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Abstract

We review evidence supporting the idea that the DNA sequence in genes containing noncoding

regions is correlated, and that the correlation is remarkably long range — indeed, base pairs

thousands of base pairs distant are correlated. We do not �nd such a long-range correlation in

the coding regions of the gene, and utilize this fact to build a Coding Sequence Finder Algorithm,

which uses statistical ideas to locate the coding regions of an unknown DNA sequence. Finally,

we describe briey some recent work adapting to DNA the Zipf approach to analyzing linguistic

texts, and the Shannon approach to quantifying the “redundancy” of a linguistic text in terms

of a measurable entropy function, and reporting that noncoding regions in eukaryotes display a

larger redundancy than coding regions. Speci�cally, we consider the possibility that this result is

solely a consequence of nucleotide concentration di�erences as �rst noted by Bonhoe�er and his

collaborators. We �nd that cytosine–guanine (CG) concentration does have a strong “background”

e�ect on redundancy. However, we �nd that for the purine–pyrimidine binary mapping rule,

which is not a�ected by the di�erence in CG concentration, the Shannon redundancy for the set

of analyzed sequences is larger for noncoding regions compared to coding regions. c© 1999

Elsevier Science B.V. All rights reserved.

1. Introduction

Scaling concepts have played a key role in our understanding of phenomena occur-

ring near critical points. A scale invariant function f(x) has the remarkable property

that each time x is doubled, the function f(x) changes by the same factor. There is

thus no way to set a characteristic scale for such a function.
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Stated mathematically, if the variable x is increased by an arbitrary factor �, then

the function is changed by a factor �p which is independent of the value of x,

f(�x) = �pf(x) (1)

for all �. A functional equation, such as (1), constrains the set of possible functional

forms of f(x): any function f(x) satisfying (1) must be a power-law, as may be seen

by substituting the choice �= 1=x in (1),

f(x) = Axp: (2)

We say that scale invariance [Eq. (1)] implies power-law behavior [Eq. (2)]. Con-

versely, power-law behavior implies scale invariance, since any function f(x) obeying

(2) also obeys (1) — one can verify this by substitution. Thus, scale invariance is

mathematically equivalent to power-law behavior.

Power laws are found to describe various functions in the vicinity of critical points.

These include not only systems with Hamiltonians (such as the Ising and Heisen-

berg models) but also purely geometric systems, such as percolation. Scaling is also

found to hold for polymeric systems, including both linear and branched polymers.

Here power-law correlations develop in the asymptotic limit in which the number of

monomers approaches in�nity. The list of systems in which power-law correlations

appear has grown rapidly in recent years, including models of rough surfaces, tur-

bulence, and earthquakes. In this talk, I will present recent work suggesting that —

under suitable conditions — the sequence of base pairs or “nucleotides” in noncoding

DNA also displays power-law correlations. The underlying basis of such power-law

correlations is not understood at present, but it is at least possible that this reason is

of as fundamental importance as it is in other systems in nature that have been found

to display power-law correlations.

2. Information coding in DNA

Genomic sequences contain numerous “layers” of information. These include speci�-

cations for mRNA sequences responsible for protein structure, identi�cation of coding

and non-coding parts of the sequence, information necessary for speci�cation of regu-

latory (promoter, enhancer) sequences, information directing protein–DNA interactions,

directions for DNA packaging and unwinding. The genomic sequence is likely the most

sophisticated and e�cient information database created by nature through the dynamic

process of evolution. Equally remarkable is the precise transformation of di�erent lay-

ers of information (replication, decoding, etc.) that occurs in a short time interval.

While means of encoding some of this information is understood (for example, the

genetic code directing amino acid assembly, sequences directing intron/exon splicing,

etc.), relatively little is known about other layers of information encrypted in a DNA

molecule. In the genomes of high eukaryotic organisms, only a small portion of the

total genome length is used for protein coding. The role of introns and intergenomic
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sequences constituting a large portion of the genome remains unknown. Furthermore,

only a few quantitative methods are currently available for analyzing such information.

