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We study, both analytically and numerically, the cascade of failures in two coupled network systems A
and B, where multiple support-dependence relations are randomly built between nodes of networks A and B.
In our model we assume that each node in one network can function only if it has at least a single support
link connecting it to a functional node in the other network. We assume that networks A and B have
(i) sizes NA and NB , (ii) degree distributions of connectivity links P A(k) and P B (k), (iii) degree distributions
of support links P̃ A(k) and P̃ B (k), and (iv) random attack removes (1 − RA)NA and (1 − RB )NB nodes form
the networks A and B, respectively. We find the fractions of nodes μA

∞ and μB
∞ which remain functional (giant

component) at the end of the cascade process in networks A and B in terms of the generating functions of
the degree distributions of their connectivity and support links. In a special case of Erdős-Rényi networks with
average degrees a and b in networks A and B, respectively, and Poisson distributions of support links with
average degrees ã and b̃ in networks A and B, respectively, μA

∞ = RA[1 − exp (−ãμB
∞)][1 − exp (−aμA

∞)] and
μB

∞ = RB [1 − exp (−b̃μA
∞)][1 − exp (−bμB

∞)]. In the limit of ã → ∞ and b̃ → ∞, both networks become
independent, and our model becomes equivalent to a random attack on a single Erdős-Rényi network. We also
test our theory on two coupled scale-free networks, and find good agreement with the simulations.
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I. INTRODUCTION

In recent years, there has been extensive effort to study
and understand the properties of complex networks. Previous
research has mainly focused on properties of single networks
which do not interact or depend on other networks [1–14].
Recently, the robustness of two interdependent coupled net-
works has been studied [15,16]. In interdependent networks,
the failures of nodes in one network, A, will cause failures of
dependent nodes in the other network, B, and vice versa. This
process occurs recursively, and leads to a cascade of failures.
It has been shown both analytically and numerically that the
robustness of two interdependent networks is significantly
lower compared to that of a single network [15]. Furthermore,
the percolation transition in coupled networks is the first-order
transition compared to the known second-order transition in a
single network [15,16].

Previous studies on two interdependent coupled networks
are restricted by the condition, that each node in network A
depends on one and only one node in network B and vice
versa [15]. However, in the real world, this assumption may
not be valid. A single node in network A may depend on more
than one node in network B and will function as long as at
least one of its support nodes in network B is still functional.
Similarly, a node in network B may depend on more than
one support nodes in network A. As long as at least one of
its support nodes functions, the node in network B will also
function.

Examples of such systems include the coupled power
grid network and the communication network which con-
trols the power grid, where both networks depend on each
other. In general, one power station provides power to more
than one communication stations, and one communication
station controls more than one power stations. As long as a
communication station can obtain power from one power

station, it can function properly. On the other hand, one
communication station is sufficient to make one power station
to function properly. However without any power, the commu-
nication station will fail, and without control the power station
will stop working. Indeed in the 2003, due to failure of some
power stations in Italy, the communication control system was
damaged. This damage caused further fragmentation of the
power grid, which finally led to a blackout in a significant part
of Italy [17].

Under random attack, which is characterized by random
removal of nodes in one or both networks, the coupled
networks system demonstrate significantly different behavior
from that of a single network [15]. The failures of nodes in
network A can lead to the failures of dependent nodes in
network B, and the failures of nodes in network B can produce a
feedback on network A leading to further failures in network A.
This process can occur recursively and can lead to a cascade
of failures.

We provide a theoretical framework for understanding
the robustness of interdependent networks with a random
number of support and dependence relationships. Our theory
agrees well with the numerical simulations of several model
network systems, including coupled Erdős-Rényi (ER) [18]
and coupled scale-free (SF) [2] networks. Our work extends
previous works on coupled networks [15,16] from one-to-one
support-dependence relation to multiple support-dependence
relation. Our model can help to further understand real-life
coupled network systems, where complex dependence-support
relations may exist.

