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Abstract

We perform Monte Carlo simulations to determine the average excluded area 〈Aex〉 of randomly

oriented squares, randomly oriented widthless sticks and aligned squares in two dimensions.

We 1nd signi1cant di2erences between our results for randomly oriented squares and previous

analytical results for the same. The sources of these di2erences are explained. Using our results

for 〈Aex〉 and Monte Carlo simulation results for the percolation threshold, we estimate the mean

number of connections per object Bc at the percolation threshold for squares in 2-D. We study

systems of squares that are allowed random orientations within a speci1ed angular interval. Our

simulations show that the variation in Bc is within 1.6% when the angular interval is varied

from 0 to �=2.
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1. Introduction

Continuum percolation has been of signi1cant interest in the study of porous media

[1]. It o2ers important advantages over lattice percolation due to the fact that the
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majority of systems encountered in nature are not con1ned to a lattice and are therefore

modeled more appropriately using continuum systems [1–4].

When studying the transport properties in porous media, the connectivity properties

of the spanning cluster at percolation threshold are important. One measure of the

connectivity is the mean number of connections per site. In the case of lattice per-

colation, Scher and Zallen [5] demonstrated the approximate dimensional invariance

of this quantity. The behavior of the analogous quantity Bc in continuum percolation

systems has been previously studied [6–8]. In the case of continuum percolation, the

product of the critical concentration Nc of objects at the percolation threshold and the

average excluded area 〈Aex〉 gives the critical average number of intersection per object

Bc [6–8].

Bc = Nc〈Aex〉 : (1)

The excluded area of an object is de1ned as the area around an object into which

the center of another similar object is not allowed to enter if intersection of the two

objects is to be avoided [9]. In the case of objects that are allowed random orientations

in a speci1ed angular interval, one de1nes an average excluded area 〈Aex〉, that is the

excluded area averaged over all possible orientational con1gurations of the two objects.

It has been claimed [7] that Bc for percolating systems of di2erently shaped objects

lies within a bounded range in 2-D, 3:576Bc6 4:48. Bc represents the connectivity

in the spanning cluster and is of interest as the invariance of Bc would enable us to

estimate the percolation threshold Nc using Eq. (1), once 〈Aex〉 has been calculated.

In the present work we focus on continuum percolation systems of squares in 2-D, in

which the objects are allowed random orientations within a speci1ed angular interval.

The motivation for the study of such orientationally constrained systems comes from the

geological observation that fractures in rocks do not have random isotropic orientations

but are oriented within a more or less 1xed angular interval. For our system of squares

there is one angle � that speci1es the orientation of the object and we constrain it to

lie within −��6 �6 ��. We determine the percolation thresholds for di2erent values

of the constraint angle ��. Simulations are also performed to 1nd the excluded area

for each case. Our results show that for a given object shape Bc is constant to within

1.6% for squares independent of the value of the constraint angle ��.

2. Simulation method for �nding excluded area

Here, we describe the method used to determine the excluded area for a pair of

objects that are allowed random orientations within the angular interval −�� to ��. For

rectangles (squares being a particular case) ��=0 corresponds to the case where the ob-

jects are aligned parallel to each other and ��=�=2 corresponds to the random isotropic

case. We describe the algorithm for 1nding the excluded area of squares in 2-D.

A square of unit side is placed with its center coinciding with the center of a

lattice of edge length L= 5. The lattice size is chosen to be larger than the excluded

area, but small enough to suIciently minimise the number of wasted trials and yield

good statistics. The square is given an orientation �i, randomly chosen in the interval

−��6 �i6 ��, with the reference axis. A second square is then introduced into the
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lattice with its center randomly positioned in the lattice. This square is given an ori-

entation �j chosen randomly from the same interval as for the 1rst object. We then

determine if the two squares overlap. We repeat this procedure for 109 trials and record

the number of times the two squares overlap. This number divided by the number of

trials is the probability that the two objects overlap. The probability of overlap times

the area, L2, of the lattice yields the average excluded area for a pair of squares ori-

ented randomly between −�� and ��. The method used to determine the overlap of

squares in 2-D is described in detail in Ref. [10].