3. Conventional statistical analysis of DNA sequences

DNA sequences have been analyzed using a variety of models that can basically be

considered in two categories. The �rst types are “local” analyses; they take into account

the fact that DNA sequences are produced in sequential order, so the neighboring base

pairs will a�ect the next attaching base pair. This type of analysis, such as n-step

Markov models, can indeed describe some observed short-range correlations in DNA

sequences. The second category of analyses is more “global” in nature, concentrating

on the presence of repeated patterns (such as periodic repeats and interspersed base

sequence repeats) that can be found mostly in eukaryotic genomic sequences. A typical

example of analysis in this category is the Fourier transform analysis which can identify

repeats of certain segments of the same length in base pair sequences [1].

However, DNA sequences are more complicated than these two standard types of

analysis can describe. Therefore, it is crucial to develop new tools for analysis with

a view toward uncovering the mechanisms used to code other types of information in

DNA sequences.

4. Scale-invariant (fractal) analysis of DNA sequences

In the last decade, scaling analysis (fractal) techniques have been developed for

detecting scale-invariant statistical patterns and study physical properties in complex

uids and other random systems. These methods have been successfully applied in

a number of disciplines and to a number of problems including stochastic growth

processes in physics and chemistry, polymer physics, as well as other problems [2–4].

Since DNA sequences are long polymer chains, some general scale-invariant properties

found in polymer physics [5,6] may appear in DNA, and alterations of those general

properties may serve for characterization of DNA sequences.

A useful approach to studying stochastic properties of DNA involves the construc-

tion of a 1 : 1 map of the base pair sequence projected onto a walk — which we term

a “DNA walk” [7,8]. The mapping is then used to obtain a quantitative measure of

the correlation between base pairs over long distances along the DNA chain. In ad-

dition, the technique provides a novel graphical “�ngerprint” representation of DNA

structures.

In this fashion we uncovered in the base pair sequence a remarkably long-range

power-law correlation that is signi�cant because it implies a new scale invariant

(fractal) property of DNA. Such long-range correlations are limited to non-coding se-

quences (introns, regulatory untranscribed gene elements and intergenomic sequences)

and occur in organisms as diverse as hepatitis delta agent, cytomegalovirus, yeast
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chromosome and a large number of eukaryotic genes encoding a variety of proteins (see

Refs. [8,9]).

The power-law decay correlations are of interest because they cannot be accounted

for by the standard Markov chain model or other short-range correlations models (which

will only give rise to an exponential decay in correlation). On the other hand, unlike

the standard Fourier transform analysis [1] that detects the periodical repeats described

by a few characteristic length scales, our analysis shows that there exist statistically

self-similar patterns on all length scales.

5. The “DNA walk” or “fractal landscape” representation

In order to study the scale-invariant long-range correlations of the DNA sequences,

we �rst introduced a graphical representation of DNA sequences, which we term a

“fractal landscape” or “DNA walk”. For the conventional one-dimensional random

walk model, a walker moves either up [u(i)=+1] or down [u(i)=−1] one unit length

for each step i of the walk [2]. For the case of an uncorrelated walk, the direction of

each step is independent of the previous steps. For the case of a correlated random

walk, the direction of each step depends on the history (“memory”) of the walker. The

DNA walk is de�ned by the rule that the walker steps up [u(i) = +1] if a pyrimidine

occurs at position a linear distance i along the DNA chain, while the walker steps

down [u(i) = −1] if a purine occurs at position i (Fig. 1) 1 . The question we asked

was whether such a walk displays only short-range correlations (as in an n-step Markov

chain) or long-range correlations (as in critical phenomena and other scale-free “fractal”

phenomena).

The DNA walk provides a graphical representation for each gene and permits the

degree of correlation in the base pair sequence to be directly visualized. This naturally

motivates a quanti�cation of this correlation by calculating the “net displacement” of

Fig. 1. Schematic illustration showing the de�nition of the “DNA walk”.

1 The original DNA walk proposed by Azbel [7] is based on a di�erent rule. The walker makes a step up

for a strongly bonded pair C or G and a step down for a weakly bonded pair A or T. Two-dimensional

DNA walks were constructed [10] and extensively used by Cebrat et al. [11,12].
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the walker after ‘ steps, which is the sum of the unit steps u(i) for each step i. Thus,

y(‘) ≡
∑‘

i=1 u(i).

