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1Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade, Serbia

2Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
~Received 29 January 1996; revised manuscript received 7 June 1996!

We report extensive measurements, with sufficiently large statistics, of the Barkhausen noise ~BN! in the
case of the commercial VITROVAC 6025 X metal glass sample. Applying a very scrutinized numerical
procedure, we have extracted over one million of the BN elementary signals from the raw experimental data,
whereby we made a rather precise estimation of the relevant power law exponents. In conjunction with the
experimental part of the work, we have recognized a generic shape of a single BN elementary signal ~BNES!,
and we have put forward, without invoking any existing model of BN, a simple mathematical expression for
BNES. Using the proposed expression for BNES in a statistical analysis, we have been able to predict scaling
relations and an elaborate formula for the power spectrum. We have also obtained these predictions within the
generalized homogeneous function approach to the BNES’s probability distribution function, which we have
substantiated by the corresponding data collapsing analysis. Finally, we compare all our findings with results
obtained within the current experimental and theoretical research of BN. @S1063-651X~96!13409-7#

PACS number~s!: 05.40.1j, 75.60.Ej, 05.90.1m, 02.50.Wp

I. INTRODUCTION

The Barkhausen noise ~BN! is a classical physical phe-
nomenon which is manifested as a series of jumps in mag-
netization of a ferromagnetic sample when it is exposed to a
varying external magnetic field. These changes induce volt-
age changes in a surrounding coil, and consequently they can
be transformed into acoustic noise. Since its discovery @1#,
BN has been incessantly investigated ~see, for instance, the
reviews @2–4#! because of its vast practical importance ~such
as for various types of magnetic recordings @5# and for non-
invasive material characterization techniques @6#! and be-
cause of its major conceptual importance for understanding
dynamics of ferromagnets on the magnetic domain scale.
These investigations have shown that BN is a very complex
physical phenomenon with many different appearances
which depend on kind of ferromagnetic specimen under
study, character of quenched in defects, external field driving
rate, thermal effects, strength of the demagnetization fields,
and other experimental details.

At present there are several conceptually different ~and to
a certain extent incoherent! theoretical approaches to the ex-
planation of BN. The first of the current theoretical ap-
proaches we would like to bring forward here is that one
which analyzes BN as a consequence of the domain-wall
~DW! motion. Accordingly, BN has been investigated via a
single-degree-of-freedom model @7# in which individual DW
is moving ~in a random walk manner! through a spatially
random coercive field. The Langevin equation approach @7#
has been developed further in a number of papers @8–10# and
thoroughly reviewed by Bertotti @11,12#. In a different ap-
proach, the DW motion and domain nucleation have been
experimentally and theoretically investigated in relation to
BN in ultrathin ferromagnetic films @13#.

Recently, the concept of the self-organized criticality
~SOC! @14,15# has acquired a distinguished role in the con-
temporary BN investigations. Since the appearance of the
SOC concept, many questions related to its application to

BN has been raised which initiated many different studies
and even antagonistic interpretations. The applicability of the
SOC concept to BN was investigated by Meisel and Cote
@16,17# who offered qualitative arguments and specific mea-
surements ~in various materials, starting with a metal glass
sample! in support to the relevance of the SOC concept for
the explanation of BN. They augmented their arguments by
performing the Jensen, Christensen, and Fogedby ~JCF! type
of analysis @18# of statistical characterization of the observed
BN. Besides, the avalanchelike topological rearrangements
of cellular domain patterns in magnetic garnet films were
investigated by Babcock and Westervelt @19#, who inter-
preted the obtained findings in the framework of the SOC
concept. Finally, BN has been investigated as a fractal time
signal @20# and subsequently simulated via a SOC model
@21# by Geoffroy and Porteseil.

Concurrently, there are approaches that put under doubt
the relevance of the SOC concept to BN. Thus, O’Brien and
Weissman @22# have pointed out that the 1/f noise and
power-law distributions are not necessarily evidences of
SOC, but rather the consequences of scaling properties of
quenched disorder in material. In this spirit, they have per-
formed experimental and computational analyses of the
fourth-order signal correlations ~dubbed the second spectra!,
which was expected to reveal violations of the detailed bal-
ance in self-organization caused by an external driving. The
main conclusion of these analyses is that the most statistical
characterization of BN is consistent with the single-degree-
of-freedom models of Allesandro et al. @7#. On the other
hand, within a many-degree-of-freedom model approach
@23–25#, it has been recently argued that features of BN can
be adequately described by the zero-temperature random-
field Ising ~RFI! model, and that the observed scaling in BN
should be a consequence of the vague proximity to a plain
old critical point ~which in the model studied is determined
by a critical value of the width of the random-field distribu-
tion @24#!. The role of material defects for the explanation of
BN has been also emphasized in the approach of Urbach
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et al. @26#, who exploited concept of rough-surfaces growth
to describe the DW motion, with the conclusion that long-
range demagnetization fields strongly affect the character of
BN.

Despite the vast list of the BN facets that have been in-
vestigated, so far the question whether the BNES’s probabil-
ity function is a generalized homogeneous function ~GHF!
has not been widely attacked and analyzed. Similarly, there
has been a little attention payed to the form of individual BN
signals and consequences which their form might have to the
global BN. In this paper, we report on extensive measure-
ments ~with sufficiently large statistics! of BN in the case of
a commercial VITROVAC 6025-X metal glass sample. In
the course of these measurements, we have introduced many
experimental precautions and scrutinized numerical methods
in order to eliminate effects of the extrinsic noise. In this
way, we have been able to extract a proper average form of
the individual BN signals from the experimental data and,
what is more important, to provide evidences that the
BNES’s probability distribution is a GHF. Our theoretical
treatment of the problem has been first focused on investiga-
tion of power-law behaviors of BN and their relations with
an analytical expression which describes the obtained aver-
age shape of BNES’s. After providing qualitative theoretical
arguments which support the accepted signal form, we have
carried out an analysis of the JCF @18# type ~which does not
take into account any specific origin of the noise signal!, and
we have obtained various scaling relations ~satisfied upon
inserting the experimental values of scaling exponents!, as
well as an expression for the power spectrum whose numeri-
cal presentation is in agreement with our experimental re-
sults. Then, we have analyzed the hypothesis that the
BNES’s probability distribution function is a GHF and we
have expounded on consequences which such an assumption
implies. Thus, it appears that power-law behaviors of BN,
and, in particular, all scaling relations can be obtained as
consequences of the GHF property of the BNES’s probabil-
ity distribution function and that other consequences, such as
the data collapsing of numbers of events, can serve as ad-
equate experimental confirmations of the GHF hypothesis.

This paper is organized as follows. In Sec. II we first
describe our experimental setup. Then we elaborate on the
numerical procedure utilized for analysis of the recorded
data, and present our experimental results. In Sec. III we
develop our inductive theoretical approach to BN and
present a detailed comparison of the theoretically and experi-
mentally obtained results. In Sec. IV, we provide evidences
that the BNES’s probability distribution function is a gener-
alized homogeneous function which enable us to rederive all
scaling relations ~obtained in Sec. III! in the spirit of the
standard critical phenomena. Finally, we give an overall dis-
cussion of the utilized experimental method and the unfolded
theory within the present knowledge about the Barkhausen
noise.

II. EXPERIMENTAL ANALYSIS

A. Experimental setup

We have used the experimental setup which is schemati-
cally depicted in Fig. 1, and here we give a brief description
of the parts of the setup. A signal generator ~Krohn-hite 5400

B! provided sinusoidal current for the driving solenoid S
which produced a magnetic field, H5H0sin(2pf0t), that con-
tinuously drew a specimen ~located within the pickup coil
C) through a B-H loop. A small driving frequency
f 050.03 Hz has been used to prevent ~or, more precisely, to
reduce significantly! overlapping of the Barkhausen pulses.
The length of the solenoid S was 20 cm, while its inner
diameter was 5 cm, and it consisted of 675 turns of a copper
wire ~0.5 mm in diameter!. The maximal strength of the
magnetic field H0, produced by S , was about 160 A m21

~which is approximately four times larger than the mean
Earth magnetic field!, and this small field was oriented or-
thogonally to the local Earth magnetic field.