We define the stable state to be the state when the cascade of
failures ends. We show that for two coupled ER networks the
giant components of both networks in the stable state follow a
simple law, which in the limit of a large number of support links
is equivalent to random percolation of a single network. Our
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FIG. 1. (Color online) Demonstration of the stages of the cascade of failures in coupled networks A and B of size NA = NB = 7. Curves
represent connectivity links within the network, while arrows (directed links) represent the support links connecting a support node in one
network to the dependent node in the other network. Among the total 12 directed links, half of them ãNA = 6 represent the support from nodes
in network B to nodes in network A (arrows from nodes in network B to nodes in network A). The rest b̃NB = 6 links represent the support
from nodes in network A to nodes in network B. The support-dependence relations between nodes in network A and network B are random.
Initially, the attack is on node A1 (shown in red) in network A and node B6 (shown in red) in network B. The failed nodes are removed from
the plot. In the first stage of the cascade of failures in network A, A1 fails because of removal, node A7 fails because of it has no support links,
A2 and A6 fail because of separation from the giant component of network A. All the failed nodes will lead to failures of support links starting
from them. Since we assume that the attack on network A occurs before that on network B, the support link from B6 to A5 is considered to be
functional. In the first stage of the cascade of failures in network B, we first remove support links connecting network B to non-giant-component
nodes in network A (B3 to A1, B2 to A2, B7 to A6). Next, node B6 fails because of the attack and nodes B1, B2 and B7 also fail because of no
support. B3 fails because it becomes separated from the giant component (nodes B4 and B5) of network B. Finally, after removing support links
connecting nodes in network A to non-giant-component nodes in network B (A3 to B3, A4 to B3 and A5 to B6), the coupled network system
reaches a stable state after one step in the cascade of failures, since all nodes in both giant components are connected and each node have at
least one support node from the other network.

theory is relevant to a broad class of real-world interdependent
network systems.

The paper is organized as follows. In Sec. II, we explain the
model of the cascade of failures with multiple random support-
dependence relations. In Sec. III, we derive analytically the
process of the failure cascade. In Sec. IV, we present numerical
tests on coupled ER and SF networks.

II. THE MODEL

We assume two networks A and B of sizes NA and NB

and with given degree distributions, P A(k) and P B(k), of
connectivity links connecting nodes in the same network
(Fig. 1). The dependency relation is represented by a link
connecting the support node in one network and the dependent
node in the other network (support links). The support
links between network A and network B are random and
unidirectional. Initially (stage n = 0 of the failure cascade),
each node in network A is supported by k̃A nodes in network B.
We call k̃A a support degree of a node in network A. We connect
a node in network A to its supporting nodes in network B by k̃A

unidirectional support links represented by the arrows pointing
from the support nodes in network B to this node in network A.
We assume that k̃A is a random number taken from the support
degree distribution P̃ A(k̃A). Similarly, the degree distribution
of the support links feeding the nodes in network B by nodes
in network A is P̃ B(k̃B). The support-dependence relations are
random, i.e., for each node in network A its support nodes in
network B are chosen at random and vice versa.

We assume that in order to be functional a node in network
A must (i) have at least one functional support node in network
B and (ii) must belong to the giant component of functional
nodes in network A. Similarly, we assume that in order to
be functional a node in network B must (i) have at least one
functional support node in network A and (ii) must belong
to the giant component of functional nodes in network B.
The mathematical problem of finding functional nodes can
be represented as a physical process of cascading failures in
which the number of currently functional nodes decreases with
time and eventually converges to the number of permanently
functional nodes which satisfy conditions (i) and (ii).

The attack on the coupled network system is represented
by a random removal of a fraction 1 − RA of nodes in network
A and a random removal of a fraction 1 − RB of nodes
in network B, where in general, RA �= RB . The cascade of
failures is demonstrated in Fig. 1. For small networks with
NA = NB = 7, we show the case of random removal of one
node in network A (RA = 6/7) and one node in network
B (RB = 6/7). At each stage of the cascade of failures,
both networks experience further failures and the number
of functional nodes decreases with time. Without loss of
generality, we assume the random attack on network A occurs
before that on network B. Thus, when we analyze the first stage
of the cascade of failures in network A, all the nodes in network
B are considered functional. At each stage, the nodes which do
not have any currently functional support nodes from the other
network, and the nodes which are separated from the giant
component of currently functional nodes in their network, are
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FIG. 2. (Color online) Demonstration of the functional relation
between μB