An important statistical quantity characterizing any walk [2] is the root mean square

uctuation F(l) about the average of the displacement; F(‘) is de�ned in terms of the

di�erence between the average of the square and the square of the average,

F2(‘) ≡ [�y(‘)−�y(‘)]2 = [�y(‘)]2 −�y(‘)
2
; (3)

of a quantity �y(‘) de�ned by �y(‘) ≡ y(‘0 + ‘) − y(‘0): Here the bars indi-

cate an average over all positions ‘0 in the gene. Operationally, this is equivalent to

(a) taking a set of calipers set for a �xed distance ‘, (b) moving the beginning

point sequentially from ‘0 = 1 to · · · and (c) calculating the quantity �y(‘) (and

its square) for each value of ‘0, and (d) averaging all of the calculated quantities to

obtain F2(‘). A similar function was �rst used to study correlations in DNA sequences

by Azbel [13].

The mean square uctuation is related to the auto-correlation function C(‘) ≡

u(‘0)=u(‘0 + l) − u(‘0)
2
through the relation: F2(‘) =

∑‘
i=1

∑‘
j=1 C(j − i). The cal-

culation of F(‘) can distinguish three possible types of behavior. (i) If the base pair

sequence were random, then C(‘) would be zero on average [except C(0) = 1], so

F(‘) ∼ ‘1=2 (as expected for a normal random walk). (ii) If there were a local cor-

relation extending up to a characteristic range R (such as in Markov chains), then

C(‘) ∼ exp(−‘=R), and for �nite values of ‘ the F(‘) function would signi�cantly

deviate from ‘1=2 [13]; nonetheless the asymptotic behavior F(‘) ∼ ‘1=2 would be

unchanged from the purely random case/. (iii) If there is no characteristic length (i.e.,

if the correlation were “in�nite-range”), then the scaling property of C(‘) would not

be exponential, but would most likely to be a power-law function, and the uctuations

will also be described by a power-law

F(‘) ∼ ‘� (4)

with � 6= 1
2
. In fact, the F(‘) function for real DNA sequences is not a perfect

power-law, which would be true only if the log–log graph of F(‘) were a straight

line. The slope of such a graph �(‘) depends on ‘. Moreover, if a DNA sequence

consists of several large segments of di�erent base pair compositions, the slope �(‘)

would approach 1.0 for large values of ‘ [14,15]. To take into account the DNA

patchiness, the detrended uctuation analysis (DFA) method was developed [16].

The idea of the DFA method is to compute the dependence of the standard error of

a linear interpolation of a DNA walk Fd(‘) on the size of the interpolation segment ‘.

The method takes into account di�erences in local nucleotide content and may be

applied to the entire sequence which has lengthy patches. In contrast with the original

F(‘) function, which has spurious crossovers even for ‘ much smaller than a typical

patch size, the detrended function Fd(‘) shows linear behavior on the log–log plot for

all length scales up to the characteristic patch size, which is of the order of a thousand

nucleotides in the coding sequences. For ‘ close to the characteristic patch size the

log–log plot of Fd(‘) has an abrupt change in its slope.
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Fig. 2. (a) DNA walk for yeast chromosomes III and VIII. (b) Local exponent �(‘) measured on length

scale ‘. Note that even though the 2 chromosomes have dramatically di�erent landscapes, the �(‘) functions

are similar. Courtesy of Viswanathan [17].

Fig. 2 shows the DFA exponent �(‘) for the nine sequenced chromosomes of

Saccharomyces cerevisiae using the purine–pyrimidine rule and the hydrogen bond

energy rule. Note that although the landscapes look quite di�erent, the LRC expo-

nent �(‘) is very similar for di�erent chromosomes. For ‘¡ 1000 bp the di�erent

chromosomes have almost identical �(‘): This similarity indicates that the correlation

properties of the di�erent chromosomes are almost the same for ‘¡ 1000 bp. Note also

how the �rst couple of peaks in �(‘) roughly coincide for the di�erent chromosomes in

Fig. 2(b). This indicates that the nine chromosomes have similar patch sizes, because

peaks in �(‘) correspond to characteristic patch sizes.