We have performed our measurements on a quasi-two-
dimensional as-cast metal glass sample ~a commercial VIT-
ROVAC 6025 X produced by Vacuum Schmeltz!, with lin-
ear dimensions 4 cm 3 1 cm 3 0.003 cm. The Barkhausen
pulses @see Fig. 2~a!#, which correspond to the jumps in mag-
netization of the specimen, were collected as induced voltage
pulses via the pickup coil C ~of length 5.5 cm, with rectan-
gular cross section 12 mm3 2 mm!. The specimen was
placed inside the coil in such a way that there was no me-
chanical tension. The pickup coil C , with the resistance
R530 V, comprised of 300 turns of copper wire and its
magnetic coupling with S was weak. The pickup coil C , as
well as the inserted specimen, were placed in the middle of
the solenoid S .

Electric signal from the pickup coil C has been amplified
~with a gain of 2000! through a low-noise differential ampli-
fier. Trains of the Barkhausen pulses were monitored, to-
gether with the driving current, on a HAMEG 205-3 digital
storage scope. In order to improve quality and the duration of
the recorded signal, an analog-to-digital ~A/D! converter
~made by Electronic Design, model ED 2000 with high-
speed module ED 2019, compatible with the Burr-Brown
card, model PCI-20023M-1!, with the 12-bit resolution, has
been used for the data collection. The A/D converter had the
input range 25 V to 15 V, with the maximal rate of 300 000
samples per second, permitting, in a single run, collection of
as many samples as the computer memory could accept. We
have found that the sampling rate of 200 000 samples per

FIG. 1. A schematic depiction of the setup used in the experi-
mental course of this work. The ballast resistor of 200 V has been
used to reduce the influence of Barkhausen noise on the current
which flows through the driving solenoid S .
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second provided a good balance between resolution of peaks
and the number of peaks recorded during a single run. With
respect to this problem, we would like to emphasize that the
amplifier cutoff frequency ~100 kHz! has been chosen to pre-
vent aliasing effect in the power spectrum @27#.

The achieved quality of the Barkhausen noise measure-
ment, obtained in the way described above, was accompa-
nied by undesirable sensitivity to the low-level electric and
magnetic extrinsic noise. To minimize this concomitant
noise, the driving solenoid S , the pickup coil C , and the
amplifier, were enclosed in a double-wall Permalloy Cham-
ber ~made by Vacuum Schmeltz!, which reduced the external
magnetic fields ~including the Earth’s magnetic field!, at
least by a factor of 10 000. Finally, a copper chamber ~which
is not shown in Fig. 1! has been used as an additional Fara-
day cage to minimize external electric fields. As a result,
amplitude of the overall extrinsic noise was not larger than 4
counts of the A/D converter, that is, signal-to-noise ratio was
about 500. Finally, the care was taken so as to record the

entire set of data at the constant temperature equal to
20 °C.

B. Numerical processing of recorded data

We drove the sample studied through B-H loop for 10 h
before any recording was done, in order to achieve the sta-
tionary regime of the hysteresis loop cycling. Then, we have
collected our experimental data in a small interval of H ~cen-
tered at the value H50), which encloses the corresponding
coercive field Hc owing to the fact that our specimen is a soft
magnet. During a single recording, which lasted about 0.6
sec, we got 128 kB of data ~131 072 points of the digitized
voltage!, and we present here results of statistical averaging
over 200 successive single recordings obtained ~within 2 h of
measurement! under identical experimental conditions. In
Fig. 2~a! we present a typical train of Barkhausen pulses by
the line drawn through a set of 4096 successively recorded
points. The presented set belongs to one of the 200 single

FIG. 2. ~a! A typical train of Barkhausen pulses observed in an as-cast commercial VITROVAC 6025 X metallic glass ribbon ~with linear
dimensions 4 cm31 cm30.003 cm!. The train is presented by the line drawn through 4096 points ~of digitized voltage, recorded at the
sampling rate of 200 000 samples per second!. The unit on the ordinate axis is 1 count of the A/D converter, which is equivalent to the
voltage of 5/2048 V. The huge offset, of about 2000 counts, appears as a consequence of the fact that the voltage of 0 V corresponds to the
2048th count of the A/D converter. For the sake of comparison, an elementary signal of the form ~8! is presented in the inset ~where the time
and voltage units are arbitrary!. ~b! Power spectrum ~in arbitrary units! of the train of Barkhausen pulses shown in the preceding graph. The
high value ~close to 107) of the f50 harmonic is a consequence of the huge offset of the recorded train of pulses. ~c! The positions of
baseline ~the lower horizontal line parallel to the time axis! and the discrimination level ~the upper horizontal line! for a nontypical train of
Barkhausen pulses. The nontypical train of small Barkhausen pulses has been chosen here intentionally since the two lines ~the baseline and
the discrimination level! would be otherwise indistinguishable in a figure that would present a typical train of Barkhausen pulses. ~d! A huge
single Barkhausen signal which lasted 0.002 sec ~located, approximately, between 0.0075 sec and 0.0095 sec!.
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recordings, while the time counting has been shifted, for the
sake of convenience, to the beginning of the train of pulses.
One can notice that in the recorded train there are several
clusters of big pulses and a multitude of small pulses hardly
distinguishable from the concomitant extrinsic noise.

After the data collection, we have performed numerical
processing of the raw recorded data. There are several rea-
sons for this processing. First, the data collected by the
pickup coil were of millivolts in magnitude, and they had to
be amplified in order to be adjusted to the input range of the
analog-to-digital converter. The applied signal amplification
inevitably introduces various types of distortions since the
amplified signal is the convolution of the amplifier charac-
teristic and of the input signal power spectrum. These distor-
tions are potentially of the greatest influence on the most
frequent short-lasting, and small ~in magnitude!, signals. To
eliminate these distortions, we have performed a deconvolu-
tion procedure, using the fast Fourier transform ~FFT!
method, based on known characteristic of the amplifier used.
Within this procedure, it was possible to introduce cutoff at
any desired frequency ~below the imposed hardware fre-
quency cutoff!, and we have investigated the influence of the
frequency cutoff choice. Thus, we have found that the data,
important for the further analysis, remain stable under varia-
tion of the frequency cutoff, and, for this reason, in what
follows we present our results obtained for the deconvolved
data with the cutoff frequency set at the hardware value 100
kHz.

The necessity for the numerical processing of the original
data stems also from the inevitable presence of undesirable
extrinsic noise. There are many kinds of extrinsic noise, such
as the exterior fields, the thermal noise, the electric network
noise, and the noise that originates from the computer com-
ponents. The presence of the undesirable noise can be no-
ticed in the power spectrum of the typical unprocessed sig-
nal, which appears as the white noise at frequencies higher
than 50 kHz @see Fig. 2~b!#. In order to reduce the effect of
the extrinsic noise, we have applied the Wiener filtering
method @27#, but it turned out to be an excessive step, that is,
it did not change final results, which can be explained by the
relatively high signal-to-noise ratio. One can also see in Fig.
2~b! that there is no so-called aliasing effect ~which was
eliminated by the suitable choice of the amplifier cutoff fre-
quency!.