∞ and μA
∞ in Eqs. (19) and (20) for a system of two coupled

ER networks with a = b = 4, b̃ = ã = 4, and RB = 1 at different
values of RA. Since we use RB = 1, at different RA, the relation
between μB

∞ and μA
∞ given by Eq. (20) remains the same (shown by

the dashed line). Equation (19) with RA = 0.6, 0.43, and 0.4 is shown.
One can see that when RA < 0.43, only a trivial solution (μA

∞ =
0,μB

∞ = 0) exists for Eqs. (19) and (20). The value 1 − RA
c ≡ 1 −

0.43 = 0.57 represents the maximum fraction of nodes in network A
one can randomly remove at the initial stage of the cascade of failures
for which the non-zero giant components of both networks still exist at
the stable state. The abrupt disappearance of the nontrivial solution at
RA < RA

c corresponding to complete fragmentation of both networks
represents the first order nature of the percolation phase transition for
coupled networks.

considered to have failed. This process will continue until no
further node failure in either network occurs. At this stage
the currently functional nodes in both networks satisfy both
conditions (i) and (ii) of functional nodes. We will call the
giant components of functional nodes the mutually supported
giant components.

III. ANALYTICAL SOLUTION

The stable state of the two mutually supported giant
components in both networks is usually reached after several
stages in the cascade of failures. In each stage of the cascade
of failures, we analyze first network A then network B. Such
a procedure does not have any effect on the final result of
the failure cascade. While treating nodes in network A at
stage n, we assume that all their support nodes in network
B which are found to be functional at the previous (n − 1)
stage are still functional. When treating nodes in network B at
stage n, we assume that all their support nodes in network
A which are found to be functional at the current (nth)
stage are still functional. We denote the fractions of currently
functional nodes at stage n in networks A and B as μA

n and
μB

n , respectively. We assume that initially μB
0 = 1.

Since for each node in network A k̃A, we randomly set up
k̃A support nodes in network B, the probability that this node
at stage n has no functional support nodes in network B is

rA
n =

∞∑
k̃A=0

P̃ A(k̃A)
(
1 − μB

n−1

)k̃A = G̃A
(
1 − μB

n−1

)
, (1)

where G̃A is the generating function of the support degree
distribution P̃ A(k̃A). Analogously, the probability that a node
in network B at stage n has no functional support nodes in
network A is

rB
n =

∞∑
k̃B=0

P̃ B(k̃B)
(
1 − μA

n

)k̃B = G̃B
(
1 − μA

n

)
. (2)

.
We can easily generalize Eqs. (1) and (2) to the case when

a fraction of nodes 1 − qA in network A is totally independent
of nodes in network B and fraction of nodes 1 − qB in network
B is totally independent of nodes in network A [16], by
formally assigning to these autonomous nodes infinite number
of support nodes in the other network, meaning that even total
failure of the other network will not destroy them. In this
case P̃ A(∞) = 1 − qA and P̃ B(∞) = 1 − qB . Thus we must
simply renormalize generating functions of the support degree
distributions:{

G̃A(x) ≡ qA
∑∞

k=0 P̃ A(k)xk,

G̃B(x) ≡ qB
∑∞

k=0 P̃ B(k)xk,
(3)

In addition to nonautonomous nodes with no functional
support nodes in the other network, some nodes become
nonfunctional due to initial attack. Accordingly, the fractions
of nodes in network A which remain functional at stage n after
application of condition (i) is

pA
n = RA

(
1 − rA

n

)
. (4)

Analogously, the fraction of nodes in network B which do not
fail at stage n due to condition (i) is

pB
n = RB

(
1 − rB

n

)
. (5)

