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Using a hydrodynamic lattice-gas model, we study interface growth in a binary fluid with various
concentrations of surfactant. We find that the interface is smoothed by small concentrations of surfac-
tant, while microemulsion droplets form for large surfactant concentrations. To assist in determining
the stability limits of the interface, we calculate the change in the roughness and growth exponents «

and B as a function of surfactant concentration along the interface.

PACS numbers: 68.10.-m, 05.50.+q, 47.11.4j

The study of rough interfaces is of important experi-
mental and theoretical interest and has wide interdiscipli-
nary applications, including fluid imbibition experiments,
flow in porous media, and fluid-fluid displacement [1].
Rough interfaces have been extensively studied by di-
rect integration of continuum equations and using simple
discrete lattice models. The development of lattice-gas
models makes it possible to study interface roughening in
hydrodynamic systems. Lattice-gas models have evolved
from simple one-component Navier-Stokes fluids [2] to
two-component immiscible lattice-gas (ILG) models [3],
and, most recently, to a model including amphiphilic par-
ticles [4]. Lattice-gas models can reproduce the dynam-
ics on mesoscopic scales, allowing for the investigation
of nonequilibrium behavior over a much broader range
of length and time scales than is possible with molecular
dynamics [5]. The simplicity of the collision rules, the
exact conservation of mass and momentum, and the natu-
ral underlying kinetic fluctuations suggest that lattice-gas
models are an appropriate choice for studying the scaling
behavior of interfaces in complex hydrodynamic systems.

In this Letter, we study interfacial roughening in the
presence of a surfactant by including amphiphilic parti-
cles that tend to reside at the binary fluid interface [6].
Flekkgy and Rothman recently studied fluctuating inter-
faces in an ILG model without surfactant and described
the scaling properties of these interfaces [7]. When sur-
factant is added to an initially flat interface, we find that
the roughness exponent o and growth exponent B de-
crease for small concentrations of surfactant [8]; however,
for larger concentrations of surfactant, 8 increases while
a continues to decrease. The continued addition of sur-
factant causes the interface to spontaneously break up into
a microemulsion phase. We also find that the saturated
width of the interface has a minimum when the surfactant
concentration along the interface matches the binary fluid
concentration in the bulk.

Far from any interface, the present model approaches
the one-component FHP-II model [2,9], which employs
a triangular lattice with each lattice site occupied by up
to seven particles, each of which is either at rest or
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has unit velocity directed along one of the six lattice
vectors toward neighboring sites. No two particles may
have the same velocity at a lattice site. The rules dictate
that a particle propagates along a lattice direction until
a collision occurs. When no surfactant is present, the
current model reduces to the two-component ILG model
[3], which employs two types of particles and assigns each
of the two species a color, “red” or “blue.” Each collision
must conserve red particles, blue particles, and the total
momentum. Additional collision rules are included that
give rise to the aggregate behavior of an immiscible
fluid. These rules can be described using an electrostatic
analogy [4], where the color flux J(x,t) of an outgoing
state is the difference between the red and blue momenta.
The color field E(x,t) is the gradient of color between
neighboring sites. At each time step, the color work—
defined by the inner product J - E—is minimized at
each lattice site, which has the effect of inducing phase
separation.

With the addition of surfactant molecules, the ILG be-
comes a three-component model having the potential to
model amphiphilic systems [4]. To make the behavior
of the surfactant consistent with a molecule composed of
hydrophobic and hydrophilic ends, the surfactant is rep-
resented as a “color dipole” with a dipole vector o (x,t)
and produces a dipolar field P(x,t) at neighboring sites.
A term proportional to o - E, representing the interaction
of colored particles with dipoles, is added to the Hamil-
tonian. Similarly, we add a term proportional to o - P to
include the dipole-dipole interaction. Minimization of the
modified Hamiltonian favors the surfactant particles lining
up along the interface between red and blue particles and
makes it unfavorable for surfactant particles to align with
each other at neighboring sites, modeling the expected be-
havior of an amphiphilic molecule [10].