In the concluding part of this subsection, we shall provide
a usable definition of a single BN signal within the recorded
trains of pulses. To this end, we first have to define baseline
of a train of pulses. It appears to be most appropriate to
choose for a baseline the horizontal line, in the counts ~of
voltage! vs time plane, which has maximum number of in-
tersects with the train line. In other words, the baseline cor-
responds to the count b l of the A/D converter that most fre-
quently occurs in a given train of pulses ~this definition is
correct only in a case of a slowly varying external field!.
Having defined the baseline, we point out that above this line
there are both the BN pulses and the extrinsic noise pulses,
whereas below the baseline one can find only pulses of the
extrinsic noise ~if we neglect the inverse BN pulses, which
appear to be almost improbable events under the described
experimental conditions!. Hence, we can numerically ana-
lyze the extrinsic noise pulses which appear below the base-

line, and, in particular, we can thereby estimate the corre-
sponding extrinsic noise standard deviation s ~supposing
that the noise is symmetrical in respect with the baseline!. To
discriminate the BN pulses from the extrinsic noise, we es-
tablish a discrimination level at the value bd5b l1dd , where
dd is a quantity that is proportional to s @see Fig. 2~c!#. In
what follows, we present all our results for dd /s51 ~with a
comment that our analysis for the power law exponents has
shown that they are not sensitive to particular values of the
ratio dd /s). Finally, we define as a single BN signal each
part of the recorded line of pulses above the discrimination
level that ranges between its two consecutive intersections
with the discrimination level @see, for instance, a huge BN
signal presented in Fig. 2~d!#. Applying the foregoing proce-
dure, we have extracted 1 078 796 elementary signals from
the experimental data, which has rendered the basis for our
statistical analysis.

C. Experimental results

Three basic physical quantities that describe a single BN
signal are signal duration, area of the signal, and energy re-
leased during the signal occurrence. To define these quanti-
ties, we denote BN by F(t) as a function of time t . The
signal duration T is the time interval, between the first t f and
the last moment t l , in which the signal is above the discrimi-
nation level. The area of a signal A is the area between signal
and the baseline b l , which can be written in the form
A5* t f

t l @F(t)2b l#dt , and which is proportional to the sum of

the ordinates of the discrete form of the function F(t)2b l .
Physically, the area of a signal is proportional to the change
in the specimen magnetization occurring during the signal
duration. Finally, the signal energy E is proportional to the
integrated squared signal, that is, E}* t f

t l @F(t)2b l#
2dt .

The self-similar appearance of the experimental results
for BN @Fig. 2~a!# implies that there should exist various
scaling laws, and in this spirit one can expect that the prob-
ability distributions P(T), P(A), and P(E), of the three
quantities defined in the preceding paragraph, should be of
the power-law type

P~T !;T2a, P~A !;A2t, P~E !;E2e, ~1!

where a ,t , and e are the corresponding critical exponents.
Our experimental results related to these distributions are
presented in Figs. 3–5, respectively, from which we obtain
the following values for the critical exponents

a52.2260.08, t51.7760.09, e51.5660.05. ~2!

Besides the distributions ~1!, within a complete analysis,
it is important to establish the joint distributions, which in
practice means to find joint histograms. Thus, in Fig. 6 we
present a log-log plot of our experimental results in the form:
signal area vs signal duration, which means that every point
in the figure represents a single BN signal. Similarly, in Fig.
7 and Fig. 8 we present joint histograms for energy-duration
and energy-area distributions, respectively. From these three
figures, one may gain insight into the joint probabilities
P(A ,T), P(E ,T), and P(E ,A), as they are approximately
proportional to the number of points per unit area in the
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respective planes. In addition, from the same figures, one can
see that the corresponding pairs of quantities are not related
by single functions @for instance, in the simple form
A5 f (T)#, although, on the other hand, one may see that
each pair displays a significant linear correlation in the log-
log plot. Therefore, it is appropriate to assume validity of the
following power laws:

A;Tg1, E;Tg2, E;Ag3. ~3!

The least-square fit of our data gives the following values for
the critical exponents:

g151.5160.01, g252.0360.02, g351.3660.01.
~4!

We have tested the validity of assumption ~3!, that is, of the
corresponding linearity in the log-log plots, by evaluating the
pertinent linear correlation Pearson’s coefficients

r~A ,T !50.946, r~E ,T !50.871, r~E ,A !50.988,
~5!

which appears to be satisfactorily high since in the ideal case
these coefficients should be equal to one @27#. Furthermore,
we have calculated the more informative Spearman rank-
order correlation coefficients

rs~A ,T !50.886, rs~E ,T !50.783, rs~E ,A !50.985,
~6!

which again turns out to be satisfactorily high, as it is known
that in an ideal case these coefficients should be equal to one

FIG. 3. Experimental data for the distribution of signal durations
~diamonds! and the pertinent best fit of the form ~15!–~16! ~solid
line!. The scaling region, almost two decades long, can be recog-
nized, and can be described by the critical exponent a52.22. To
obtain this distribution of signal durations, the original data were
first grouped into logarithmically spaced bins, and one can notice
that, despite the huge number of collected data, there appears an
unavoidable scattering of the points in the region of signals having
short durations. This fact is a consequence of the incompatible dis-
creteness of the two quantities — the originally measured signal
duration and the magnitude of bins.

FIG. 4. Experimental data for the distribution of signal areas
~diamonds! and the best fit curve @of the power-law type, with the
correction factor of the form ~22!#. The critical exponent t51.77
describes the scaling region.

FIG. 5. Experimental data for the distribution of signal energies
~diamonds! and the best fit curve @of the power-law type, with the
correction factor of the form ~27!#. The critical exponent e51.56
describes the scaling region.

FIG. 6. Area vs duration data of the BN signals ~or the so-called
joint area-duration distribution!. Almost all experimentally obtained
points ~dots! lie within the domain bounded by the two solid lines,
which correspond to the estimates gmin51.3 and gmax51.63 that
were achieved using these data and the theoretical prediction ~9!.
We point out here that the presented data are taken from the first 50
single recordings ~of the total number of 200 single recordings!
because a presentation of all available data would give a completely
black central region.
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@27#. Thus, we may conclude that results ~5! and ~6! of both
tests confirm that our experimental data do satisfy the power
laws ~3!.

Finally, one of the main characteristics of BN is a power-
law spectrum of the type S( f );1/f b. In Fig. 9 we present
the power spectrum of the observed BN ~deconvolved from
the amplifier characteristic!, which has been obtained by ap-
plying the FFT method. More specifically, we have applied
the numerical procedure described in the book @27# under the
name SPCTRM ~using the option that assumes signal over-
lapping and the Parzen window!. Within this procedure we
have worked on the 4096-point segments, obtaining thereby
2048 harmonics in the power spectrum. Our final results dis-
play linearity, over almost two decades in the log-log plot
~see Fig. 9!, with a slight curvature at the beginning ~in the
low-frequency region!. We have estimated that the exponent
b , which should describe the linearity region, lies between
1.6 and 1.7. This shows that BN is neither the pink type

noise (b51) nor the Brownian type noise (b52). A com-
parison of this result with results found by other authors will
be given in Sec. IV.

III. THEORETICAL ANALYSIS

In this section, we propose a theoretical approach per-
formed along the lines of the approach developed by Jensen,
Christensen, and Fogedby @18#, which has been widely used
in previous analyses of experimental results in the case of
systems that exhibit SOC-like behavior. This is an inductive
approach whose virtues will be discussed in the next section,
simultaneously with expounding a phenomenological scaling
approach. Accordingly, let us consider the family B of the
pertinent uncorrelated ~elementary! time signals each labeled
by index i , with time profile f i(t8) ~where t8 is supposed to
be measured from the moment of beginning of the elemen-
tary signal!, and the ~total! recorded time signal F(t) ~which
is a stochastic sum of the elementary signals that start at
random times with overall rate n). Then, if p i(nd) is the
indicator function ~which is equal to one if an elementary
signal of the type i has started at the instant of time nd , and
otherwise it is equal to zero!, F(t) can be expressed in the
form

F~ t !5(
i

(
n52`

1`

f i~ t2nd !p i~nd !, ~7!

which shows that F(t) is a stochastically stationary time sig-
nal. In our study, we accept that BN is a time signal of type
~7!, assuming that BN is observed in a time interval which is,
on the one hand, practically infinite ~compared to average
duration of BN elementary signals!, and, on the other hand,
short enough ~compared to the period of the driving mag-
netic field! that one can consider the observational conditions
uniform and elementary signals uncorrelated. Furthermore,
we assume that the experimentally recorded single BN sig-
nals are effectively elementary BN signals, which should be
correct if the number of those single signals that are com-
prised of several elementary signals glued together is statis-
tically irrelevant.