The DFA method clearly supports the di�erence between coding and noncoding se-

quences, showing that the coding sequences are less correlated than noncoding
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sequences for the length scales less than 1000, which is close to characteristic patch

size in the coding regions. One source of this di�erence is the tandem repeats (se-

quences such as AAAAAA: : :), which are quite frequent in noncoding sequences and

absent in the coding sequences [17].

6. Coding sequence �nder (CSF) algorithm

To provide an “unbiased” test of the thesis that noncoding regions possess but coding

regions lack long-range correlations, Ossadnik et al. [18] analyzed several arti�cial un-

correlated and correlated “control sequences” of size 105 nucleotides using the GRAIL

neural net algorithm [19]. The GRAIL algorithm identi�ed about 60 putative exons in

the uncorrelated sequences, but only about 5 putative exons in the correlated sequences.

Using the DFA method, we can measure the local value of the correlation exponent

� along the sequence (see Fig. 3) and �nd that the local minima of � as a function

of a nucleotide position usually correspond to coding regions, while the local maxima

correspond to noncoding regions. Statistical analysis using the DFA technique of the

nucleotide sequence data for yeast chromosome III (315, 338 nucleotides) shows the

probability that the observed correspondence between the positions of minima and

coding regions is due to random coincidence is less than 0.0014. Thus, this method

— which we called the “coding sequence �nder” (CSF) algorithm — can be used for

�nding coding regions in the newly sequenced DNA, a potentially important application

of DNA walk analysis.

Fig. 3. (a) Analysis of section of yeast chromosome III using the sliding box Coding Sequence Finder “CSF”

algorithm. The value of the long-range correlation exponent � is shown as a function of position along the

DNA chain. In this �gure, the results for about 10% of the DNA are shown (from base pair #30 000 to base

pair #60 000). Shown as vertical bars are the putative genes and open reading frames; denoted by the letter

“G” are those genes that have been more �rmly identi�ed (March 1993 version of GenBank). Note that the

local value of � typically displays minima where genes are suspected, while between the genes � displays

maxima. This behavior corresponds to the fact that the DNA sequences of coding regions lack power-law

long range correlations (�=0:5 in the idealized limit), while the DNA sequences in between coding regions

possess power-law long range correlations (� ≈ 0:6). Parameter values: w = 800; ‘1 = 8; ‘2 = 64: (b) The

solid curve is the same as in part (a), while the dotted curve is the same analysis applied after 0.5% of the

base pairs have in the same sequence been randomly mutated. With courtesy of Ossadnik [18].
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7. Systematic analysis of GenBank database

An open question in computational molecular biology is whether long-range correla-

tions are present in both coding and noncoding DNA or only in the latter. To answer

this question, Buldyrev et al. [20], following the idea of Voss [21], analyzed all 33

301 coding and all 29 453 noncoding eukaryotic sequences — each of length larger

than 512 base pairs (bp) — in the present release of the GenBank to determine

whether there is any statistically signi�cant distinction in their long-range correlation

properties.

They found that standard fast Fourier transform (FFT) analysis indicates that coding

sequences have practically no correlations in the range from 10 to 100 bp (spectral

exponent �± 2SD=0:00± 0:04). Here � is de�ned through the relation S(f) ∼ 1=f�,

where S(f) is the Fourier transform of the correlation function, and � is related to the

long-range correlation exponent � by � = 2� − 1 so that � = 12 corresponds to � = 0

(white noise).

In contrast, for noncoding sequences, the average value of the spectral exponent �

is positive (0:16± 0:05), which unambiguously shows the presence of long-range cor-

relations. They also separately analyzed the 874 coding and 1157 noncoding sequences

which have more than 4096 bp, and found a larger region of power-law behavior.