Now we will find the subset of nodes that remain functional
after stage n. We will present our analysis only for network A
because a completely analogous analysis is valid for network
B. The networks A and B are connected randomly. Thus, from
the point of view of network A the fraction of nodes 1 − pA

n

that become nonfunctional due to application of condition (i)
are randomly removed. We will denote this decimated network
An and its giant component GAn. We will show that GAn

coincides with the set of nodes FAn which remain functional
after stage n by the method of mathematical induction. At
the first stage GA1 = FA1 because originally all the nodes
of network A are considered functional. On later stages this
is not obvious because some nodes of An have become
nonfunctional at the previous stage since they do not belong to
the giant component of the currently functional nodes. We
will assume that GAn−1 = FAn−1 and show that GAn =
FAn. It is obvious that FAn ⊆ GAn, because only nodes
which belong to GAn can be functional. We also note that
An ⊆An−1 and hence in thermodynamic limit GAn ⊆ GAn−1.
But due to the induction assumption GAn−1 = FAn−1. Thus
all the nodes of GAn are currently functional because they
pass both criteria: they belong to the giant component of the
nodes supported by the currently functional nodes in network
B and all of them remained functional after the previous
stage. Thus indeed FAn = GAn. The same is true for the
network B: FBn = GBn
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Thus, the fractions of functional nodes after stage n, μA
n and

μB
n are equal to the fraction of nodes in the giant components

of networks A and B, respectively, after random removal of
fractions 1 − pA

n and 1 − pB
n , respectively. Since networks A

and B are randomly connected, we can use the apparatus of
generating functions [21] to derive the analytical forms of μA

n

and μB
n .

The generating functions of the degree distribution P A(k)
of network A and P B(k) of network B are

{
GA0(x) ≡ �∞

k=0P
A(k)xk,

GB0(x) ≡ �∞
k=0P

B (k)xk.
(6)

Analogously, the generating functions of the underlying
branching processes are

{
GA1(x) ≡ G′

A0(x)/G′
A0(1),

GB1(x) ≡ G′
B0(x)/G′

B0(1).
(7)

After random removal of a fraction 1 − p of nodes, the
remaining fraction p of the network will have different degree

distribution. The new generation functions G0 and G1 will
be [19,20]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

GA0(x,p) = GA0(1 − p(1 − x)),

GB0(x,p) = GB0(1 − p(1 − x)),

GA1(x,p) ≡ GA1(1 − p(1 − x)),

GB1(x,p) ≡ GB1(1 − p(1 − x)).

(8)

According to the results on single networks [19,20], after
random removal of a fraction 1 − pA

n (or 1 − pB
n ) of nodes

of the original networks A and B, the fractions of nodes that
belong to the giant components of the remaining network An

or network Bn, which have pA
n or pB

n fractions of nodes of the
original networks A and B, respectively, are

{
gA

(
pA

n

) = 1 − GA0(f A
n ,pA

n ),

gB
(
pB

n

) = 1 − GB0(f B
n ,pB

n ),
(9)

where f A
n and f B

n satisfy transcendental equations

{
f A

n = GA1
(
f A

n ,pA
n

)
,

f B
n = GB1

(
f B

n ,pB
n

)
.

(10)
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FIG. 3. (Color online) The case of coupled ER networks. Comparison between the theoretical predictions, obtained from Eqs. (12), (15),
(11), and (18), and numerical simulations with NA = NB = 106, a = b = 4, b̃ = ã = 4, RB = 1, and several values of RA. (a) and (b) show
μA

n and μB
n at different stages n of the cascade of failures for RA = 0.7 and RA = 0.6 > RA

c ≈ 0.43 for both theory (lines) and simulations
(symbols). One can see that both μA

n and μB
n approach a stable value μA

∞ and μB
∞ at the end of the cascade of failures. The agreement between

theory and numerical simulations is very good. (c) and (d) show μA
n and μB

n at different stages n of the cascade of failures for RA ≈ RA
c . The

bare lines represent several realizations of the simulations and the lines with symbols represent the theoretical predictions. One can see that
for the early stages (small n) the agreement is good, however at large n the deviation due to random fluctuations in the actual fraction of the
giant component starts to increase. The random realizations split into two classes: one that converges to a non-zero giant component for both
networks and the other that results in a complete fragmentation.
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FIG. 4. (Color online) The case of coupled SF networks. Comparison between the theoretical predictions, obtained from Eqs. (12), (9), (10),
and (18), and numerical simulations with NA = NB = 106, λA = λB = 2.5, b̃ = ã = 4, RB = 1, and different values of RA. (a) and (b) show
μA