FIG. 7. Energy vs duration data of the BN signals ~or the so-
called joint energy-duration distribution!. Almost all experimentally
obtained points ~dots! lie within the domain bounded by the two
solid lines obtained through ~10! and the estimates gmin and gmax
quoted in the caption of Fig. 6. The comment made at the end of the
Fig. 6 caption applies here as well.

FIG. 8. Energy vs area data of the BN signals ~or the so-called
joint energy-area distribution!. In this case, one can also notice that
almost all experimentally obtained points ~dots! lie within the do-
main bounded by the four solid lines, which were obtained using
relation ~12! and the estimates gmin and gmax quoted in the caption
of Fig. 6.

FIG. 9. Power spectrum S(v) ~in arbitrary units! of the ob-
served BN signals. The set of points ~dots! is calculated via the FFT
method and represent experimental findings, whereas the solid
curve represents numerical evaluation of ~38!.
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Power-law behavior related to the time signal F(t) of the
type ~7! depends on the characteristics of the distribution of
elementary signals. It may happen that there exists some
prominent subfamily of elementary signals ~having specific
shape! such that it has a dominant statistical weight in the
distribution of elementary signals. In such a case, performing
statistical analysis, one can neglect the presence of elemen-
tary signals which do not belong to the subfamily and try to
relate the properties of the time signal F(t) to the specific
shape of the subfamily elementary signals. A visual inspec-
tion of the typical train of elementary signals @see Fig. 2~a!#
can hardly detect existence of a subfamily of specific signals.
However, a more elaborate numerical investigation of the
available experimental data can demonstrate that a subfamily
in fact exists. To this end, one should first rescale each
BNES f i(t8) ~by appropriate dilation, or contraction, of its
duration time and voltage amplitude! so that the rescaled
signal f i8(t8) acquires unit duration and area, which eventu-
ally makes signals’ shapes suitable for mutual comparison.
Then, one should perform a straightforward averaging of the
rescaled signals within its own set, so that the value f a(t8) of
the function obtained in this way, at the moment t8, is the
average of f i8(t8).

In practice, we have analyzed all BNES’s which belong to
the scaling region ~see Fig. 3!, that is, which have durations
between 16 and 256 time counts of the used A/D converter.
Then, we have rescaled all BNES’s to the duration of 256
time counts, by linear interpolation, and we have dilated
~contracted! them along the voltage axis, in such a way that
the maximal height of the rescaled BNES’s must not exceed
256 voltage counts, and, furthermore, so that the all rescaled
BNES’s acquire a same area. Finally, we have performed the
averaging of the rescaled BNES’s and the resulting shape
@function f a(t8)# we present in Fig. 10 as a set of 256 dis-
crete points.

The conclusion of the described analysis emerges as the
statement — although the shapes of BNES’s appear irregu-
lar, there exists a generic smooth signal form such that

BNES’s are on average of the same type ~see Fig. 10!. For
the corresponding analytical form we propose

f ~ t8!5HCt8g21g~ t8/T !, t8.0

0, t8<0 ,
~8!

where C is a proportionality constant, g is the corresponding
signal exponent, and g(t8/T) is some function which is close
to one for small values of the argument and falls rapidly to
zero for large values of t8/T . Here, t8 is the time measured
from the moment of the beginning of the elementary signal,
and T is a characteristic time that can be thought of as the
duration of the elementary signal. Here we would like to
point out that our analysis will show that the final results are
most sensitive to the raising part of the signal, that is, to the
factor t8g21. In other words, it will turn out that a specific
form of g(t8/T) does not have an essential role, and, for the
sake of completeness, in the later numerical investigations
we shall use the exponential decay form g(x)5exp(2x). The
accepted kind of elementary signal is depicted in the inset of
the Fig. 2~a!, where it can be compared with the recorded
signals ~this type of the signal is also in accordance with
forms experimentally observed by other authors; see, for in-
stance, Fig. 10 of the second paper of O’Brien and Weiss-
man @22#, and Fig. 1 presented by Urbach et al. @26#!.

Physical reasons for choosing ~8! for the average shape of
BNES can be complemented by the following qualitative
arguments. In the study of BN we follow changes in the
domain structure caused by changes in external magnetic
field. First, we observe that the domain structure of a mag-
netic specimen is stochastically organized due to the com-
plex interplay of local fields, internal stresses, and bulk and
surface defects. For a given field the structure is stationary,
whereas small changes of the field are prone to trigger ava-
lanchelike rearrangements of clusters of domains, which is
usually initiated at a single domain. There are experimental
evidences ~see, for instance, Refs. @13# and @19#! that lead us
to assume that the clusters which take part in an avalanche-
like process comprise a fractal pattern, whose fractal dimen-
sion we identify with the signal exponent g . Furthermore, we
accept that an avalanchelike process is recorded as a single
BN signal, and that the time evolution of the avalanche de-
termines the shape of an elementary signal. The raising part
of the signal is dominated by the advancement of the ava-
lanche front ~whose fractal dimension is equal to g21), and
consequently there appears the factor t8g21 in ~8!. Of course,
after the rapid growth, the signal has eventually to die out,
and the way it halts is described by the factor g(t8/T). An
exponential decay form for g(t8/T) might be associated with
the eddy-current damping, while the constant C can be
thought of as a quantity proportional to the velocity of the
advancement of the avalanche front.

The first three predictions that follow from the assumption
~8! are the relations between duration, area, and energy, of an
elementary signal:

A5CTgG~g !, ~9!

and

FIG. 10. The average form of BNES’s ~solid squares! obtained
through an analysis of the experimental data, whose main step con-
sisted in rescaling of the BNES’s shapes to the same ~constant!
duration and the same ~constant! area. The continuous line repre-
sents the accepted analytical form ~8!, with g51.51, and T5119
time counts in g(t8/T)5exp(2t8/T).
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E5C2S T2 D 2g21

G~2g21 !, ~10!

where

G~g !5E
0

`

xg21g~x !dx , ~11!

which, for the specific form g(x)5exp(2x) is in fact the
standard gamma function. Then, eliminating duration T from
~9! and ~10!, one obtains the relation

E5

C1/gG~2g21 !

@2gG~g !#221/g A
221/g, ~12!

between the energy and the area of an elementary signal.
Once derived, the relation ~9! may be considered as the de-
fining relation the for signal exponent g of BNES, providing
that the constant C is known @see Eq. ~13!#. Thus, the signal
exponent g can be conceived as a quantity which discrimi-
nates between the possible shapes of BNES’s, and in what
follows we accept such an attitude.

Analyzing our experimental findings, we came to the con-
clusion that the BN signal duration T and the signal exponent
dimension g should be considered as the two stochastic
quantities, and we denote their joint distribution by
P(g ,T). By inspection of Figs. 6–8, one may also conclude
that the distribution P(g)5*P(g ,T)dT should be rather
narrow, ranging between some lower limit gmin and upper
limit gmax . Using the data for the joint distribution of the
BN signal area A and duration T ~see Fig. 6!, we have esti-
mated these two limits and the constant C of ~8!:

gmin51.3060.03, gmax51.6360.03,

C50.00460.001. ~13!

Thus, one may conclude that the BN signals should be dis-
tributed, with respect to their area and duration, between the
two boundaries depicted in Fig. 6, which are obtained by
substituting the values of C , gmin ~for upper border line! and
gmax ~for lower border line! into ~9!. Furthermore, using
~10!, ~12!, and ~13!, we have obtained, in the same manner,
the boundaries depicted in Fig. 7 and Fig. 8 for the energy-
duration and energy-area joint distributions of the BN sig-
nals, respectively. The achieved rather precise prediction for
boundaries of the energy-duration and energy-area distribu-
tions of BN signals ~obtained through quantities estimated
from the area-duration distribution! serves as a confirmation
of validity of the assumed form ~8! for an elementary signal.