They calculated the probability that these two data sets (coding and noncoding) were

drawn from the same distribution, and found that it is less than 10−10. They also

obtained independent con�rmation of these �ndings using the DFA method, which is

designed to treat sequences with statistical heterogeneity such as DNAs known mosaic

structure (“patchiness”) arising from non-stationarity of nucleotide concentration. The

near-perfect agreement between the two independent analysis methods, FFT and DFA,

increases the con�dence in the reliability of the conclusion that long-range correlations

exist only in noncoding sequences.

Very recently Arneodo et al. [22–25] studied long-range correlation in DLA se-

quences using wavelet analysis. The wavelet transform can be made blind to “patch-

iness” of genomic sequences. They found the existence of long-range correlations in

noncoding regimes, and no long-range correlations in coding regimes in excellent agree-

ment with Ref. [20].

8. Analysis of noncoding DNA using methods of statistical linguistics

Long-range correlations have been found also in human writings [26,27]. A novel,

a piece of music or a computer program can be regarded as a one-dimensional string

of symbols. These strings can be mapped to a one-dimensional random walk model

similar to the DNA walk allowing calculation of the correlation exponent �. Values of �

between 0.6 and 0.9 were found for various texts.

An interesting hierarchical feature of languages was found in 1949 by Zipf [28].

He observed that the frequency of words as a function of the word order (“rank”)



H.E. Stanley et al. / Physica A 273 (1999) 1–18 9

decays as a power-law (with a power � close to−1) for more than four orders of

magnitude.

In order to adapt the Zipf analysis to DNA, the concept of word must �rst be de�ned.

In the case of coding regions, the words are the 64 3-tuples (“triplets”) which code

for the amino acids, AAA, AAT, ... GGG. However, for noncoding regions, the words

are not known. Therefore, Mantegna et al. [29,30] consider the word length n as a free

parameter, and performs analyses not only for n = 3 but also for all values of n in

the range 3–8. The di�erent n-tuples are obtained for the DNA sequence by shifting

progressively by 1 base a window of length n; hence, for a DNA sequence containing

L base pairs, we obtain L− n+ 1 di�erent words.

The results of the Zipf analysis for all 40 DNA sequences analyzed are summarized

in Ref. [29]. The averages for each category support the observation that � is con-

sistently larger for the noncoding sequences, suggesting that the noncoding sequences

have features more similar to a natural language than the coding sequences. Moreover,

the frequency of “words” used in coding and noncoding sequences appear in quite

di�erent orders (Fig. 4).

Related interesting statistical measures of short-range correlations in languages are

the entropy and redundancy. The redundancy is a manifestation of the exibility of the

underlying code. To quantitatively characterize the redundancy implicit in the DNA

sequence, we utilize the approach of Shannon, who provided a mathematically precise

de�nition of redundancy [31,32].

Mantegna et al. [29] applied Shannon n-tuple redundancy analysis to study long DNA

sequences. Analyzing GenBank sequences of eukaryotic and viral DNA of length more

than 50 000 bp, as well as three entire chromosomal sequences, Mantegna et al. found

a greater redundancy of noncoding compared to coding regions in the majority of the

cases studied. Here we discuss the possibility — �rst raised by Bonhoe�er et al. [33]

— that the observed increase in redundancy for noncoding regions compared to coding

regions may be related to the di�erences in nucleotide compositions between coding

and noncoding sequences.

The Shannon n-tuple redundancy for a symbolic sequence composed by 4 symbols

(such as A, C, G and T in DNA) is de�ned to be

Rn ≡ 1 +
1

2n

4n
∑

i=1

Pi log2 Pi ; (5)

where Pi (16i64
n) is the probability of �nding a certain n-tuple (see e.g. [29] and

references cited therein). For completely uncorrelated sequences with equal nucleotide

concentration, Pi = 1=4
n, so Rn = 0. In the opposite extreme case in which only one

nucleotide is used, Rn = 1. Note that if Pi = 0, we set Pi log2 Pi ≡ 0.

It is known [34,35] that the usage of strongly bonded nucleotide C–G pairs is usu-

ally less frequent than the usage of weakly bonded A–T (adenine–thymine) pairs.