3. Excluded area simulation results

We determine the average excluded area for a unit square for di2erent constraint

angles. We also determine the excluded area of widthless sticks for the case of random

isotropic orientations. In our simulations the widthless stick is represented by a rectangle

of edge lengths 1 and 1×10−12. Table 1 lists the Monte Carlo results for 〈Aex〉 obtained
for the di2erent objects studied for the case of random isotropic orientations. Table 2

shows the variation of 〈Aex〉 for squares with the constraint angle. Our values for

〈Aex〉 for aligned squares are consistent with all previous results [7]. Furthermore, our

〈Aex〉 values for randomly oriented widthless sticks are also consistent with earlier

determinations [7]; our slightly higher value of 〈Aex〉 compared to that of Ref. [7] is

explained by the fact that our widthless sticks have a 1nite width and thus are expected

Table 1

Comparison of the average excluded area for widthless sticks and squares in 2-D

Object 〈Aex〉 for unit area object Previous result

Widthless sticks 0:6367± 0:0001 0.6366 [7]

Aligned squares 3:9998± 0:0003 4 [8]

Random Squares 4:5466± 0:0004 4.084 [7]

The uncertainty in 〈Aex〉 is estimated as follows. The reciprocal of the square root of the number of Monte

Carlo trials yielding intersection of the two objects is the fractional uncertainty in the determination of 〈Aex〉.
The product of the fractional uncertainty and the estimated value of 〈Aex〉 is the uncertainty in that value.

Table 2

Critical area fraction, percolation threshold, average excluded area and critical average number of connections

per object for squares in 2-D

Constraint angle �c Nc 〈Aex〉 Bc

�=2 0:6254± 0:0002 0.981896 4:5466± 0:0004 4.464

�=3 0:6265± 0:0005 0.984837 4:5309± 0:0004 4.462

�=4 0:6255± 0:0001 0.982163 4:5459± 0:0004 4.465

�=8 0:6355± 0:0005 1.009229 4:4076± 0:0004 4.448

�=16 0:6485± 0:0005 1.045546 4:234± 0:0004 4.443

�=32 0:6575± 0:0005 1.071484 4:1240± 0:0004 4.419

0 0:6666± 0:0004 1.098412 3:9998± 0:0003 4.394

Estimation of uncertainty in �c is described in Ref. [10].
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to exhibit a larger 〈Aex〉 than found analytically for the zero width limit. However our

〈Aex〉 for the case of randomly aligned squares is di2erent from previous analytical

results, our value being 12% above that determined by Ref. [7]. We propose a reason

for this di2erence in the next section.

4. Discrepancy with previous analytical determination of excluded area

We investigated the cause of the di2erence between our value of 〈Aex〉 for squares

in 2-D and the previous analytical result in Ref. [7] and found it to be the following:

In arriving at the expression for 〈Aex〉 Ref. [7] 1nds the excluded area for a pair of

rectangles (Eq. (18)) with a given relative orientation � (see Fig. 1). For squares, using

equation (Eq. (18)) in Ref. [7],

Aex = (sin �+ cos �+ 1)2 − 2 sin � cos � ; (2)

where

� ≡ |�i − �j| ; (3)

�i and �j being the individual orientations of the two squares. Ref. [7] then obtains

the average excluded area by averaging the right-hand side of Eq. (2) over all possi-

ble orientations of both objects, −��6 �i6 �� and −��6 �j6 ��, using a uniform

probability distribution

P(�i) = P(�j) = 1=2�� : (4)

However, it appears Ref. [7] overlooked the fact that Eq. (2) holds only for 06 �6 �=2

(hence 06 ��6 �=4), since for �=26 �6 �, the expression gives a value of Aex less
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Fig. 1. Procedure for determining the excluded area of two squares of side L: the 1rst square i (shaded),

is kept 1xed while the second square j having orientation � with respect to i, is moved around i always

keeping contact, and the locus of the center of j is found. The area within the locus gives the excluded area

for a given relative orientation of the two squares.
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Fig. 2. Plot of the excluded area 〈Aex〉 for squares in 2-D versus the constraint angle ��. The uncertainties

are smaller than the symbols.

than the minimum possible value of 4 [7]. Thus the procedure of Ref. [7] does not work

when the constraint angle �� is greater than �=4. The correct result can be obtained

by replacing � in Eq. (2) by

�′ = �mod(�=2) ; (5)

so that Eq. (2) holds for all values of ��. For the random isotropic case ��=�=2, using

the modi1ed Eq. (2) and integrating numerically we obtain 〈Aex〉 = 4:54647 which is

in close agreement with our Monte-Carlo simulation result.