The next question, which we are going to answer, is
whether one may consider the two stochastic quantities g
and T as two independent stochastic quantities. With this aim
in view, we have evaluated P(guT), the conditional prob-
abilities to observe an elementary signal with the signal ex-
ponent g under condition that its duration is equal to T , from
our experimental data and from the relation ~9!. The result of
the corresponding evaluation, for six logarithmically spaced
T bins @chosen within the scaling region of P(T) distribu-
tion# is shown in Fig. 11. It should be observed that for all
specific values of T , the conditional probabilities P(guT)

collapse on the single curve. On these grounds, one can jus-
tifiably consider g and T as the two independent stochastic
quantities, which implies P(guT)5P(g) and
P(g ,T)5P(g)P(T). As regards the distribution P(g), it
can be described as a Gaussian ~with the mean and the half-
width sg equal to 1.4975 and 0.05, respectively!, although
its identification with some of known distributions is of no
major importance for our present analysis.

Our further analysis can be simplified by the fact that we
can identify g1, given by ~3! and ~4!, with the most probable
value of the signal exponent associated with the distribution
P(g). This identification can be justified by the high value of
the relevant Pearson coefficient, given in ~5!, as well as by
the fact that the peak of the distribution P(g) occurs at
g5g1 ~see Fig. 11!. Consequently, from ~9!, ~10!, and ~12!,
follow the power laws of the type ~3! and the scaling rela-
tions

g252g121, g3522

1

g1
. ~14!

Hence, we can see that the values 2.02 and 1.34, for g2 and
g3, respectively, which follow from ~14! and experimentally
found value g151.51, are in a very good agreement with the
values quoted in ~4!, which corroborates the scaling relations
~14!.

To complete the set of the expected scaling relations we
find it appropriate to specify the first power law of ~1! by
introducing a correction factor

P~T !5B t~T !T2a, ~15!

which is assumed to describe more accurately the signal dis-
tribution with respect to the signal duration T . Here, the in-
troduced correction factor B t(T) should be constant in the
scaling region, while for large T it should depend on T in
such a way to describe the observed cutoff behavior ~see Fig.

FIG. 11. Distribution of the signal exponent g for six logarith-
mically spaced time bins which all belong to the scaling region of
the BN signal duration distribution. One should observe that, for all
specific values of T , the presented distributions collapse on a single
curve, which has been fitted by the solid line ~obtained through the
Jandel Scientific Table Curve 2D program!. The presented distribu-
tion may be rather well described as a Gaussian distribution with
the mean and the halfwidth being equal to 1.4975 and 0.05, respec-
tively.
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3!. We are going to use the following phenomenological
stretched-exponential form for the correction factor:

B t~T !5B0texp@2~T/Tc!
1/s t# , ~16!

where B0t is a constant, Tc is a characteristic cutoff time, and
s t is the corresponding exponent. The stretched-exponential
form ~16! has been used in a similar content in the work @24#,
and its relevance to the phenomenon studied has been argued
also by Alessandro et al. @7#. To assert values of the con-
stants in ~16!, we have minimized x2 of our experimental
data and the form ~15! performing the Nelder-Mead downhill
simplex method in multidimensions ~see Ref. @27# and the
program Amoeba given therein!. Here we remind the reader
that we have grouped our data into logarithmically spaced
bins, so that the number N(T0) of single BN signals in a bin
centered at T0 is given by

N~T0!'NE
T0 /l

T0l

P~T !dT , ~17!

where N is the total number of signals, while l is the bin size.
Hence, we have obtained the critical exponent a52.22 @see
~2!#, and the correction factor parameters

Tc5~2.460.2!1023 sec, s t50.2860.08, ~18!

where the quoted errors were estimated via 100 Monte Carlo
simulations with the confidence level being equal to 0.68
@27#. In Fig. 3 we present the curve of the form ~15!–~16!,
with Tc and s t given by ~18! and with a52.22 and
B0t50.4760.07, and one can see that this curve fits the ex-
perimental data in a very satisfactory way. However, we
would like to point out that the values ~18! were extracted
from the distribution tail, that is, for signals of long durations
whose statistics is relatively meager, and, for this reason, one
could expect a deviation from ~18! in a experiment with a
larger statistics. Similarly, it should be emphasized that the
form ~16! cannot stay valid in the entire region pertaining to
signals of short durations ~in our case, for T,1025 sec!, so
that an experiment performed in such a region would require
a different correction factor.

The foregoing discussion of the duration distribution
power law, ~15! and ~16!, together with the specific assump-
tion ~8! about the elementary BN signal shape, implies a
definite form for the area distribution P(A). To find it, we
start with the following equality

P~Aug !dA5P~Tug !dT , ~19!

which relates the conditional probabilities P(Aug) and
P(Tug)5P(T) to observe a BN signal of area A and dura-
tion T ~with a proviso that the signal exponent is g),
whereby one can derive the expression

P~Aug !5

1

g
B tF S A

CG~g !
D 1/gG

3@CG~g !#~a21 !/gA2@11 ~a21 !/g#. ~20!

Next, taking into account that P(A)5*P(Aug)P(g)dg , and
since the distribution P(g) is narrow ~see Fig. 11!, one may
conjecture that P(A) is approximately given by the right

hand side of ~20! with g being replaced by g1. Performing
this replacement, one can recognize that ~20! is, in fact, of
the form ~15!, with

t511

a21

g1
, ~21!

and

Ba~A !5B0aexp@2~A/Ac!
1/sa# , ~22!

where B0a5(B0t /g1)@CG(g1)#
(a21)/g1 and

Ac5CG~g1!Tc
g1, sa5g1s t. ~23!

Inserting the best fit parameters for the duration distribution
(a , Tc , s t , and B0t) in ~21! and ~23! one finds t51.81,
B0a50.0144, Ac57.731027 Vsec, and sa50.42, whereas
the best fit of the experimental data gives, respectively,
t51.7760.09 @see ~2!# and

B0a50.014160.003, Ac5~6.162 !31027 V sec,

sa50.4360.1, ~24!

which has been obtained following the same numerical pro-
cedure @27# applied in the case of the duration distribution.

In a similar way, one can obtain the scaling relation

e511

a21

2g121
, ~25!

for the critical exponent e of the energy distribution of the
BN signal, as well as the scaling relation

e511

~t21 !~a21 !

2a2t21
, ~26!

that follows by eliminating g1 from ~21! and ~25!. Inserting
the experimental findings for a and g1 in ~25!, we obtain
e51.61, which is in a good agreement with the value
e51.56 found experimentally @see ~2!#. Applying the same
approach that led us to the formula ~22!, we obtain for the
energy distribution the form of the correction factor

Be~E !5B0eexp@2~E/Ec!
1/se# , ~27!

where

B0e5@B0t2
12a/~2g121 !#@C2G~2g121 !#~a21 !/~2g121 !

and

Ec5C2G~2g121 !~Tc/2!2g121, se5~2g121 !s t.
~28!

Inserting the best fit parameters for the duration distribution
in ~28! one finds B0e50.004,Ec54.0310210 J, and
se50.56, whereas the best fit of the experimental data gives,
respectively,

B0e5~4.360.6!31023, Ec5~462 !310210 J,

se50.660.2, ~29!
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which has been obtained following again the same numerical
procedure @27# applied in the case of the duration distribu-
tion.