Furthermore, the C–G concentration may di�er signi�cantly between organisms, but is

generally larger in coding than in noncoding regions. The biological meaning of the

existing di�erence between C–G vs. A–T usage in DNA sequences is not completely
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understood at the present stage. It is possible that it is related to the mechanism of

DNA duplication during cell division [36,37].

Let us denote p(C), p(G), p(A) and p(T ), the fractional occurrence of each nu-

cleotide. We calculate the n-tuple redundancy of a DNA sequence using the simplest

assumptions of random uncorrelated distribution of nucleotides in the sequences with

p(C)=p(G)=[p(C)+p(G)]=2=x=2 and p(A)=p(T )=[p(A)+p(T )]=2=(1−x)=2:

The probability of certain n-tuple, Pi, therefore, is

Pi =
xk(1− x)n−k

2n
; (6)

where k is the number of C + G in this n-tuple. The total number of such n-tuples

is Ckn2
n, where 2n comes from the fact that one can substitute a base pair by its

complement without changing k.

Thus, the n-tuple redundancy Rn(x) for a given concentration x of C+G is

Rn(x) = 1 +
1

2n

n
∑

k=0

Cknx
k(1− x)n−k

[

k log2 x + (n− k) log2 (1− x)− n
]

: (7)

Since
∑n

k=0 C
k
ny

kzn−kk = y(@=@y)(y + z)n = yn(y + z)n−1, it follows that,

Rn(x) =
1
2
+ 1

2
x log2 x +

1
2
(1− x) log2(1− x): (8)

Thus, Rn(x) is independent of n and has a minimum value of 0 when x = 1
2
also a

maximum value of 1
2
when x = 0 or 1. For real DNA sequences, correlations exist

between base pairs. These correlations lead to an increase of n-tuple redundancy (less

random) with n. Thus, for real DNA sequences, Eq. (8) can be regarded only as the

�rst-order approximation.

Eq. (8) shows that the n-tuple redundancy strongly depends on the CG content. To

examine the e�ect of CG concentration on Rn for actual coding and noncoding DNA

sequences, we apply the following procedure:

(1) Divide the sequence into coding and noncoding subsequences using the infor-

mation from the GenBank database.

(2) Divide each coding and noncoding region into non-overlapping windows of N =

500 bp. Count the numbers of G and C, NC + NG, in this window. Compute the CG

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 4. Linguistic features of noncoding DNA. (a) Log–log plot of a histogram of word frequency for the

noncoding part of Yeast Chromosome III (≈315 000 bp). The 6-character words are placed in rank order,

where rank 1 corresponds to the most frequently used word, rank 2 to the second most frequently used

word, and so forth. The straight line behavior provides evidence for a structured language in noncoding

DNA. Rainbow color code corresponds to the rank of words in the language of this sequence, which is used

as a “reference language” below. (b) Linear-log plot of word frequency histogram for the coding part of the

same chromosome. The straight line behavior shows that the coding part lacks the statistical properties of

a structured language. The colors are re-arranged, corresponding to the re-arrangements of their rank with

respect to the reference language.
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concentration of this window x = (NC + NG)=N . Select the interval of CG concentra-

tions [xK − �x; xK + �x], which contains the obtained value x (we choose xK = 0:05K ,

K = 0; 1; 2; : : : ; 20, and �x = 0:025). Add this window to the K th “bin” of the CG

concentration.

(3) Count the n-tuple occurrences for n=1; 2; 3; 4 in each CG concentration bin for

coding and noncoding subsequences separately (n-tuples were counted as overlapping,

n-base-pair subsequences starting at any position in the sequence). Due to the �nite

length of the present available DNA sequences, we are limited to low values of n to

ensure the convergence of the measurements — implying a severe limitation in the

investigation of higher-order Markovian (or non-Markovian) processes.

(4) Using the de�nition of the n-tuple redundancy in Eq. (5), compute Rn(x) for

each bin of the CG concentration.