We also calculate the values of 〈Aex〉 for squares with other values of �� between 0

and �=2 (Table 2). We notice that the values of 〈Aex〉 are the same for �� = �=4 and

�=2, which is true since the rotation of a square in a particular con1guration through

an additional angle of �=4 yields the same con1guration.

Note that the value of 〈Aex〉 appears to decrease for ��¿�=4, reaches a local mini-

mum near ��=�=3 and then increases again till it reaches a maximum at ��=�=2 (see

Fig. 2). This can be explained as follows. The case �� = �=4 is equivalent to the case

of random isotropic orientation. Here the angle �= |�i − �j| can range from 0 to �=2.

When �� is greater than �=4, � can take values greater than �=2 which means that in

addition to the con1gurations obtained for �� = �=4, there are other con1gurations for

which the relative orientation �=26 �6 2��. However the latter con1gurations are, in

fact, the same as those for �=(2��−�=2)¡�=2 due to the symmetry of squares. Thus,

the decrease in the 〈Aex〉 between �� = �=4 and �=2 can be attributed to the increased

probability of achieving con1gurations with smaller excluded areas.
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5. Percolation thresholds

Using the procedure of Ref. [10], we perform Monte Carlo simulations for the de-

termination of the percolation threshold based upon the Leath method [11] and the

methods Lorenz and Zi2 [12] used in their study of continuum percolation of spheres.

The only di2erence in our present simulations is that the random numbers generated

to 1x the orientation of an object lie within a speci1ed angular range from −�� and

��. We determine the percolation thresholds of squares in 2-D for di2erent values of

the constraint angle ��. These results are shown in Table 2. We also show the values

of critical area fraction �c. Fig. 3 shows a plot of the percolation threshold Nc for

squares in 2-D versus the constraint angle ��. An interesting feature of the 2-D plot is

that as we increase the orientational freedom beginning from �� = 0; Nc drops until it

reaches the value for �� = �=4, then begins increasing until it reaches a maximum and

then falls again. This behavior is expected if Bc is to remain approximately invariant,

as we shall explain below.

6. Approximate invariance of Bc

Using the percolation thresholds and excluded area obtained from our Monte Carlo

simulations, we 1nd the average number [7] of connections per object at threshold Bc.

Table 2 shows the values of Bc for squares for various values of the constraint angle ��.

The change in Bc in going from a constraint angle of �� =0 to �=2 is less than 1.6%.

Using the old values of 〈Aex〉 [7], the variation in Bc is seen to be ≈ 9:5%. We see

that the slight decrease in 〈Aex〉 between ��=�=4 and �=2 (see Fig. 2) is compensated

by an increase in the corresponding Nc (see Fig. 3) to give an approximately invariant

Bc. The closeness of Bc values for a given system is striking and is consistent with
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Fig. 3. Plot of the percolation threshold Nc for squares in 2-D versus the constraint angle ��. The uncertainties

are smaller than the symbols.
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the hypothesis that Bc is approximately invariant for continuum percolating systems of

a particular shape.

7. Summary

Our results show that the value of Bc is approximately independent of orientational

constraints. The Bc value of a shape is indicative of the eIciency of the object in

forming a percolating cluster. Not only the magnitude of the excluded area plays a

part in the formation of connections, but also the distribution of the average excluded

area in space. This is easily seen from the fact that both unit area discs and aligned

unit area squares have 〈Aex〉 = 4 [7], but the percolation threshold of aligned squares

�c = 0:6666 [10] is lower than that of discs �c = 0:676339 [13]. Our results suggest

that the value Bc can be considered as a unique quantitative characteristic of a shape

and can therefore be useful in the prediction of the percolation threshold as has been

previously pointed out [6–8].
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