In the final part of this section, we would like to expound
on our theoretical predictions about the power spectrum of
the BN signal. Thus, we start with the autocorrelation func-
tion CF(t0) of the total signal F(t)

CF~ t0!5^F~ t !F~ t1t0!&5nE dgE dTP~g ,T !Cg ,T~ t0!,

~30!

where

Cg ,T~ t0!5E
2`

1`

f g ,T~ t8! f g ,T~ t81t0!dt8, ~31!

which is the autocorrelation function of the elementary sig-
nal f g ,T . Therefore, the power spectrum S(v) of the total
signal F(t), as a function of the angular frequency
v52p f , is

S~v !5E
2`

1`

CF~ t0!e
2ivt0dt05n^Sg ,T~v !&

5nE dgE dTP~g ,T !u f̂ g ,T~v !u2. ~32!

Here, Sg ,T(v) is the power spectrum of the elementary sig-
nal f g ,T(t8),

Sg ,T~v !5u f̂ g ,T~v !u2, ~33!

and f̂ g ,T(v) is the Fourier transform of the elementary signal

f̂ g ,T~v !5E
2`

1`

f g ,T~ t8!e2ivt8dt8, ~34!

which for the exponentially decaying elementary signal fac-
tor g(x)5exp(2x) has the specific form @28#

f̂ g ,T~v !5

CTgG~g !

@11~vT !2#g/2 exp@2igarctan~vT !# . ~35!

Hence, using our assumption ~8!, related to the shape of el-
ementary signals, we obtain

f̂ g ,T~v !5

f̂ g , v/v0 T
~v0!

S v

v0
D g , f̂ g ,T~v !5S TT0D

g

f̂ g ,T0S TT0 v D ,
~36!

where we have introduced new time and frequency units
T0 and v0, respectively. Using the latter forms and ~15! in
~32! one can obtain

S~v !5nE dgP~g !E dT

B tS T

~v/v0!
DT2aU f̂ g ,T0S TT0 v0D U2

S v

v0
D 2g2a11 S TT0D

2g

5nE dgP~g !E dS TT0DT012aS TT0D
2g2a B tS ~T/T0!

~v/v0!
T0D

S v

v0
D 2g2a11 U f̂ g ,T0S TT0 v0D U2. ~37!

If we now define dimensionless quantities T̃5T/T0 and
ṽ5v/v0, we finally obtain our general expression for the
power spectrum

S~v !5nT0
12aE dg

P~g !

ṽ2g2a11E dT̃B t

3S T̃
ṽ
T0D T̃2g2au f̂ g ,T0

~ T̃v0!u
2. ~38!

One might conclude from ~38! that the power spectrum
exponent b satisfies the scaling relation

b52g12a11, ~39!

providing one assumes that P(g) can be approximated by
the delta function d(g2g1) and that the integral over T̃ in
~38! is, for high frequencies v , approximately a constant.

However, inserting data from ~2! and ~4! in ~39! one finds
that b51.80, which deviates from the experimentally ob-
tained value b51.621.7. Therefore, in order to check the
validity of the expression ~38!, we have evaluated S(v)
~with the time unit T0 and the frequency unit v0 chosen so as
to achieve stability in the corresponding numerical calcula-
tions! using ~38! and approximating P(g) with the best fit to
the Gaussian form. Results of this calculation are presented
in Fig. 9 as a continuous line, whereby we have found the
corresponding power-law exponent b51.6760.01. The lat-
ter value is in accord with experimental finding for b and
deviates from the value b51.80 which followed from the
scaling relation ~39!. The deviation can be now attributed to
the assumptions that have brought about ~39!. Hence, it ap-
pears that the integral over T̃ in ~38! is weakly dependent on
v and g . Besides, the second source of difference between
the two values for b ~1.67 vs 1.80! springs from the finite
width of the P(g) distribution. Indeed, if we take P(g) to be
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of a Gaussian type ~instead of being a delta function!, and
perform the requisite lengthy calculation, we get a negative
correction term on the right hand side of ~39!, so that instead
of g1 there appears g12sg

2 lnv. In other words, g1 gets the
logarithmic correction term, and if we take sg50.05 and, for
instance, v5105, we get b51.74, which is closer to the
experimental finding b51.621.7.

IV. DISCUSSION

In this work we have performed extensive measurements,
with reliably large statistics, of the Barkhausen noise ~BN! in
the case of a commercial VITROVAC 6025-X metal glass
sample. We have demonstrated that the BN phenomenon can
be described by well defined critical exponents ~see, for in-
stance, Figs. 3–5! which satisfy a set of scaling relations.
The observed power laws for the quantities T ,A ,E , and for
their joint distributions, may be interpreted as a manifesta-
tion of the vicinity to some critical point ~see, for instance,
@23#!. Although our findings may not be sufficient to either
validate existence of the critical point, or to locate it in terms
of some relevant parameters, nevertheless the established
power-law behaviors, the set of scaling relations ~being sat-
isfied with our experimental findings!, and the data collaps-
ing of the type presented in Fig. 11, make us wonder
whether, in the BN case, there exists also a generalized ho-
mogeneous function ~GHF! with a concomitant data collaps-
ing ~in an analogy with the standard critical phenomena
@29#!. Here we argue, and provide evidences, that the prob-
ability distribution of BNES’s is a GHF. With this goal in
mind, we first introduce the scaling Sb ~for b.0), within the
set B of all possible BNES’s, such that when it is applied to
the i BNES of the shape f i(t8) it gives the Sbi BNES of the
shape

f Sbi~ t8!5bx f i~ t8b
y!, ~40!

where b is the scaling parameter, while x and y are the
scaling exponents. Next, we put forward the following scal-
ing hypothesis — if p(i ,l) denotes the probability density to
observe the i BNES when the system is at the ‘‘distance’’
l from the critical point, then for some specific exponents
(x ,y) @see Eq. ~40!# there exist additional exponents z and
w0 such that

dp~Sbi ,b
zl !5bw0dp~ i ,l !, ~41!

which is, in fact, the GHF statement.
To acquire possibility to verify experimentally the above

GHF statement, we introduce the probability density
P(T ,A ,E ,l) of obtaining BNES’s with given T , A , E , and
l via

dP~T ,A ,E ,l !5P~T ,A ,E ,l !dTdAdE5E
G

dp~ i ,l !,

~42!

where G is the set of all BNES’s having T , A , and E within
the limits T,T(i),T1dT , A,A(i),A1dA , and
E,E(i),E1dE . Accordingly, one may prove that the
probability density P(T ,A ,E ,l) is the generalized homoge-
neous function

P~b2yT ,bx2yA ,b2x2yE ,bzl !5bwP~T ,A ,E ,l !, ~43!

where

w5w023~x2y !, ~44!

which, with z̃5z/y and w̃5w/y , and with the another scal-
ing parameter c5b2y, can be rewritten in a more convenient
form,

P~cT ,caAA ,caEE ,call !5caPP~T ,A ,E ,l !, ~45!

where

aA512 x̃ , aE5122 x̃ , al52 z̃ , aP52w̃ .
~46!

To prove ~43!, we start with the auxiliary relations be-
tween the duration T , area A , energy E , and Fourier trans-
form f̂ (v) of the original i BNES and the scaled Sbi BNES,

T~Sbi !5b2yT~ i !, ~47a!

A~Sbi !5bx2yA~ i !, ~47b!

E~Sbi !5b2x2yE~ i !, ~47c!

f̂ Sbi~v !5bx2y f̂ i~vb2y!, ~47d!

which can be verified in few steps. Indeed, to obtain ~47a!,
one has to notice that the duration T of BNES is defined by
T5t l2t f , where t f and t l are the first and the last moments,
respectively, of the time interval when BNES is above the
discrimination level bd . Besides, one has to keep in mind
that T displays only minor changes if the discrimination
level bd is changed. Thus, one can make the choice
bd5b l1ddb

x ~see Sec. II B!, in the case of the scaled Sbi
BNES, and thereby one obtains ~47a!. In order to obtain
~47b!–~47d!, one has to perform the change of the variable
t→t85byt in the integrals which appear in definitions of
A , E , and f̂ (v), given in Sec. III. Next, we return to the
proof of ~43!, and to this end we write

P~b2yT ,bx2yA ,b2x2yE ,bzl !