Fig. 5a represents the behavior of R4(x) vs. x for coding and noncoding subsequences

of four complete chromosomes of yeast (III, VI, IX, and XI). We note that R1(x)

(not shown in Fig. 5a) practically coincides with the theoretical estimation (shown

by a continuous line) of Eq. (8). This indicates that concentrations p(A)≈p(T ) and

p(C)≈p(G) for both coding and noncoding subsequences. For n¿ 1, the values of

Rn(x) are signi�cantly larger than the prediction of Eq. (8), indicating the presence of

correlations between nucleotides. Note that the values of Rn(x) for coding and noncod-

ing subsequences display very small di�erences (Fig. 5). However, the histogram of

number of windows with di�erent CG concentration is quite di�erent for coding and

noncoding subsequences (see Fig. 5b). For example, for yeast, the maximum of the

distribution of coding is at xc ≈ 0:4, while for noncoding it is xnc ≈ 0:35. These max-

ima make the main contribution to the overall n-tuple redundancy (computed without

separating di�erent CG concentration regions). Since Rn(xc)¡Rn(xnc), the overall

n-tuple redundancy for coding DNA is expected to be lower than for noncoding DNA

(see Fig. 5c). This is consistent with previous results [29]. Similarly, the CG concentra-

tion has a strong e�ect for most other sequences from the GenBank. We have separately

analyzed groups of sequences belonging to the categories of plants, invertebrates, and

vertebrates.

Of particular interest are the long primate sequences (larger than 20 000 bp) presented

in Fig. 6. Note that for primate sequences xc ≈ 0:6, while xnc ≈ 0:4 (see Fig. 6b),

which have roughly the same value of Rn(x), since now xc and xnc are symmetrically

located on di�erent sides of the minima of Rn(x). That may explain why the overall

n-tuple redundancy for coding and noncoding subsequences in primates is practically

indistinguishable (see Fig. 6c). The general term “noncoding DNA” means intergenic

for yeast and intronic DNA for primates (the results for intergenic subsequences for

primates are roughly intermediate between the results obtained for introns and those

for coding DNA). The data for several groups of vertebrates present in the GenBank

are similar to those for primates, while the data for C. elegans are similar to that of

yeast.

These �ndings indicate that the non-uniform nucleotide base concentration has a

signi�cant e�ect on the n-tuple Shannon redundancy. Therefore, at �rst glance one
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Fig. 5. (a) The n-tuple redundancy R4(x) for (•) coding and (◦) noncoding subsequences in yeast chro-
mosomes III, VI, IX, and XI. In this paper, we consistently show all the data for which su�cient statistics

exist — speci�cally for each DNA sequence of length L, we report the redundancy Rn for values of n

ful�lling the condition L¿ 100 × 4n [29]. The solid line gives the predictions for the control, Eq. (8).

(b) The distribution of total subsequence lengths (number of windows of size ¿ 500 bp) with given CG

concentration for coding regions (solid line) and noncoding regions (dashed line). (c) The overall n-tuple

redundancy Rn vs. n for the 4-letter code. (d) Results of Rn vs. n for three di�erent binary rules: R/Y

(squares), K/M (diamonds), and S=W (circles).
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Fig. 6. The same as Fig. 5 for all primate DNA sequences longer than 20 000 bp.

might be tempted to hypothesize that the di�erence of n-tuple redundancy observed in

coding and noncoding subsequences could be a manifestation of the overall di�erence of

C–G concentration between coding and noncoding subsequences. On the other hand,

the n-tuple redundancy measure, although robust, is not an extremely sensitive tool

when a bias in the use of a subset of symbolic letters is present.
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To systematically examine whether the di�erences in Rn between coding and non-

coding regions are completely due to variations in CG content, we need to study the

n-tuple redundancy after the e�ect of di�erent concentration is removed. In order to

do this, we map the 4 symbols onto a binary code in which C is one element and G

the other. There are two such binary rules: (i) the R/Y rule, where R denotes a purine

(A or G), and Y denotes a pyrimidine (C or T), and (ii) the K/M rule, where K

denotes G or T and M denotes A or C. As a “control”, we also carry out parallel

studies of the third binary rule that do not distinguish C and G, (iii), the S/W rule,

where S (“strong”) denotes C or G, and W (“weak”) denotes A or T.

