 and a liquid-liquid critical point
C2, separating HDL and LDL phases. We have investigated,
with molecular dynamics simulations, how the critical den-
sity, temperature, and pressure of the two critical points vary
as a function of the three parameters of the potential, which
are the repulsive energy UR /UA in units of the attractive
energy UA, the repulsive width wR /a in units of the hard core
a, and the attractive width wA /a in units of a.

Table IV and Fig. 9 show our results for the r, T, and P of
C1 and C2 for varying parameters of the potential. To sum-
marize, the behavior of C1 is consistent with that of a system
interacting via an effective square-well potential, with a hard
core a+wR, a relative attractive well wA / sa+wRd, and attrac-
tive energy UA. The increase of UR /UA or of wR /a decreases
the effective attractive strength and this effect saturates for
large values of UR /UA.

This behavior is perfectly predicted by the simple mean
field MVDWE. In MVDWE, as in the standard van der

FIG. 14. The behavior of the density, temperature, and pressure of the high-density critical point C2 for variations of the MVDWE
parameters (a)–(c) A, (d)–(f) B2, and (g)–(i) UR. The other two parameters are constant: in (a)–(c) B2 /B1=1.1ssd ,1.5shd ,2.0sLd ,3.0snd;
in (d)–(f) A / sB1URd=0.2ssd ,1.0shd ,2.0sLd ,3.0snd, in (g)–(i) B2 /B1=1.1ssd ,1.3s*d ,1.5shd ,2.0sLd ,3.0snd Lines are guides for the eye.
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Waals equation, the relevant physical parameters are the ex-
cluded volume B and the strength of attraction A, but now we
assume that B=Bsr ,Td increases with wR /a and depends on
the state point, while A increases with wA /a and decreases
with UR /UA.

The MVDWE predictions are consistent also with our re-
sults on C2. In general, this approach rationalizes why the
increase of UR /UA and the decrease of wA /a have the same
qualitative effect on the critical points, since they have the
same effect on the attractive strength. Moreover, it rational-
izes the effect of increasing wR via the increase of the ex-
cluded volume, hence the decrease of the critical densities.
This decrease induces a decrease of the critical pressures PC1
and PC2

, as a consequence of the mechanical stability of the
fluid phases.

While for the low-density critical point C1, the decrease
of PC1

occurs with the decrease of TC1
, i.e., their derivatives

with respect to the potential parameters always have the
same sign, for the high-density critical point C2 the critical
pressure and temperatures always have derivatives with op-
posite signs. This behavior can be understood in terms of the
number of elastic collisions with the soft core, which de-
creases as TC2

increases, reducing the virial contribution to
the pressure. At the same time, the increase of TC2

reduces
the pressure PC2

necessary to overcome the repulsive soft
core and enter into the HDL phase.

As a consequence, the high-density critical point C2 exists
at positive pressure only in a finite region in the parameter
space. Indeed, when the attraction is too strong, i.e., wA /a is
too large or UR /UA is too small, the pressure PC2

becomes
negative. On the other hand, when the strength of attraction
is too week, C2 occurs in the deeply supercooled liquid
phase, becoming difficult to observe as in the experimental
situation of water or silica [14,19,25].

In conclusion, the behavior of both low-density and high-
density critical points qualitatively obeys the mean field pre-
dictions of the modified van der Waals theory based on ef-
fective excluded volume which varies between the hard-core
value for high temperature and the soft-core value for low
temperature and low density. The quantitative theory based
on the thermodynamic perturbation approximations or vari-
ous integral equation closures [69] is yet to be developed.
One obvious improvement is to replace the first term in RHS
of Eq. (1) by the Percus-Yevick compressibility equation of
state for hard spheres [70] in which the packing fraction is
computed as h=rBsr ,Td.

Confirming the results presented in Refs. [38,39] we do
not find density anomaly. Our simulations show that density
anomaly is unlikely to exist for the discontinuous double-
step potentials shown in Fig. 1, in contrast to ramp potentials
[49] and a Gaussian soft-core potential [53].

Our results may be relevant for experiments on systems
that can be described by an isotropic soft-core attractive po-
tential and have no density anomaly, such as colloids, protein
solutions, or liquid metals. Indeed, our results show that in
these systems the possibility of the existence a liquid-liquid
phase transition will depend on the relative ratio between the
attractive and the repulsive parts.
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APPENDIX: SQUARE-WELL FLUID SYSTEM

Here we recall the case of a square-well attractive poten-
tial, where the only parameter is the width of the attractive
well wA /a, since the hard-core distance a and the attractive
energy UA can be taken as units of distance and energy, re-
spectively. In particular, we show how the gas-liquid critical
point density rc, temperature Tc, and pressure Pc depend on
wA /a.

Even in this simple case, the phase diagram has no exact
analytical solution and one must rely on various approxima-
tions and numerical simulations [40,69–73]. Using MD
simulations of N=850 particles, we verify that the behaviors
of rc, Tc, and Pc, are approximately linear for a wide range
of wA /a (Fig. 15, Tables V and VI) [40]. The values of a3rc
decrease for increasing wA /a, and a3Pc /UA and kBTc /UA in-
crease with wA /a.

Except for density, these results are in agreement with the
van der Waals theory (see, e.g., Ref. [65]). The equation of
state in the van der Waals theory is given by

P =
kBTr

1 − rB
− Ar2, sA1d

where B= 2
3a3p has the meaning of excluded volume per

particle and A is a quantity, with the dimension of the prod-
uct of energy and volume, characterizing the strength of at-

FIG. 15. Inset: the single square-well potential defined by the
well width wA. Main panel: symbols represent the values of the
normalized temperature Tc (circles), the density rc (diamonds), and
the pressure Pc (squares) of the gas-liquid critical point for different
values of the parameter wA. Where not shown, errors are smaller
than the symbol size. Lines are the linear fits Tc, Pc, and rc as
functions of wA, with the parameters in Table VI.
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traction between particles. Therefore, A can be related to the
product of UA and the volume of the attractive well, which is
proportional to wAa2 for small wA /a.

The position of a critical point must satisfy the equations

U ] P

] r
U

Tc

= 0, sA2d

U ]
2P

] r2U
Tc

= 0. sA3d

For the van der Waals equation of state (A1), Eqs. (A2) and
(A3) yield the coordinates of the critical point:

rc =
1

3B
, sA4d

kBTc =
8

27

A

B
, sA5d

Pc =
1

27

A

B2 . sA6d

Hence

rca
3 , const, sA7d

kBTc

UA
,

wa

a
, sA8d

a3Pc

UA
,

wa

a
, sA9d

which predict that kBTc /UA and a3Pc /UA increase with wA /a,
while rca

3 does not depend on it.
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