5

dP~b2yT ,bx2yA ,b2x2yE ,bzl !

d~b2yT !d~bx2yA !d~b2x2yE !
5

*G8
dp~ i ,bzl !

b3~x2y !dTdAdE
,

~48!

where Sb image of G is the set G8 of all BNES’s having T ,
A , and E within the limits b2yT,T(i),b2y(T
1dT), bx2yA,A(i),bx2y(A1dA), and b2x2yE,E(i),
b2x2y(E1dE). Then, using ~41! and the relation

E
G8

dp~ i ,bzl !5E
G

dp~Sbi ,b
zl !

dp~ i ,l !
dp~ i ,l !5bw0E

G

dp~ i ,l !,

~49!

one obtains ~43!.
In what follows we are going to demonstrate that the

power laws ~1! for the P(T), P(A), and P(E) distributions,
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and all scaling relations of Sec. III, can be obtained from
~43! if one chooses the scaling exponents aA , aE , al , and
aP in the following way:

aP52

eat122e2a2t

~12t !~12e !
, aA5

12a

12t
, aE5

12a

12e
,

al51/sT, ~50!

where a , t , and e are the scaling exponents of ~1! and sT is
the exponent of ~16!. Indeed, for the duration distribution
P(T) we have

P~T !5E dAE dEP~T ,A ,E ,l !

5TaP1aA1aEE dS ATaAD E dS ETaED PS 1, ATaA, ETaE, l

Tal
D ,

~51!

whereby one can see that P(T) exhibits a power-law behav-
ior, with the correction term ~given by the integral of the last
relation! and with the scaling exponent a given by

a52~aP1aA1aE!. ~52!

In a similar way, one can show that the distributions P(A)
and P(E) obey power-law behavior as well, with the expo-
nents t and e given by

t52

aP1aE11

aA
, e52

aP1aA11

aE
. ~53!

Finally, starting with Eqs. ~52! and ~53!, one can obtain the
first three relations of ~50!. As regards the correction term of
the power law ~16!, one may conjecture that the fourth rela-
tion of ~50! stays valid and that the cutoff parameter Tc of
~16! might serve as the parameter l which measures distance
from the critical point ~at which the system should exhibit
the pure power laws, with the cutoffs removed!. As to the
stretched-exponential form ~16! for the correction term, we
can say that this form ~being specific! does not follow from
the general scaling hypothesis ~41!.

The power laws of the form ~3! also follow from the
scaling hypothesis ~41! with the identification

g15aA , g25aE , g35aE /aA, ~54!

between the set of experimental exponents g1, g2, and g3
and the set of theoretical exponents aA and aE , which can be
verified by recalling that the average area ^A&T of the
BNES’s, of the duration T , satisfies

^A&T5

*dA*dEP~T ,A ,E ,l !A

*dA*dEP~T ,A ,E ,l !

5TaA
*dv2v2*dv3P~1,v2 ,v3 ,l/T

al!

*dv2*dv3P~1,v2 ,v3 ,l/T
al!

, ~55!

whereby the first equality of ~54! follows. The remaining two
equalities of ~54! follow in analogous way. Then, combining
the first two relations of ~46!, the second and the third rela-

tion of ~50!, and ~54!, we retrieve the scaling relations ~14!,
~21!, and ~25!. In a similar way one may also derive relations
~23! and ~28!, with the remark that Ac and Ec might also play
the role of the parameter l .

To make the present derivation of the scaling relations
complete, we are going to rederive the scaling relation ~39!,
which relates the exponent g1 and the duration exponent a
with the exponent b of the power spectrum. To this end, we
start with

S~v !5nE dp~ i ,l !u f̂ i~v !u2

5nE dTE dAE dEP~T ,A ,E ,l !
*Gdp~ i ,l !u f̂ i~v !u2

*Gdp~ i ,l !
,

~56!

and use ~43!, together with

E
G

dp~ i ,l !5E
Sb21~SbG!

dp„i ,~b21!zl8…

5E
G8

dp„Sb21i8,~b21!zl8…

dp~ i8,l8!
dp~ i8,l8!

5b2w0E
G8

dp~Sbi ,b
zl !, ~57!

where l85bzl and i85Sbi , and

E
G

dp~ i ,l !u f̂ i~v !u2

5b2~y2x !2w0E
G8

dp~Sbi ,b
zl !u f̂ Sbi~b

yv !u2, ~58!

to obtain

S~v !5nb2~y2x !2wE dTE dA

3E dEP~b2yT ,bx2yA ,b2x2yE ,bzl !

3

*G8
dp~Sbi ,b

zl !u f̂ Sbi~b
yv !u2

*G8
dp~Sbi ,b

zl !
, ~59!

which for b5v21/y, and with the rescaled variables
v15vT , v25vg1A , and v35vg2, becomes

S~v !5nv2~2g12a11 !E dv1E dv2

3E dv3P~v1 ,v2 ,v3 ,v
z̃l8!

3

*G8
~ i8,v z̃l8!u f̂ i8~1 !u2

*G8
~ i8,v z̃l8!

. ~60!

Hence, we can see that ~39! can be obtained also within the
GHF approach.
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Having verified that the scaling relations obtained in the
Sec. III follow also from the GHF hypothesis ~41!, we are
going to show that this hypothesis, as could have been ex-
pected, implies data collapsing in the case of the probability
distribution functions. Indeed, performing suitable integra-
tion of the distribution P(T ,A ,E ,l) and with a change of
variables one can find

P~A ,T !Ta1g15w1~A/T
g1!5E dv3PS 1, ATg1

,v3 ,
l

Tal
D ,
~61!

P~E ,T !Ta1g25w2~E/T
g2!5E dv2PS 1,v2 ,

E

Tg2
,

l

Tal
D ,
~62!

P~E ,A !At1g35w3~E/A
g3!5E dv1PS v1,1,

E

Ag3
,

l

Aal /g1D ,
~63!

which are correct for a fixed l , and may be correct also in
the case of a weak dependence on l .

The first approach one might have in mind in order to
check whether our experimental data collapse in accordance
with the above relations is to study the quantity
N l(A0 ,T0)T0

t1g1, where N l(A0 ,T0)5N*dT*dAP(A ,T) is
the number of elementary signals which belong to a linear
bin centered at the values A0 and T0. Such a procedure is,
however, inconvenient since the relevant distributions are of
a power-law type, so that all data practically lie in the first
linear bin. Therefore, in order to group experimental data in
a suitable form, one has to separate data in the logarithmi-
cally spaced bins, that is, to integrate NP(A ,T)Ta1g1 within
the limits A0 /dA,A,A0dA and T0 /dT,T,T0dT , where
dA and dT determine the size of a logarithmic bin. In such a
way one obtains the following data-collapsing relations:

N~A ,T !Ta21
5f1~A/T

g1!, ~64!

N~E ,T !Ta21
5f2~E/T

g2!, ~65!

N~E ,A !At21
5f3~E/A

g3!, ~66!

where, for instance,

f1~A0 /T0
g1!5E

A0 /T0dA

A0dA/T0
dvw1~v !. ~67!