We perform simulations of the three-component model
using a sequence of two-dimensional lattices of edge L =
16, 32, 64, 128 and 256 with periodic boundary condi-
tions in both directions. Initially, red and blue parti-
cles are placed on the lattice separated by two flat in-
terfaces which are evenly spaced and oriented perpen-
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FIG. 1. Typical configurations (a) for the L = 32 case with-
out surfactant (p; = 0); the concentration in each region is
p = 0.5; (b) for a surfactant concentration p; = 1.0 along the
interface; binary fluid particles are replaced by surfactant par-
ticles so that the total particle number remains unchanged; (c)
for the micellular microemulsion phase (p; = 1.5). Note that
the periodic boundary conditions require two interfaces.

dicular to one of the lattice directions [11], as shown
in Fig. 1(a). In each region the particle concentration is
p = 0.5 [12]. Each particle, with uniform probability, is
either given zero velocity or unit velocity in one of the
six lattice directions. Surfactant molecules are placed at
the interfaces with varying concentration and angular ori-
entation randomly selected between O and 27. (After a
single collision step, the angular orientation of the surfac-
tant molecules tends to align perpendicular to the inter-
face, as this is energetically favorable.) The system then
evolves according to the collision rules of the model. Our
interest focuses on how the addition of surfactant to the
interface mediates the roughening process.

We first calculate the average interface width W(L,
1) = (h%(x,t) — h(x,t)2>1/2 at logarithmically spaced
time intervals with no surfactant present. We find
that W(L, ) ~ t# until a crossover time 7« (L), where-
upon it saturates at a value Wy, (L) ~ L [1,7], with
B =0.33 £0.02 and @ = 0.50 = 0.02 (Fig. 2). Hence
z = a/B = 1.50 = 0.03, where z is the dynamical ex-
ponent, defined by rx(L) ~ L*. In Fig. 2(b), we plot the
rescaled width W(L, r)/L* against the rescaled time ¢/L*?
and confirm the scaling hypothesis, W (L, 1) ~ L*f(t/tx)
[1]. Our results match the scaling exponents o = 1/2
and B8 = 1/3 for the Kardar-Parisi-Zhang (KPZ) univer-
sality class [13], and are comparable to earlier results
obtained by Flekkgy and Rothman [7].

Next we consider interface roughening with surfactant
present. In the three-component model, for surfactant
concentrations below the critical concentration for spon-
taneous emulsification, the surfactant particles tend to line
up along the interface between the two fluids. Since we
are interested in the role that the surfactant plays in the
kinetic roughening process, we start with an initial con-
figuration where the fluids are separated and we replace
red and blue particles with surfactant particles in a single
row along the interface [Fig. 1(b)]. We define the surfac-
tant concentration p; = N, /L, where Ny is the number of
surfactant particles placed along the interface. To obtain

3364

0.5 T T T T T T T T

0.0
S
S
S0
=
-0.5
-1.0 L 1 L I s 1 s 1 L
0.0 1.0 2.0 3.0 4.0 5.0
log,,t
_0-5 T T T
(b) )0
M.o; '; O ;:::/",‘:ié::?"ii‘:‘.
-1.0 §
R
~ T T
=
G L
= L
-1.5 .
10 15 2.0 25
log,, L
-2.0 s 1 s 1 L L L
-4.0 -2.0 0.0 2.0 4.0
log,, t/L
FIG. 2. (a) Interface growth and roughening of a
binary fluid for system sizes L = 16 (o), 32 (0),

64 (<), 128 (A), and 256 (). At early times, the width
W ~ tP, where 8 = 0.33 = 0.02. (b) Rescaling to test the
scaling hypothesis and the values of @ and 8. Error bars are
approximately equal to the symbol size. The inset shows the
size scaling of saturation width, where @ = 0.50 *= 0.02, in
agreement with the values predicted in Ref. 7.

ps > p, we replace red and blue particles with surfactant
particles on multiple rows [14].

In Fig. 3(a), we plot W(L,t) for all system sizes and
p = ps = 0.5. We still see a growth regime that crosses
over to a saturated regime. Compared to Fig. 2, the
case without surfactant, the growth rate of the width is
slower and W, is smaller. We find 8 = 0.27 £ 0.02
and @ = 0.43 £ 0.02. Figure 3(b) confirms the scaling
hypothesis using z = a/B8 = 1.59 * 0.03. These values
for a and B are not the accepted values for the roughness
and growth exponents of the KPZ equation in 1 + 1
dimensions. The KPZ exponents also obey the sum
rule, z + @ = 2, a consequence of Galilean invariance
[1]. We obtain z + @ = 2.02 = 0.04 for this case.
This result is surprising since lattice-gas models are
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FIG. 3. (a) Interface growth and roughening for the three
component model with a surfactant concentration p; = 0.5
along the interface. System sizes and symbols are the same
as in Fig. 2. For t < tyx, the growth rate is slower than
for the binary case, and the saturation width is smaller. We
find B = 0.27 = 0.02. (b) Rescaled plot demonstrating data
collapse. Error bars are approximately equal to the symbol size.
The inset shows the roughness exponent @ = 0.43 = 0.02.

not Galilean invariant, due to the fact that the lattice
constitutes a preferred Galilean reference frame [2]. On
the other hand, the flow equations of the lattice-gas model
do contain a nonlinear inertial term, as does the KPZ
equation.