n and μB
n at different stages n of the cascade of failures for RA = 0.7 and RA = 0.6 > RA

c ≈ 0.385 for both theory (lines) and simulations
(symbols). Similar to Fig. 3, one can see that both μA

n and μB
n approach a stable value μA

∞ and μB
∞ at the end of cascade failures. The agreement

between the theory and numerical simulations is very good. (c) and (d) show μA
n and μB

n at different stages n of the cascade of failures for
RA ≈ RA

c . Bare lines represent several realizations of the simulations and the lines with symbols represent the theoretical predictions. One can
see that for the early stages the agreement is good, however at large n the deviation due to random fluctuations in the actual fraction of the
giant component increase. The random realizations split into two classes: one that converges to a nonzero giant component for both networks
and the other that results in a complete fragmentation. For coupled SF networks, at RA = RA

c , the fluctuations of both μA
n and μB

n seem to be
relatively larger than that of coupled ER networks, due to the existence of large degree nodes in SF networks.

Thus μA
n and μB

n , the fractions of nodes in the giant components
relative to the original sizes of network A and network B
[19,20] are {

μA
n = pA

n gA
(
pA

n

)
,

μB
n = pB

n gB
(
pB

n

)
.

(11)

Combining Eq. (11) and Eqs. (1), (2), (4), and (5), we
can express the cascade of failures in networks A and B in
the thermodynamic limit NA → ∞, NB → ∞ in terms of
iterations: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μB
0 = 1,

pA
1 = RA

[
1 − G̃A

(
1 − μB

0

)]
,

μA
1 = pA

1 gA
(
pA

1

)
,

...,

pA
n = RA

[
1 − G̃A

(
1 − μB

n−1

)]
,

μA
n = pA

n gA
(
pA

n

)
,

pB
n = RB

[
1 − G̃B

(
1 − μA

n

)]
,

μB
n = pB

n gB
(
pB

n

)
.

(12)

When the cascade of failures process stops, f A
n , f B

n , pA
n ,

pB
n , μA

n , and μB
n all reach the constant values, f A

∞, f B
∞, pA

∞, pB
∞,

μA
∞, and μB

∞, respectively. These final values can be readily
found from the set of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f A
∞ = GA1(1 − pA

∞(1 − f A
∞)),

f B
∞ = GB1(1 − pB

∞(1 − f B
∞)),

pA
∞ = RA[1 − G̃A(1 − μB

∞)],

pB
∞ = RB[1 − G̃B(1 − μA

∞)],

μA
∞ = pA

∞[1 − GA0(1 − pA
∞(1 − f A

∞))],

μB
∞ = pB

∞[1 − GB0(1 − pB
∞(1 − f B

∞))].

(13)

The functional forms of G̃A, G̃B , GA1, GB1, GA0, and
GB0 can be complicated, thus Eqs. (13) can be solved only
numerically for most cases, including coupled SF networks.
However, for ER networks, G0(x) and G1(x) have the same
simple form [21]

G0(x) = G1(x) = e〈k〉(x−1), (14)

where for network A, 〈k〉 = a and for network B, 〈k〉 = b.
Thus, the above process of the cascade of failures can be
significantly simplified. Equations (9) can be reduced to{

gA(pA
∞) = 1 − f A

∞ = 1 − eapA
∞(f A

∞−1) = 1 − e−aμA
∞ ,

gB(pB
∞) = 1 − f B

∞ = 1 − ebpB
∞(f B

∞−1) = 1 − e−bμB
∞ .