In Figs. 12–14 we present our experimental data scaled ac-
cording to the relations ~64!–~66!, respectively. In each case
the data have been taken from four different ‘‘channels,’’
that is, from four different families of logarithmic bins de-
fined by four corresponding values of T0 and A0, which be-
long to the pertinent power-law regions of Figs. 3 and 4. It
follows that the degree of data collapsing depends on the
choice of values for the critical exponents. Thus, one could
argue that the choice of the critical exponents values which
produces the best data collapsing is the most proper choice
for the problem under study. Furthermore, one could claim
that such a choice is, in fact, the best way to evaluate critical
exponents. However, such a procedure of obtaining critical
exponents involves a very intricate numerical calculations

which definitely increases uncertainty of final results. For
instance, in the present case, according to the foregoing pro-
cedure @whose final results are depicted in Figs. 12~b!, 13~b!,
and 14~b!#, we have found the following set: a52.22,
g151.55, g252.15, g351.46, and t51.68 ~in which only
the critical exponent a coincides with the straightforward
measurement, whereas the rest are somewhat changed!. This
set of exponents, unfortunately, does not satisfy the scaling
relations to the same degree which was observed in the case
of critical exponents derived directly from the joint distribu-
tions. The discrepancy may be ascribed to the accumulated
numerical error during the course of determination of data
that were finally scaled, as well as to the possibility that the
entire experiment was not performed close enough to the
assumed critical point ~which could have brought about in-
accurate critical exponents!. In short, the above set of values

FIG. 12. ~a! Data collapsing of the quantity N(A ,T), which is
related to the probability density function through the relation ~64!,
with the exponents a52.22 and g151.51 which were reported in
Sec. II. ~b! Data collapsing of the quantity N(A ,T), obtained with
the exponents a52.22 and g151.55 which were chosen so as to
produce visually the best data collapsing, that is, collapsing with the
least possible scattering of the data points from a single curve. In
both cases ~a! and ~b!, the N(A ,T) data were taken from four T
channels which belong to the scaling region of duration distribution
~cf. Fig. 3!. More specifically, the channels 1–4 correspond to the
following values of T0 ~in secs! 9.723 1025, 1.593 1024,
2.613 1024, and 7.033 1024, respectively, while the ‘‘halfwidth’’
of a channel is dT51.28, which reflects a choice of 14 channels on
the entire duration axis of Fig. 3.
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of critical exponents should be accepted cautiously, together
with the message that they have played an important role in
demonstrating that BN exhibits the basic element of the tra-
ditional critical phenomena, that is, the data collapsing prop-
erty.

The preceding discussion about the GHF concept imposes
the question as to which of the two approaches ~the one
presented in Sec. III and the GHF approach! should be un-
dertaken in the further BN study. To our minds, both ap-
proaches have their own benefits and both of them should be
performed. The GHF concept should be studied further in
order to clarify the type of the critical phenomena relevant to
BN. On the other hand, the well established generic shape of
BNES’s ~see Fig. 10! should bear definite amount of infor-
mation about the mesoscopic dynamic of magnetic domain
behavior ~reflecting material characteristics!, and, for this
reason, it deserves to be pursued in the future.

After the long discussion about the theoretical presenta-
tion of obtained results, we now elaborate on few subtle
experimental problems and the way we have treated them in
order to achieve the correct picture of BN. First, in order to

minimize distortions of BN, we have used a sufficiently long
pickup coil which entirely enclosed the ferromagnetic speci-
men studied, and, in addition, we have carefully analyzed
characteristics of the amplifier used, which enabled us to
eliminate the concomitant distortions that it brought about.
Without these two precautions one cannot obtain clear
power-law characteristics of BN. Second, we have been con-
cerned about the possibility of extending the observed BN
power laws ~see Figs. 3–5! in the regions of small values of
the relevant arguments. With respect to this problem, we
note that, despite the presence of a rather good magnetic
shielding and the signal amplification in the very vicinity of
the pickup coil ~see Fig. 1!, our experimental conditions
were marked by the extrinsic high-frequency noise ~which
appeared for the frequencies higher than 50 kHz!. Because of
this, we may conclude that to assess the initial behavior of

FIG. 13. ~a! Data collapsing of the quantity N(E ,T), which is
related to the probability density function through the relation ~65!,
with the exponents a52.22 and g252.03 which were reported in
Sec. II. ~b! Data collapsing of the quantity N(E ,T), obtained with
the exponents a52.22 and g252.15 which were chosen so as to
produce visually the best data collapsing, that is, collapsing with the
least possible scattering of the data points from a single curve.
Here, the comment about the channels, made in Fig. 12, stays valid
too.

FIG. 14. ~a! Data collapsing of the quantity N(E ,A), which is
related to the probability density function through the relation ~66!,
with the exponents t51.77 and g351.36 which were reported in
Sec. II. ~b! Data collapsing of the quantity N(E ,A), obtained with
the exponents t51.68 and g351.46 which were chosen so as to
produce visually the best data collapsing, that is, collapsing with the
least possible scattering of the data points from a single curve. In
both cases ~a! and ~b!, the N(E ,A) data were taken from four A
channels which belong to the scaling region of area distribution ~cf.
Fig. 4!. More specifically, the channels 1–4 correspond to the fol-
lowing values of A0 ~in V sec! 1.243 1029, 3.013 1029,
7.303 1029, and 4.293 1028, respectively, while the ‘‘halfwidth’’
of a channel is dA51.56, which reflects a choice of 14 channels on
the entire area axis of Fig. 4.
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the BN power laws, one would have to reduce the extrinsic
noise, and, to accomplish this, one would have to use a more
effective magnetic shielding and a faster A/D converter ~with
a better resolution!.

In the introductory part of this paper, it has been pointed
out that BN has many different facets under various experi-
mental conditions, even for the single ferromagnetic sample.
Thus, one generally finds that, if the driving frequency is
high enough, the BN elementary signals ~that originate form
the spatially separated regions of the ferromagnetic sample
under study! are glued, whereas if the driving frequency is
low enough BN appears as a train of pulses mutually well
separated ~by time intervals in which only external noise is
observed!. Therefore, in the latter case, it is plausible to iden-
tify experimentally discernible single BN signals with BN
elementary signals. In order to observe experimentally well
separated BN elementary signals, we have chosen the driving
frequency of 0.03 Hz. This frequency, on the one hand, lies
in the frequency region where statistical characterization of
BN remains stable under frequency variation ~i.e., it is low
enough! and, on the other hand, it is high enough to permit
efficient collection of BN data.

With respect to the question of the numerical values for
the power laws exponents obtained by other authors, we
would like first to mention that the BN exponents reported so
far do not exhibit universality. Next, our experimental con-
ditions were close to the experimental conditions arranged
by Cote and Meisel @16# for the Metglas sample, but our
results are more close to the exponents they have found for
Alumel, in which case the scaling relation ~26! is fulfilled as
well. Likewise, it is interesting that the relation ~26! is ex-
actly satisfied by the exponents quoted in @24# and that our
power-law exponent values are not very different from those
obtained in @24#. The major difference, however, appears in
the case of power-spectrum exponent b . Meisel and Cote
@16# insisted on the value b52, emphasizing the Brownian
character of the observed BN, whereas Perković et al. @24#
have found the value b52.46, for the spectrum in a small

bin, and b51.70, for the spectrum of the entire hysteresis
loop. Our finding b51.621.7, for which we claim that it is
not decreased by the aliasing effect, is more close to the
value reported in @20,21# and to some earlier findings @3#. On
the other hand, the scaling relation ~39!, for which we have
argued that should contain a correction term, is satisfied for
the numerical results found for the zero-temperature random-
field Ising model @24#, and it is approximately satisfied for
the experimental results obtained by Meisel and Cote @16#.

In conclusion, the foregoing specific comparisons show
that the scaling relations established in this paper are much
better satisfied in the case of results obtained within the nu-
merical simulations @24# of the RFI model ~which promotes
the ‘‘plain old criticality’’ for the explanation of BN!, than in
the case of the experimental work @16#, which first advocated
the SOC model and afterwards @17# allowed of different in-
terpretations of BN. On the other hand, the power-law expo-
nents found in this work are in a better agreement with those
reported in the experimental work @16# than with those pre-
dicted via the numerical simulations @24#. It is hard, on these
grounds, to recognize which of the two models ~the RFI or
the SOC model! gives a more correct elucidation of BN.
However, it was not the aim of the present paper to provide
means for choosing the most adequate model for BN, but
rather to point out the role of BNES’s, power laws, scaling
relations, and the data collapsing, in an attempt to understand
the criticality of BN.
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