We �rst demonstrated that while the C and G concentrations of coding and noncoding

are quite di�erent, the R and Y concentrations are almost identical — as are the

concentrations of K and M. Our results for the function Rn using each of the 3 rules

are shown for representative systems, yeast in Fig. 5d and primates in Fig. 6d.

Perhaps not surprisingly, the S/W rule leads to similar results as the 4-letter rule

(shown in Fig. 5c), thus con�rming that CG concentration makes a strong “background”

contribution to any possible di�erences between noncoding and coding subsequences.

However, for the R/Y rule, Figs. 5d and 6d show that, the noncoding subsequences

have larger redundancy than the coding subsequences. Note that these di�erences are

much smaller than the di�erences generated by CG concentration e�ect, so will not

be visible in 4-symbol analysis. The di�erence in redundancy of coding and noncod-

ing DNA for the RY rule may be related to the abundance of repeats in noncoding

sequences (relative to coding) [38].

In summary, we have seen that nucleotide concentration di�erences may play a ma-

jor role in the n-tuple redundancy statistics, so more sophisticated analysis methods

that take into account this concentration e�ect are required. When we map the DNA

sequences to binary symbolic sequences according to the R/Y rule that is indepen-

dent of C–G concentration, the dominant “background” e�ect of CG concentration is

eliminated. Moreover, we still observe higher n-tuple redundancy for noncoding sub-

sequences. This higher redundancy cannot be simply attributed to the concentration

e�ect.

9. Outlook for the future

There is a mounting body of evidence suggesting that the noncoding regions of DNA

are rather special for at least two reasons:

(1) They display long-range power-law correlations, as opposed to previously be-

lieved exponentially decaying correlations.

(2) They display features common to hierarchically structured languages — speci�-

cally, a linear Zipf plot and a non-zero redundancy.

These results are consistent with the possibility that the noncoding regions of DNA

are not merely “junk” but rather have a purpose. What that purpose could be is the

subject of ongoing investigation. In particular, the apparent increase of � with evolution

[39] could provide insight.
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In the event that the purpose is not profound, our results nonetheless may have

important practical value since quanti�able di�erences between coding and noncoding

regions of DNA can be used to help distinguish the coding regions [18]. The results

of the systematic and inclusive analysis of GenBank DNA sequences are notable for

two major reasons.

(i) The GenBank data unambiguously demonstrate that noncoding DNA, but not

coding DNA, possesses long-range correlations. This �nding is made using two in-

dependent, complementary techniques: Fourier analysis and DFA, a modi�cation of

root-mean-square analysis of random walks. Indeed, as shown in Tables I and II of

Ref. [20], the spectral exponent � computed by both techniques for the same sequence,

is nearly identical.

(ii) The GenBank data demonstrate an increase in the complexity of the noncoding

DNA sequences with evolution. The value of � for vertebrates is signi�cantly greater

than that for invertebrates. This �nding based on the full GenBank data set supports

the suggestion based upon a systematic study of the myosin heavy gene family that

there is an apparent increase in the complexity of noncoding DNA for more highly

evolved species compared to less evolved ones [39].

The ultimate meaning of long-range correlations is still not clear. It is possible

that they are related to the spatial con�guration of DNA [40]. It is also possible

that long-range correlations exist also in other systems of biological interest. For ex-

ample, the idea of long-range correlations has been extended to the analysis of the

beat-to-beat intervals in the normal and diseased heart [41–44], to weather [45], and to

human gait [46]. The healthy heartbeat is generally thought to be regulated according

to the classical principle of homeostasis whereby physiologic systems operate to reduce

variability and achieve an equilibrium-like state [47]. We �nd, however, that under nor-

mal conditions, beat-to-beat uctuations in heart rate display the kind of long-range cor-

relations typically exhibited by physical dynamical systems far from equilibrium, such

as those near a critical point. Speci�cally, we �nd evidence for such power-law corre-

lations that extend over thousands of heartbeats in healthy subjects. In contrast, heart

rate time series from patients with severe congestive heart failure show a breakdown

of this long-range correlation behavior, with the emergence of a characteristic short-

range time scale. Similar alterations in correlation behavior may be important in mod-

eling the transition from health to disease in a wide variety of pathologic conditions

[48–50].
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