(15)
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FIG. 5. (Color online) The fraction of the giant components of network (a) A, μA
∞ and network (b) B, μB

∞ in the stable states as a function
of RA and RB for coupled ER networks A and B with NA = NB = 106, a = b = 4, b̃ = ã = 4, and 1 − RA = 2(1 − RB ). Several curves for
b̃ = ã = 4, b̃ = ã = 8, and b̃ = ã = 32 are shown. The theory (lines) agrees very well with the simulation results (symbols). One can see that
for a given set of b̃ and ã there exist critical thresholds RA

c and RB
c , below which both networks will collapse and have no stable nonzero giant

components. The value of RA
c approaches the critical threshold of random percolation (r = 1/a = 0.25) of a single network for large values of

b̃ and ã. The initial attack on network B is smaller than that on network A and thus RB
c > RA

c .

Using Eq. (15) we can exclude pA
∞, pB

∞, f A
∞, and f B

∞ from
Eqs. (13). Thus for the stable state of two coupled ER networks,
the mutually supported giant components satisfy a system of
two equations:

μA
∞ = RA[1 − G̃A(1 − μB

∞)]
(
1 − e−aμA

∞
)
, (16)

μB
∞ = RB[1 − G̃B(1 − μA

∞)]
(
1 − e−bμB

∞
)
. (17)

Another simplification can be achieved if we assume that
the support degree distributions P̃ A(k̃) and P̃ B(k̃) are Poisson
distributions with average degrees ã and b̃, respectively. We
also assume that there are no autonomous nodes (qA = qB =
1). In this case {

G̃A(1 − μB
∞) = e−ãμB

∞,

G̃B(1 − μA
∞) = e−b̃μA

∞,
(18)

Plugging Eq. (18) into Eqs. (16) and (17) we obtain remarkably
symmetric percolation laws for coupled ER networks with
Poisson distribution of supporting links:

μA
∞ = RA

(
1 − e−ãμB

∞
)(

1 − e−aμA
∞
)
, (19)

μB
∞ = RB

(
1 − e−b̃μA

∞
)(

1 − e−bμB
∞
)
. (20)

Equations (19) and (20) are simple and can be related to
the theory of random percolation of a single ER network
[18,22,23], for which the fraction of the giant component is
μ∞ = R(1 − e−〈k〉μ∞ ). The coupled ER networks bring new
terms 1 − e−ãμB

∞ and 1 − e−b̃μA
∞ . In the limit of b̃ → ∞ (or

ã → ∞), the giant component of network B (or network A)
does not depend on the other network and behaves similarly
to the giant component in random percolation of a single
network.

The system of Eqs. (19) and (20) can be easily solved
graphically (Fig. 2). Equation (19) has a trivial solution
μA

∞ = 0. For μA
∞ > 0 it defines a function μB

∞(μA
∞) which

is an elementary function of μA
∞. It is easy to show that

this function is continuous, positive, and has positive first and
second derivatives in the interval [0,μA

m), where μA
m < 1 and

μB
∞ approaches +∞ asymptotically at μA

∞ = μA
m. Analogous

facts are valid for μA
∞(μB

∞), which can be found from Eq. (20).
This equation also has a trivial solution μB

∞ = 0. Thus, the
graphical solution is given either by intersection of straight
lines μB

∞ = 0 and μA
∞ = 0 or by intersection of the curves

μA
∞(μB

∞) and μB
∞(μA

∞) which due to their convexity my have
at most two intersections at positive μB

∞ > 0 and μA
∞ > 0.

The physical solution corresponds to the largest solution,
because the iterative process (12) starts from μB

0 = 1 and can
converge only to the largest of these two solutions.

From Eqs. (19) and (20), we find μA
∞ and μB

∞ for a
given set of parameters a, b, ã, b̃, RA, and RB . However,
for some values of these parameters, positive solutions for
μA

∞ and μB
∞ corresponding to mutually supported giant

components may not exist. If we fix the values of five
parameters (for example RB ,a,b,ã and b̃) we can find a
critical threshold for the sixth parameter (for example RA)
above which the two coupled ER networks have non-zero
mutually supported giant components (see Fig. 2). We will
denote these thresholds as RA

c (a,b,ã,b̃,RB), RB
c (a,b,ã,b̃,RB ),

ãc(a,b,b̃,RA,RB), b̃c(a,b,ã,RA,RB ), ac(b,ã,b̃,RA,RB ), and
bc(a,ã,b̃,RA,RB ), which form a five-dimensional critical
manifold in the six-dimensional parameter space. The critical
value of the parameters can be obtained by finding the tangent
point of the two curves μB