We next consider the effect of the surfactant concentra-
tion on the growth of the interface and the saturated width.
In Fig. 4(a), we show the dependence of 8 on p, for a
lattice of size 32 X 32. We observe a dramatic reduction
in the growth exponent upon the addition of any surfac-
tant to the interface. Additional surfactant causes little
change in 8 up to py, = p, where 8 = 0.22 %= 0.02. For
ps > p, the growth exponent increases but never returns
to the value of the pure case. For p; = 1.5, the inter-
face spontaneously breaks up, giving rise to a micellular
microemulsion phase where the width is no longer well
defined [Fig. 1(c)]. The effect of p; on Wy, is similar
to its effect on B. For p; < p we see that the interface
width saturates at a value that decreases for increasing p;

N,/L

FIG. 4. (a) Dependence of the growth exponent 8 on sur-
factant concentration p; = N;/L for a 32 X 32 system with
p = 0.5. For small surfactant concentrations, the growth rate
is reduced. B increases for p; > p until spontaneous emulsifi-
cation occurs. (b) Dependence of saturation width on surfactant
concentration for p = 0.5. For p; < p the surfactant reduces
the value of the saturated width. For p; > p the interface
becomes rougher as it approaches spontaneous emulsification.
(c) Wsa dependence on p,; with a binary fluid concentration
p = 0.7. We again see that the behavior changes at p; = p.

[Fig. 4(b)]. However, for p; > p, Wy, increases until
we reach the microemulsion-droplet phase.

We can understand the behavior of W, by considering
the effect the surfactant has on the binary fluid interface.
From the Hamiltonian, we know that the color-dipole en-
ergy, o - E, required for surfactant to be removed from
the interface is large compared to the energy for the surfac-
tant to remain on the interface. As a result, the surfactant
particles are effectively “anchored” at the interface. For
ps < p, the surfactant reduces the fluctuations of the in-
terface because it is anchored in position between red and
blue particles. As a result, W, is smaller. For p; > p,
the color-dipole interaction still forces surfactant particles
to remain on the interface, but now surfactant particles are
more likely to neighbor each other. Since the dipole-dipole
interaction, o - P, makes it energetically unfavorable for
dipole molecules to align with other dipole molecules at
neighboring sites, the surfactant creates additional surface
by roughening the interface to reduce the number of neigh-
boring surfactant molecules, thereby increasing Wg,,. To
demonstrate that the turning point in Wy, depends on our
choice of p, we measure W, for various p; with a binary
fluid concentration p = 0.7 [Fig. 4(c)]. We again see Wi,
decreasing for p;, = p and increasing for py, > p.

To investigate the effect of p; on a, we consider sys-
tem sizes L = 16, 32, 64, and 128 for p; = 0.8 and 1.0.
At p; = 0.8 we find 8 = 0.27 = 0.02 and « = 0.36 =
0.02, while for p; = 1.0 we obtain 8 = 0.30 = 0.02 and
a = 0.23 = 0.02. Using the exponents for these con-
centrations, we do not find z + @« = 2. In Table I we
summarize the behavior of the exponents «, B, z, and
z + a as a function of the surfactant concentration. We
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TABLE I. Roughness, growth and dynamic exponents for various surfactant concentrations
measured from the simulations. Also included are the number of samples that have been
averaged.

Ds @ B z 7+« Samples
0.0 0.50 = 0.02 0.33 = 0.02 1.50 = 0.03 2.00 = 0.04 170
0.5 0.43 = 0.02 0.27 = 0.02 1.59 = 0.03 2.02 = 0.04 170
0.8 0.36 = 0.02 0.27 = 0.02 1.33 = 0.03 1.69 = 0.04 150
1.0 0.23 £ 0.02 0.30 = 0.02 0.77 = 0.03 1.00 = 0.04 150

notice that a decreases as we increase the surfactant
concentration.

In summary, we have found that a three-component
lattice gas can be used to test the effect of surfactant
on the scaling properties of hydrodynamic interfacial
growth and roughening. In particular, we have found that
surfactant alters the growth and roughness exponents, with
a decreasing and S increasing as we increase p; above
the concentration of the binary fluid. These results may
assist in understanding the stability limits of interfacial
growth in the presence of a surfactant and the conditions
for the formation and breakup of microemulsion droplets.
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