∞(μA
∞) and μA

∞(μB
∞) found from

Eqs. (19) and (20), respectively (Fig. 2). Thus, the critical
manifold can be found from the tangential condition

dμA
∞

dμB∞

∣∣∣∣
Eq.(20)

dμB
∞

dμA∞

∣∣∣∣
Eq.(19)

= 1, (21)

together with Eqs. (19) and (20). Once any of the parameters
decreases by a infinitesimal quantity from the value it has
at a point on the critical manifold the positive solution
corresponding to the existence of mutually supported giant
components disappears and only the trivial solution corre-
sponding to complete disintegration of the networks is left.
This is a typical behavior for the first order phase transition
at which both order parameters, μA

∞ and μB
∞, discontinuously

change from positive values to zero. Only when ã → ∞ or
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FIG. 6. (Color online) The dependences of (a) Rc and (b) μc on b̃ = ã for coupled ER networks with NA = NB = 106, a = b = 4, and
1 − RA = 2(1 − RB ). In (a), the critical initial fraction of the network A, RA

c , and the critical initial fraction of the network B, RB
c , are shown

as a function of b̃ = ã. The theory (full line and dashed lines) fits well the simulation results (symbols). Note that RA
c approaches the critical

threshold (1/a) of random percolation for a single network, as also predicted by Eqs. (19) and (20). In (b), the giant component of both network
μA

c and μB
c are shown as a function of b̃ = ã at RA

c and RB
c . The theory (full line and dashed line) fits well the simulation results (symbols).

One can see that for large b̃ = ã, μA
c and μB

c both approach zero as expected for a single network. However, μA
c and μB

c will never reach zero
for finite b̃ and ã and the phase transition thus remain a first order.

b̃ → ∞ the behavior of networks decouples and μA
∞ or μB

∞
can gradually approach zero with the decrease of one of the
remaining parameters. Thus only if ã → ∞ or b̃ → ∞, the
behavior of the mutually supported giant components can
be described by the second-order phase transition, while in
all other cases (in the absence of autonomous nodes) it is
described by a first-order transition. In case when autonomous
nodes are present, the order of the transition can change
from first to second if the values of qA or qB are sufficiently
small, because functions μB

∞(μA
∞) and μA

∞(μB
∞) may become

negative at small values of their arguments. In this case, the
analysis of Eqs. (19) and (20) is similar to the analysis in
Ref. [16].

IV. NUMERICAL SIMULATIONS

Next, we compare our theoretical results obtained in
Sec. III to results of numerical simulations. For simplicity, in
this section we will study only the cases of the Poisson support
degree distributions in both networks and qA = qB = 1. We
begin with comparing the simulations of the stage n of the
failure cascade in coupled ER networks with our theoretical
predictions. In all our simulations, we use NA = NB = 106.
Figure 3 shows μA

n and μB
n as a function of n for a = b = 4,

b̃ = ã = 4, RB = 1 and for different values of RA. One sees
very good agreement between the theory and the simulations.
Close to RA

c , both μA
n and μB

n show large fluctuations between
different realizations (shown in Figs. 3(c) and 3(d)). The
random realizations split into two classes: one that converges
to a nonzero giant component for both networks and the other
results in a complete fragmentation. The agreement between
the simulations and theoretical predictions is also good for
different values of RB , a, b and b̃ and ã.

In Fig. 4, we compare the theoretical predictions and
simulations of the giant components at different stages of the
cascade of failures for a system of two coupled SF networks
with λA = λB = 2.5, b̃ = ã = 4, RB = 1, and different values
of RA. Similarly, we obtain agreement between the theoretical
predictions and the simulations. Close to RA

c , both μA
n and

μB
n of different random realizations show large fluctuations

and different realizations also split into two classes. We also
simulate other values of RB , λA, λB , b̃, and ã and found
very good agreement between and theoretical predictions and
simulations.

The fractions of the giant components of both networks
A (μA

∞) and B (μA
∞) for coupled ER networks, in the stable

state can be derived from Eqs. (19) and (20). We solve these
equations numerically for different values of RA and RB ,
and compare the theoretical predictions with the simulation
results (Fig. 5). For simplicity, we assume a = b = 4 and
that the initial fraction of nodes affected by the random
attack in network A is twice as large as that in network B
[1 − RA = 2(1 − RB)]. We test our theory for various average
degrees of support links assuming that b̃ = ã.

In Fig. 5, we present results for the giant components of both
networks as a function of RA and RB . We find that the theory
agrees well with simulation results for different sets of b̃ and ã.
In Fig. 5, one can also clearly identify the critical RA

c and RB
c ,

which are the minimum fractions of both networks needed to
be kept at the beginning of the cascade of failures in order to
have nonzero connected giant components of both networks
at the stable state. At RA

c and RB
c , both μA

∞ and μB
∞ show an

abrupt change from a finite fraction (μA
c and μB

c ) to zero. As b̃

and ã increase, RA
c approaches the critical threshold of random

percolation of a single ER network, which is 1/a = 1/4. As
expected for single networks, μA

c and μB
c approach 0 and a

second-order phase transition emerges for infinite b̃ and ã.
However, for finite b̃ and ã the changes of μA

∞ and μB
∞ are

not continuous at RA
c and RB

c , indicating a first-order phase
transition. This result is predicted by Eqs. (19) and (20). We
find that the theory agrees well with the simulation results for
the entire range of RA

c and RB
c and for different values of b̃

and ã.
Next, we study both theoretically and numerically the

dependence of RA
c and RB

c , μA
c and μB

c on b̃ and ã (see
Fig. 6). For simplicity and for comparing with our earlier
cases, we use the same set of parameters for both networks:
a = b = 4, b̃ = ã, and 1 − RA = 2(1 − RB). As seen from
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Fig. 6, the theory agrees well with the numerical simulations.
For large b̃ = ã, one can see that RA

c approaches the random
percolation threshold 1/a of a single ER network. This
behavior indicates that when network A has enough support
from network B or vice versa, both networks will behave as
if they are independent. Indeed, for large b̃ and ã, at RA

c and
RB

c , the stable giant components of both networks μA
c and

μA
c approach zero as expected for a second order percolation

phase transition. However, as seen from Eqs. (19) and (20),
for finite values of b̃ and ã, neither μA

c nor μB
c is zero. This

result supports the existence of a first-order phase transition for
the entire range of b̃ and ã. Good agreement between theory
and simulations, and similar behavior of RA

c , RB
c , μA

c , and μA
c

as a functions of b̃ and ã have been found for other sets of
parameters.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we extend previous works [15,16] on the
cascade of failures on interdependent networks by considering
multiple support-dependence relations between two coupled
network systems. Our theory is in excellent agreement with
the numerical simulations on coupled Erdős-Rényi (ER) and
coupled scale-free (SF) networks systems. For coupled ER
networks, the percolation law for the mutually supported
giant components of both networks have a simple analytical
form, which in the limit of large number of supports gives
the percolation law for single networks. Only in the limit of
infinite number of support links or in case of the existence of
autonomous nodes which do not need any support from the

other network, the behavior of the mutually supported giant
components can be described by the second-order percolation
phase transition while in all other cases, the coupled networks
in our model disintegrate via a first order phase transition. Our
model can help to further understand real-life coupled network
systems, where complex dependence-support relations exists.
Recently, a complementary approach to study the robustness
of coupled networks system has been proposed [24], which is
based on a quite different assumption about the way networks
are coupled. In contrast to our case where pc = RA

c or pc = RB
c

increases due to coupling, in their case pc decreases. Note
that there are also recent efforts to study the robustness
of single networks [25–27] undergoing targeted percolation,
which correlates with the topology of the network. In the
same spirit, our work can be extended to study the robustness
of coupled networks under nonrandom percolation. A first
attempt in this direction for interdependent networks can be
found in Ref. [28]. The case of robustness of the general case
of n coupled networks, network of networks, has been studied
very recently [29].
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